@article{CTGDC_1991__32_3_257_0, author = {B\"orger, Reinhard and Tholen, Walter}, title = {Strong regular and dense generators}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {257--276}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {32}, number = {3}, year = {1991}, mrnumber = {1158111}, zbl = {0758.18001}, language = {en}, url = {http://www.numdam.org/item/CTGDC_1991__32_3_257_0/} }
TY - JOUR AU - Börger, Reinhard AU - Tholen, Walter TI - Strong regular and dense generators JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1991 SP - 257 EP - 276 VL - 32 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_1991__32_3_257_0/ LA - en ID - CTGDC_1991__32_3_257_0 ER -
%0 Journal Article %A Börger, Reinhard %A Tholen, Walter %T Strong regular and dense generators %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1991 %P 257-276 %V 32 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_1991__32_3_257_0/ %G en %F CTGDC_1991__32_3_257_0
Börger, Reinhard; Tholen, Walter. Strong regular and dense generators. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 32 (1991) no. 3, pp. 257-276. http://www.numdam.org/item/CTGDC_1991__32_3_257_0/
1 Cocompleteness almost implies completeness, Proc. Conf. Categorical Topology Prague 1988. (World Scientific, Singapore 1989) pp 246-256. | MR
, and ,2 Monadic decompositions, J. Pure Appl. Algebra 59 (1989) 111-123. | MR | Zbl
, and ,3 Total categories with generators, J. of Algebra 133 (1990) 63-78. | MR | Zbl
and ,4 Théorie des Topos et Cohomologie Etale des Schémes, Lecture Notes in Math. (Springer-Verlag, Berlin 1972) 269. | MR
, and ,5 Multicoreflective subcategories and coprime objects, Topology Appl. 33 (1989) 127-142. | MR | Zbl
,6 When do all ring homomorphisms depend on only one coordinate?, Arch. Math 45 (1985) 223-228. | MR | Zbl
and ,7 Total categories and solid functors, Canad. J. Math 42 (1990) 213-229. | MR | Zbl
and ,8 Totality of colimit-closures, Comm. Math. Univ. Carolinae, (submitted). | Zbl
and ,9 Categories in which all strong generators are dense, J. Pure Appl. Algebra 43 (1986) 235-242. | MR | Zbl
and ,10 Adjoint triangles, Lecture Notes in Math. (Springer-Verlag, Berlin 1968) 61, 69-91. | MR | Zbl
,11 Exponentiable morphisms, partial products and pullback complements, J. Pure Appl. Algebra 49 (1987) 103-116. | MR | Zbl
and ,12 Lokal präsentierbare Kategorien, Lecture Notes in Math. (Springer-Verlag, Berlin 1971) 221. | MR | Zbl
and ,13 Lecture Notes in Math. (Springer-Verlag, Belin 1968) 78. | MR | Zbl
und ,14 A categorical concept of connectedness, Tagungsberichte Oberwolfach 1974.
15 An interpolation theorem for adjoint functors, Proc. Amer. Math Soc. 25 (1970) 880-883. | MR | Zbl
,16 Some remarks on conservative functors with left adjoint, J. Korean Math Soc. 23 (1986) 19-33. | MR | Zbl
and ,17 Adjoint-triangle theorems for conservative functors, Bull. Austral. Math. Soc. 36 (1987) 133-136. | MR | Zbl
and ,18 Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. A 9 (1969) 142-142. | MR | Zbl
,19 Basic Concepts of Enriched Category Theory, Cambridge University Press, Cambridge 1982. | MR | Zbl
20 A survey on totality for enriched and ordinary categories, Cahiers Topo. Géom. Différentielle Catégoriques 27 (1986) 109-132. | Numdam | MR | Zbl
,21 Essentially monadic adjunctions, Lecture Notes in Math. (Springer-Verlag, Berlin 1982) 962, 167-174. | MR | Zbl
and ,22 Categories and Functors, Academic Press, New York-London 1970 | MR | Zbl
,23 Unexpected properties of locally presentable categories, Algebra Universalis 27 (1990) 153-170. | MR | Zbl
, , ,24 Categories, Springer-Verlag, Berlin 1972. | MR | Zbl
,25 The family approach to total cocompleteness and toposes, Trans. Amer. Math. Soc. 284 (1984) 355-369. | MR | Zbl
,26 Adjungierte Dreiecke, Colimites und Kan-Erweiterungen, Math. Ann. 217 (1975) 121-129. | MR | Zbl
,27 Amalgamation in Categories, Algebra Universalis 14 (1982) 391-397. | MR | Zbl
,