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MULTIPLE FUNCTORS

I. LIMITS RELATIVE TO DOUBLE CATEGORIES

by Andrée BASTIANI and Charles EHRESMANN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XV - 3

INTRODUCTION.

Double categories are sets equipped with two laws of categories

satisfying the « axiom of permutability. This axiom was first exhibited in

[E7] for the two laws on the set of natural transformations from a catego-

ry C to itself and in [E8] for the two laws on the set of commutative squa-

res of C. The general definition of a double category (and by induction of
a multiple category) was given in [E2], as a category internal to the ca-

tegory f of categories or, more precisely, as a structured category relative
to the faithful functor from ? to the category of sets. 2 -categories are tho-
se. double categories whose identities for the second law are also identities

for the first law (but they are most often defined as categories enriched in

the cartesian closed category f); they have been considered by many au-
thors [GZ, Gl, G2 , G3 , Bo, S] as well as the double categories of squa-

res of a 2 -category [GZ,G1,Pa]. Benabou’s bicate gorie s [B2] are a

laxification&#x3E; of 2 -categories ( and double categories may be laxified in a

similar way, as done in [Ch,M] ).

While a substantial and extensive theory of 2 -categories has been

given by Gray [G1.2,3], no such theory exists for double categories. We
are going to generalize here some of the numerous fine results of Gray in

the frame of double categories, using a method outlined in [E2] and whose
main idea is to associate to a category A and to a double category D a ca-

tegory T ( D , A ) which plays the same role as the category of natural trans-

formations (to which it reduces if D is the double category of commutative

squares of a category).



216

In chapter 0 are gathered some complements about sketched structu-

res (used in particular later on to construct internal multiple categories).
In chapter I we study the functor T ( --, A ) from the category of double func-

tors to 5:; it associates to D the category formed by the functors from A

to the first category underlying D , and whose law is deduced from the se-

cond law of D ; it admits an adjoint - D A . Free objects relative to the ca-

nonical functor from the first category of 1-morphisms of D toward T ( D , A)

are called D-wise limits. The main theorem, proved in chapter II, asserts

that, if D is representable ( i. e. there exist D -wise limits indexed by 2)

and if the second category of 1-morphisms of D admits small limits, then

all small D -wise limits exist. If D is the double category of up-squares

of a representable 2 -category, D is representable and the theorem reduces

to a theorem of Gray, D -wise limits being cartesian quasi-limits of [G1].

This paper is the first part of a work whose other parts will appear

in the following issues of the Cahiers&#x3E;&#x3E;.

- In the second part, the present results are generalized to n -fold ca-

tegories : the category of all multiple categories is equipped with a monoi-

dal closed structure, whose internal Hom associates to the n + m-fold cate-

gory M and to the m -fold category B the n -fold category T ( M , B ) of gene-

ralized transformations; the tensor product a is only symmetrical «up to an

interchange of the laws&#x3E;&#x3E;. As before, M -wise limits are defined and there is

a similar theorem of existence of M -wise limits when there exist M -wise

limits indexed by 2on = 2 D ... D2 (this theorem is proved using a result

of Appelgate-Tierney [AT] and the fact that each n -fold category is gene-
rated from 2on by inductive limits).

- In the third part, we will describe different monoidal closed structu-

res on the category of double functors: its cartesian closed structure (whose

existence is proved in [BE]), whose internal Hom maps ( D’, D ) on the

double category of double functors from D to the 4 -fold category of squa-

res of squares of D’; two monoidal closed structures non symmetrical which

occur when double natural transformations are laxified (and which generali-
ze the monoidal closed structure on the category of 2 -functors considered

by Gray [G1]). These results will then be applied to the study of structures
defined as realizations or lax realizations of «double sketches&#x3E;&#x3E;.
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0. COMPL EMENTS ABOUT SKETCHED STRUCTURES

A. Notations.

1. We denote by h a universe and a set is said small if it is an

element of this universe. The category of maps between small sets is de-

noted by m.

A sma ll category is a category whose set of morphisms is small.

2. Since we will have to consider several categories with the same

set of morphisms, we will often denote a category by a symbol A*, where
A is the set of its morphisms and .&#x3E;&#x3E; the symbol of its law of composition

(i. e. the composite of (y, x) is written y. x ). Then:

a., /3* 
. 

and K 
. 

are its maps source, target and law of composition,

A o is the set of its objects, A * A ’ 
. 

the set of its composable pairs,
A 

.* 
its dual category.

But often we also denote a category by a unique letter (an italic

or a greek letter or, for big&#x3E;&#x3E; categories, a script letter). In that case, if C

is a category, its set of morphisms is denoted by C , its symbol of compo-
sition by .&#x3E;&#x3E;, its set of objects by Co , the dual category by C*, and the
set of morphisms from e to e’ by C (e’, e) or by e’ . C . e , and x : e - e

is read xE e’. C. e . If the sets C( e’, e) are small, the Hom functor from

C X C* to V is denoted by C(-,-): C X C* -IR.

3. A functor f from A to C is also denoted by (C, ø,A ), where

O is the map from A to C defining it (sometimes we put L=O). If f is

constant on an object e of C, we write f=e".

The category of functors between small categories (i. e. of small

functors) is denoted by f, the composite functor:

being written 1’.1 or, more often, f’ f .
There are two canonical&#x3E;&#x3E; functors from f to m: 

the faithful functor pj which associates to f : A - C the map L: A -&#x3E; C; 
the functor pf associating to f : A -C the map fo : Ao -&#x3E;Co restric-

tion of f to the sets of objects.
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The functor pf admits an adjoint functor, mapping the small set
M on the discrete category on M (each element of M is an identity) which
will be denoted by M 0. It also admits a coadjoint which associates to M

the groupoid of pairs (M X M)°.

The functor pj has no coadjoint (since it does not preserve co-

equalizers). But it admits an adjoint functor, which associates to Nt the

category 2x MO, coproduct of M copies of the category 2, where

4. If A and C are categories, we denote by CA the category of

natural transformations between functors from A to C . If t = ( f’, t, f) is

the natural transformation from the functor f to f’ defined by the map L from

Ao to C , we write t (u) = t (u) for each obj ect u of A , and

If t’ : f’ - f" is another natural transformation, then

denotes their composite in CA . Identical natural transformations are iden-
tified with functors.

On the set of all small natural transformations we have two laws:

?t is the category coproduct of the categories CA for all small ca-

tegories A and C;
n ° is the category, admitting ? as a sub-category, in which the com-

posite of t: f- f’=&#x3E;C and t’: g -&#x3E;g’: C =&#x3E;D is

for each obj ect u of A .

This composite is sometimes written t’t, especially when t or t’ is an

identical transformation. We have:

If h : B - A is a functor, the functor t - t h from CA t o CB is de-
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noted by Ch . In the same way, gA : CA -&#x3E; DA is the functor associating

g t to t : A ::: C . Finally, gh: CA -t DB is the composite functor gB Ch :

5. Let f : A - C be a functor. A natural transformation t : e " - f ,
where e " is a constant functor, is called a projective cone indexed by A , 

with vertex e and basis f . If y : e’ -&#x3E; e is a morphism of C, we denote by

t y the cone with basis f and vertex e’ such that

( t y ) ( u ) = t (u). y for each obj ect u of A .

If t is a limit-cone and t’ a projective cone with basis f , the uni-

que y such that t y = t’ is called the factor o f t’ relative to t.

In particular, let us take for A the category

and for f the functor mapping a and a’ onto x and x’ . If t is a projec-
tive limit-cone with basis f , we also say that

is a pullback P of (x, x’). If t’ is a projective cone with basis f (i.e.

if x . t’ ( 0 ) = x’ . t’ (1), the factor y of t’ relative to t is denoted by
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[t’( 0 ), t’(1)*] and called the factor of [t’ (0) , t’ (1)) relative to P .

Similar notations are used for inductive cones i f -&#x3E; e". 

B. Sketched structures.

1. We recall [BE] that a (projective) limit-bearing category o is
a category 2 equipped with a set T of distinguished (projective) limit-

cones ; the set of the indexing categories of the cones yeT is called

the set of indexing categories of cr.

If 2’ is a category, a 0- -structure in ¿’ is a functor O: Z-&#x3E;Z’ 
such that Oy is a limit-cone for each yeT. We denote by Z’ o the ca-

tegory of o-morphisms in SB which is the full sub-category of 5i’ ’ whose

objects are the a-structures in 5i’ .

If Y:Z -&#x3E; Z’* is a o-structure in the dual 5i’* of 2’, then the
dual functor Y*: Z* -&#x3E; Z’ is called a CT .costructure in Z’. 

o-structures are called sketched structures (this terminology is

justified by Proposition 8-1 [BE] ).

PROPOSITION 1. If o is a projective l imit-bearing category (Z, r) and
’ category, there exists a unctor O: Z’ o X Z’ * -&#x3E;mo associating to an

object (O, Cù) the o- -structure Z’(-, co ) O:Z-&#x3E;m, 
A. We consider the following functors:
the insertion t : Z’ o -&#x3E;Z’ Z,
the Yoneda embedding Y’ : 5i’ * -&#x3E; mZ’, 
the « composition functor » X: Z’ Z X mZ’ -&#x3E;mZ) which associates to

the pair (T, T’) of natural transformations their composite ’T . ’T’.
The composite functor O’:

maps the pair (O, w), where 0 is a 0- -structure in Z’ and ú) an object
of 2:’ , on the functor

which is a o’-structure in V, since Z’ (-,w) preserves projective limits.
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Hence 8’ takes its values in mo and it admits as a restriction

If T: 0 -&#x3E; O’ is a o-morphism in 2’ and 8 : w-&#x3E;w’ a morphism in 2:’ ,
then 6 (T,d ) =Z’(-,d).T:

2. Let cr be a proj ective limit-bearing category (Z,T) and E’ 
a category admitting proj ective limits indexed by the indexing categories
of o. For each object w of Z, let vw: mo-&#x3E;m be the functor «value in

w», which maps T: 5i x lll onto 7-(&#x26;) ).

PROP OSITION 2. 1 ° (mo) Z’* and (mZ’* )o are isomorphic.
2° Z’o is equivalent to the full sub-category Jq o f (mo) Z’* whose

objects are the functors Y: Z’* -5R’ such that vwY: 2:’ * -&#x3E;m is repre-

sentabl e, for each ú) E Zo.

A . 1° We denote by 03BC the canonical isomorphism

and by v’w :mZ’-&#x3E;m the functor value in w ’ e Z’o. Let O:Z-&#x3E;m Z’*

be a functor. We have vw,O = 03BC (O) (w’). If y:I =&#x3E;Z is a limit-cone,

limits in ? being computed termwise, Oy is a limit-cone iff

is a limit-cone for each w’ e Z’o. Hence O is a cr-structure iff

)u is a 0--structure in m, for each w’ E Z’o, 

i. e. iff 03BC (O) takes its values in mo. So u admits as a restriction an

isomorphism 03BC’: (m Z’ *)o -&#x3E; (mo) Z’ * .

2- Let Y":Z’ -’? be the Yoneda embedding . It ives an iso-

morphism Y" : Z’ o-&#x3E;Y"(Z’)o =&#x3E;(Y"o(Z’o) = sub-category of (mZ’*)o, the

insertion Y" (Z’)-&#x3E; mZ’* preserving projective limits. The isomorphism
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03BC’ maps Y"o (E’o) onto the full sub-category R’ of (mo)E’* whose ob-
jects are the functors qj: Z’* -&#x3E; mo such that 03BC’-1 (Y): Z -&#x3E;mZ’* takes

its values in Y"(Z’), i.e. such that

is an object of Y" (Z’) for each co e Zo. Hence Z’o is isomorphic with
I’ . As Y"(Z’) is equivalent to the full sub-category of ? whose ob-
jects are the representable functors, R, is equivalent to the category R
defined in the Proposition. So Z’o is equivalent to R.

3. Projective closure of a set.

Let cr be a limit-bearing category ( Z, T) and il a sub-set of Zo.
We define by induction a transfinite increasing sequence of full sub-cate-

gories Zç of 5i as follows:

¿o is the full sub-category of 2 admitting f2 as its set of objects;

is an ordinal without a predecessor;

if Zç is defined, then Zç+1 is the full sub-category of 2 whose ob-

jects are the vertices of the distinguished cones y e T whose bases take
their values in Zç, and the objects of Zç.
DE FINITION. We say that 2 is the T-closure of n if there exists an or-

dinal 8 such that Z = Zd; then (2 is said to T-generate Z.
If 2 is the T-closure of Q , it is also the I " closure of Q, for

each set I ’ of limit-cones including T’ .

PROPOSITION 3. Let o- be a projective limit-bearing category (2, T)
and 5i’ a category admitting projective limits indexed by the indexing ca-

te gories o f o. If 2 is the r-closure o f a sub-set f2 o f Zo, then Z’ o
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is equivalent to the full sub-category o f (mo)Z’* whose objects are the
functors § such that vw Y is representable fo each ú) E .0, where vw is

the functor value in cv from mo to 5R.

A. Let nç be the set of obj ects of the sub-category L ç of 5i de-

fined above and 8 the smallest ordinal such that Z = Zd. Then the union
of the transfinite sequence of sets (nç)çd is Lo. In view of Propo-
sition 2, it suffices to prove that, if § : Z’* -to- is a functor such that

vwY be representable for each ú) E f2 = n0, the set It of objects 0) ’ of

I such that vw’Y be representable is equal to Zo. This will be proved
by induction:

n0 is included in II.
If / has no predecessor and if nç is included in II for each ordi-

dinal ç ç; then the union nç of (nç)çç is included in I1 .

Now let us suppose that nç is included in Il for some ordinal çd
and that ú)’ E nç+1B Pe. so w’ is the vertex of a cone y e T whose basis

p takes its values in Zç. Let q6 be the o-structure in ? associated
to Y by the isomorphism 03BC’-1 of Proposition 2. The cone oy is a li-

mit-cone in ? with vertex O(w’) = vw’Y and the induction hypothesis
implies that its basis Op takes its values in the sub-category of mZ’*, 
whose objects are the representable functors. A projective limit of repre-
sentable functors being a representable functor, this sub-category is closed

for projective limits, so that the vertex vw’Y of Oy belongs to it. There-

fore ú)’ e II. It follows that nç+1 is included in II.

By induction this proves that Il = Zo. 0

DEFINITION. Let 2 be a category and f2 a sub-set of Lo. We say that
I is the projective (resp. inductive, resp. connected projective) closure

of Q if 5i is the L -closure of n, where L is the set of all small limit-

cones in 5i which are projective (resp. inductive, resp. projective and

indexed by a connected category).

P RO P OSITION 4. Let 0- be a projective limit-bearing category (Z, T)
and Y : 2:* -k’ the Yoneda embedding.

1° Y admits as a restriction an injective a- -costructure Y in mo and
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each a -structure O in m is equival ent to mo( O,-) y * .

2° mo is the inductive closure of Y (Zo).
3° I f S is the r’ -closure o f a sub-set n o f Zo, then meT is the induc-

tive closure o f Y (.0).

A . 10 For each w E ¿o , the functor

which preserves projective limits, is a 0r-structure in m, so that Y( 2 )

is included in the full sub-category mo of mZ. The restriction

is a o-costructure, since Y sends proj ective limit-cones belonging to T

on inductive limit-cones in )R’, according to a result of [Lm]. Hence Y
is a o--costructure in mo.

20 Let q6 be a 0--structure in )9. The Yoneda lemma asserts that 0
is equivalent to

which is equal to mo(O,-) Y* since meT is a full sub-category of mZ.
On the other hand, in M2 the object 0 is the inductive limit of the func-

tor Y h* :

where h : H -&#x3E; Z is the discrete fibration (or « hypermorphism functor* [E1])
associated to q6 : 2 -5R. The functor Yh* admits as a restriction a func-
tor k: H* -&#x3E; mo which takes its values in Y (¿ ). The sub-category m CT

being full, its object q6 is also the inductive limit of k . Hence mo is the

inductive closure of Y (¿o ). (In fact, the closure operation takes only
one step in this case.)

30 Let 2 be the T-closure of n. The restriction Y of Y maps in-

jectively a full sub-category of 5i onto a full sub-category of No- and sends
each cone of r’ onto an inductive limit-cone of mo. Hence Y maps the r-

closure 2 of .0 into the inductive closure of Y(n) in mo, so that the induc-
tive closure mo- of Y (¿o) is also the inductive closure of Y (n). 0
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P RO P OSITION 5. If Z is the projective connected closure of a sub-set

f2 o f Zo and if ¿’ is a category which is the projective connected clo-

sure of a sub-set n’ o f Z’o, then Z’ X Z is the projective connected clo-

sure of n’xn.

A. Let (Zç )çd and (Z’ç)ç 8 be the canonical increasing trans-,

finite sequences of full sub-categories of Z and 2:’ , where

we may suppose that 8 = d’. Then we have an increasing transfinite se-

quence ( Z’ç x Zç)çd of full sub-categories of Z’ x Z satisfying:

If (w’, w) is an object of Z’ç+1 x Zç+1 , there exist projective limit-cones
y in Z and y’ in 5i’ , with vertices w and 0)’ , whose bases

take their values in 2 and Z’ respectively, and whose indexing catego-

ries I and I’ are connected. The product functor

takes its values in Zç’ x Zç and it admits (w’,w) as its projective limit;
its indexing category I’ x I is connected, I and I’ being connected. This

proves that the connected projective closure II of n’xn in Z’ x Z con-

tains ¿t-+ 1 x Zç+1 as soon as it contains Z’çxZç. By induction it follows

that n contains ; whence

4. Tensor product o f cone-bearing categories.

Let 0- = (Z, T) and o-’= (Z’, T’ ) be two projective cone-bearing
categories. Conduché [C] and Lair [L] have proved that there exists a

cone-bearing category o’Oo on L’ x L satisfying the universal property:
Let H be a category admitting proj ective limits indexed by the index-

ing categories of o and of or’ . Then the canonical isomorphism

admits as a restriction an isomorphism from (Ho)o onto Ho Oo. 
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They have given the following explicit construction of cr 00-:
- The underlying category is 2:’ x 5i .

If ú) E I and if y E h is a cone with basis O: 1 -&#x3E;Z and vertex o ,

let V be the cone [w’", y]: I-&#x3E;Z’ x Z, with basis [w’^, O], vertex
(w’, 0) ), and such that

If I is connected, this cone is a limit-cone, when y is a limit-cone.

We define in a similar way the cone [y’,w "], where

- The set T’O T of cones is formed by all the cones and

for ’1 E r , ’1’ E r’, w’ e’ Z’o and w e Zo. 

If all the indexing categories of 0- and of o’ are connected, then

o’ O o is a limit-bearing category, when so are o- and (o’.

DEFINITION. o’ O o is called the tensor product of (o’, 0- ) .

If (oi)in is a finite sequence of cone-bearing categories, their

tensor product, denoted by

is defined by induction from the formula:

n

rtf o-i = 0- for each in, then O 0-i is also written Oo.

The underlying category of O oi is the category X Zi, defined
in 

by induction from the formula:

The word «tensor product&#x3E;&#x3E; is well justified. Indeed, Lair proves in

[L] that the category of morphisms between cone-bearing categories is

equipped with a symmetrical monoidal closed structure, whose tensor pro-
duct maps (o’,o) onto o Oo. From the general properties of symmetri-
cal monoidal closed categories, we get:
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P RO P OSITION 6. Let (oi)in be a sequence of projective limit-bearing
categories and let H be a category admitting projective limits indexed by
the indexing categories of oi, for each integer in. For each permutation
f of { 0 , ... , n-1 I and each sequence

of integers, there exists a canonical isomorphism

where

PROPOSITION 7 . Let n be an integer, o = (2, T) a projective limit-bea-

ring category whose indexing categories are connected, a’ = (2’ T’)= nOo
and f2 a sub-set of Zo. 

1° If 2 is the connected projective closure of .0 , then 2’ is the con-

nected projective closure o f n’ = nX n.
2° If 2 is the r -closure of .0, then 2’ is the r’ -closure of n’ and

mo’ is the inductive closure of Y’(f)’) where Y’ is the Yoneda embedding.

A. By induction, part 1 follows from Proposition 5, part 2 from Propo-
sition 4, since (20X 20, ... , Zd x 20 I 2x Z1, ... , Zx2d) is T’-generating
2’ for n= 2, if (Zç)ç d is r -generating 2. V

C. Internal categories.

1. We denote by of= (Zf, Tf) the sketch of categories [BE]
which is the following limit-bearing category:

Zf is the dual of the full sub-category of the simplicial category A

whose objects are the natural integers 1 , 2, 3 and 4 ; its main morphisms
are denoted according to the following diagram, where a = i. a, B =i.B :
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The only distinguished cones are the two pullbacks:

Since t is a right inverse of a. , it is an absolute equalizer of the

pairs ( 2, a) and ( /3 , 2) , and we have the pullbacks

in 5:c f . We wri te Tf= {y1, y2, y3} and of= (Zf, Tf). Then Zf is
the Tf -closure of {2}. So Proposition s 3 , 4 , 7 may be applied to o f. 

2. Let h be a category with pullbacks. A of-structure in h is cal-

led a category internal to (or in) H; other names: category object in h for
[Gr], «categories structurée generalisee dans H &#x3E; for [E3].

A of-morphism in h is called a functor internal to (or in) H. We

denote by f(H) the category Hof of the functors in K. It is equal’ to the
category Hof ; indeed, if O : Zg-&#x3E;H is a functor, Oy3 is a pullback, y3
being an absolute pullback, and, O(i) being a monomorphism, cpy 1 is a

pullback iff Oy1 is a pullback in K.

If § is a category in the dual of H, the dual functor Y*:Zf -&#x3E; H
of qi is called a cocategory in

There exists a unique category 8 in Zf mapping t and K on them-

selves and interchanging a and B, v and vr . If O is a category in x ,
then O d is also a category in h ; we denote it by O* and call it the dual
of 0. We get the « duality isomorphism » from ?(K) onto ?(K) by sending
O onto 4 and the functor (O’, T, O) in h onto (O*’, T , O* ).

3. The categories ? and f(m) are equivalent [E3, BE] . We will
use the following canonical equivalences :
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a) If C is a small category, there exists a unique category in ?,
denoted by r¡l (C) and called the category in 19 associated to C , which

transforms the pullbacks y1 and y2 into canonical pullbacks in ? and

which maps oc, B, K and c respectively onto the maps source, target, law

of composition of C, and insertion from Co into C.

If f: A-&#x3E;C is a functor, n1 (f) will denote the unique natural trans-

formation (or functor internal to m)

such that

In this way, we get an equivalence n1: f -&#x3E;f (m). This equivalence
admits as a restriction an isomorphism from f onto the full sub-category
of f(m) whose objects are the categories in m mapping y1 and y2 on

canonical pullbacks in m and t on an insertion.

b) On the other hand, we have an equivalence ç1 from f(m) onto
f, wh ich maps:

the category 0 in m on the category ç1 (O), called the category

associated to O, whose underlying set is O(2) and whose law of compo-
sition if O(K). g 1 , where g is the bijection:

from O(3) onto the canonical pullback of (O(a), O(B)),

the functor T: O-&#x3E;O’ internal to ? on the functor from ç1 (O) to

ç1(O’) defined by the map T(2): O(2)-&#x3E;O’(2).
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In particular, if M is a small set, the constant functor M A,’ 25 - ?
is a category in ? whose associated category is the discrete category Mo

4. The functor toward f associated to a category in K.

PROPOSITION 8. Let H be a category admitting pullbacks.. The category

5(Jo is equivalent to the full sub-category K of fH* whose objects are

the functors (O:H*-&#x3E;f whose composite pfO with the forgetful functor

P-7: -&#x3E;m is representable. 

A. Since Zf is the Tf-closure of {2} and Hof=Hof, Proposi-
tion 3 asserts that of is isomorphic with the full sub-category

R of f(m)H* whose objects are the functors Y:H* -&#x3E;f(m) such that

vY is representable, v: f(m) -&#x3E;m denoting the functor value in 2 which

sends T onto T( 2). If ç:f(m)-&#x3E;f is the equivalence constructed in

3 above, the composite functor

is equal to v , so that vY is representable iff pFS1Y is representable.
The equivalence

associating S1Y to Y:H-&#x3E;F(M), it admits as a restriction an equiva-

lence from R onto the full sub-category K of ? . Hence ?(K) and .K
are equivalent. V

5. The canonical cocategory in F.

If n is a natural integer, the composite functor

is a category in YR, since the pullbacks y1 and y2 in 2j are also pull-
backs in A*. Its associated category is the category n defining the ca-

nonical order of the ordinal n ={ 0 , ... , n-1 }; the morphisms of n are the

pairs ( m’ , m ) of integers such that m  m’  n .

If f : n -m is a morphism of ¿j=, i. e. if f defines an increasing
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map from ( n,  ) to ( m, ) , the composite natural transformation

is a functor internal to m, to which is associated the functor f :

(defined by the map 4l ( f , 2 ) ).

PROPOSITION 9. There exists a cocategory in F admitting as a restric-

tion an isomorphism from E*F onto the full sub-category E*F of F whose
objects are 1, 2, 3 and .4. j= is the inductive closure of f2 I.

A . From Proposition 4, it follows that the Yoneda embedding Y1 from

E*F: to ? admits as a restriction a cocategory Y1 in F (M) and that

F-M) =M o-F is the inductive closure of {Y1 (2)}. As S1 is an equivalen-
ce, F is the inductive closure of {S1 Y1 (2)} and the composite S1 Y1 

is a cocategory in J. It admits as a restriction an isomorphism from E*F
onto the full sub-category of 5: whose objects are the categories

where

So, it remains only to prove that the category S1 Y1 ( n ) is identical with

n . Indeed, this category is the category associated to the category in jll :

Since E F is a full sub-category of A* , we have Y1 ( n ) equal to the compo-
site functor:

to which is associated, by definition, the category n . 0

REMARK. The above constructed cocategory in ? is a restriction of the

canonical embedding of the simplicial category A into F:, which defines
? as a category admitting as models the categories n , for all the integers
n . The corresponding «singular functor&#x3E;&#x3E; from ? to the category 8 of sim-
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plicial maps sends a category C onto the corresponding simplicial object;
the homology of this simplicial object is called the homology of C [Gr].
The singular functor admits an adjoint, the realization functor, which asso-

ciates to a simplicial object F the category canonically associated to F;
the groupoid projection of this category is the fundamental groupoid of F

(see [GZ]).

D. Internal discrete fibrations.

1. It is known [E1] that the three following notions are equiva-
lent, where C is a category: 

a) A functor from C to the category ? of maps.
b) A discrete fibration (or hypermorphism functor [E1] ) over C, which

is a functor p : H - C such that

is a pullback, where a and a’ are the source maps of C and H and po

the restriction of p to the objects; this means that, if s is an object of
H and x : P ( s) -t e’ a morphism in C, there exists one and only one mor-

phism y in H admitting s as its source and satisfying p y ) = x .

c) A left action k’ of C on a set A , also called a category action

(or an operator category on A , or a species of structures in [E1]): then
k’ is a map (x, s) H x s from a sub-set K’ of C x A to A satisfying the

following axioms: there exists a map po : A -&#x3E; Co such that K’ is the ca-

nonical pullback of (a. , Po) and that:
e s = s if s E A and e = po ( s ) ,
x’(xs) = (X’. X)S if x’. x exists in C and if (x, s) E K’
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(the map Po is uniquely determined by these conditions, which imply that

po ( xs ) is the target of x). The associated discrete fibration is the func-

tor p : C*A -C , where C * A is the category on K’ such that:

(x’, s’). (x, s) = (x’. x, s) iff x’. x exists in C and s’= xs.

2. We denote by DD F the horizontal category of commutative squa-

res (or quartets [E1] of the category 5 of small functors whose objects
are the small functors, the morphisms from p to p’ being the commutative

squares ( p’ , f , f’ , p ) .

We denote by 8 the full sub-category of coif whose objects are

the discrete fibrations; its morphisms are called morphisms between dis-

crete fibrations.

The category 8 is equivalent to the category of covariant maps

between category actions (see [E1] ).
We denote by p a and p a the functors from 8 to ? sending the

morphism ( p’ , f , f’ , p ) respectively onto the map L defining f and onto

the map f’o: Ho -&#x3E; H’o restriction of f’ to the objects.
? will be identified with the full sub-category of 8 whose objects

are the identical fibrations.

Let C be a small category. 8 admits as a «non-full&#x3E;&#x3E; sub-category
the category QC of morphisms over C, whose elements are the morphisms
( p’ , f , f’, p ) such that f is the identity of C (such a morphism identifies

with the triangle ( p’ , f’ , p )). There exists an equivalence from ? toward

aC which sends a functor O : C -&#x3E; m onto the discrete fibration h O , from
H O to C, associated to it (the morphisms of H O are the pairs

(x, s), where x E C and s EI O (a(x) ), 

and b O (x, s) = x).
QC is also equivalent to the category of covariant maps over- C.
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3. The sketch of discrete fibrations.

We denote by 2 the category

as well as the limit-bearing category on 2 without any cone. The tensor

product cry 02 is the category E Fx 2 equipped with the pullbacks

for i = 1 and i = 0 .

PROPOSITION 10. There is a canonical equivalence which is surjective

are categories in lk ; let C and H be the associated categories. The map
Y ( 2, z ) defines a functor S (Y) from H to C.

If T: Y; -&#x3E; Y’ is a o-F@2-morphism, then

are functors and the maps T (2 ,1) and T ( 2 , 0) define, respectively,
functors f : C -&#x3E; C’ and f’ : H -&#x3E; H’ , Then S (T) is the commutative square

DEFINITION, We define the sketch of discrete fibrations as the limit-bea-
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ring category oy = (EO, r O) got by equipping the category EO= E F x 2
with the set r F @ ø of the distinguished cones of o-F@2 and the pullback

Let r O be the set (rF @ O)U {y4} of 7 cones, among them the

absolute pullbacks [y 3’ 0^] and [y3, 1^], and o-O = ( EO, rO) Then EO
is the rO-closure of f (2,1), (1, 0)}, since EF is the ry-closure of {2}
and y 4 is a pullback. Moreover Mo- O = M o-O.

PROPOSITION 11. The category (t is equivalent to) M o-O and it is the -in-

ductive closure of {1,2}, where 2 is the void fibration from 0 to 2.

A . 1° If Y: E Fx2 -&#x3E; M is a o-F@ 2-structure in m, it is a o-O -struc-
ture iff it maps y 4 on a pullback in M, i.e. iff the functor S’ (Y) is a

discrete fibration, where S’ is the equivalence defined in Proposition 10.

Hence S’ admits as a restriction an equivalence from the full sub-cate-

gory M o-O of M o-F@ 2 onto the full sub-category (t of m F.

20 Since Mo-O = Mo-O and EO is the -closure of {(1, 0), ( 2, 1)},

by Proposition 4, the category M o-O is the inductive closure of

is the Yoneda embedding. Using the equivalence S", we deduce that Q is
the inductive closure of f {S"Y(1,0), S"Y(2,1)}.

As ( 1, 0) is an initial object of EO , it is mapped by Y on a final

object of M o-O, and by S"Y on a final obj ect of (1. Hence S"Y( 1,0 ) is

isomorphic with the identical fibration 1 .

The category associated to Y(2, 1)(-, 1): EF -&#x3E; M is 2x{1}, for

for each m E {1, 2, 3, 4 }. In the same way, the category associated to

Y ( 2, 1 ) (-, 0 ) E F-&#x3E; M is void. Therefore, S" Y ( 2 , 1 ) is the discrete

fibration from the void category to 2 x { 1 } (isomorphic to 2 ). This fibra-
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tion is isomorphic in (i with the fibration 2.

If follows that (i is the inductive closure of ( 1,2}. V

4. Discrete fibrations in a category H.

We suppose that H is a category admitting pullbacks. A o-O -struc-
ture in H is called a discrete fibration in Y. We denote by (t (H ) the ca-

tegory of o- O -morphisms in H, which is equal to H o-O 

PROPOSITION 12. 1° a (H) is equivalent to the full sub-category R of

a M* whose objects are the functors p H* -t(l such that P(lP and poaP
are representable (where p(i and plî are the forgetful functors from a to

M de f ined in 2).
2" 1 f y; and ýJ’ are two discrete fibrations in H such that

then Y and Y’ are isomorphic in a (H) ,
A . 1° As a(H)=Ho-O and EO is the F,p -closure of {( 1, 0), (2, 1)},

Proposition 3 asserts that a (H) is equivalent to the full sub-category R’ 

of a (M) H* whose objects are the functors p’: H* -&#x3E; a (M) such that qP’
and qP pl are representable, where q° and q are the value functors from

a(M) to ? associating to r respectively T (1 ,0) and t ( 2, 1 ). If S"
is the canonical equivalence (Proposition 11), then

q is the composite functor

q° is the composite functor

It follows that a functor p’ : H* -&#x3E; a (M) is an object of R’ iff the functor

"p’ is such that Pa S" P’ and p a° S" P’ are representable, i . e. iff S" P’
is an object of the category R defined in the Proposition. Hence the equi-

valence S" H* a (M) H* -&#x3E; aH* admits as a res triction an equivalence from
’ to R. Finally, a(H) is equivalent to % -

20 Let Y and §’ be discrete fibrations in h satisfying

Since
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are two pullbacks, there exists an unique isomorphism g of h such that:

From the equalities

for i - 0 and i = 1 , we deduce

for i equal to 0 and 1 . This implies (unicity of the factor relative to a

pullback):

In the same way, from

we get

the functors Y and Y’ taking the same values on (a, 0 ) , on ( 2, z ) and

on ( K, 1 ) . It follows that the categories Y (-,0) and Y’ (-,0) in h are

equivalent, whence Y and Y’ are equivalent, i. e. isomorphic in a (H ) . 0
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The preceding proof shows that o-O admits as its «idea&#x3E;&#x3E;

Hence a discrete fibration Y in h is determined up to an isomorphism by

(Y(-1,1), Y(1, z ), Y (B, 0 )). This leads to the following definition:

DE FINITION. We say that (O, h, k’ ) is a category action in H if:

10 0 i s a category in K,
2° h and k’ are morphisms of H,
3° there exists a discrete fibration Vi in h such that

if (f is a category in K, let O* be its dual (section C - 2 ). If we

have a category action (O,*, h, k’) in K, we also say that ( k’, h ,O ) is
a right category action in H. 

EXEMPLE. Category actions were introduced in [E4] as an axiomatiza-

tion of the notion of a fiber-bundle. Indeed, topological (resp. r-differen-

tiable) fiber-bundles correspond exactly to the category actions in the ca-

tegory 5 of continuous maps (resp. Dr of r-differentiable maps between

manifolds) such that the operating topological (resp. differentiable) cate-

gory be a locally trivial groupoid [ E4, 5] .

5. Distributors in J(.

If B and C are categories, the following notions are equivalent:
a) A distributor from B to C, which is defined [B1] as a functor

from C*xB to m.

b) A pair of category actions on a set (introduced in [Ell under the

name of «couple de categories d’opérateurs)), i. e. a pair

of category actions such that
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( x s ) x’ = x ( s x’ ) whenever the composites
x s = K’ (x, s) and s x’ = K" ( x’ , s ) are defined.

This last notion is easily internalized&#x3E;&#x3E; in a category H admitting
pullbacks by defining a limit-bearing category o-6 whose realizations in

t are pairs of category actions on a set. We will not formally construct

US here; its description is given in [v] . Intuitively, it is got by gluing

together along (1, 0) the sketch of a discrete fibration and the sketch of

a discrete fibration over the dual of a category (in which (03BC, y ) is replaced

by (,a, y ) ), and by adding the pullback

and the factors

and

relative to the pullbacks

and

the axiom
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The realizations of o-6 in h are called [Bl] distributors in H :

DE FINITION. Let H be a category admitting pullbacks. A distributor in

H is defined as a sextuple (O’, h’, k", k.’, h,O), where:
10 ( O’ h’ , k" ) is a category action in H,
20 ( k’ , h , 0) is a right category action in H,
30 k" . l’ = k’ . l , where

are the factors relative to the pullbacks respectively P of ( h , O (B)) and

P.’ of (O’( a ) , h’), where we have the pullbacks:

D denoting the category )90"8 of morphisms between distributors, it

follows from Propositions 2 and 12 that Ho-6 is equivalent to the full sub-

category of DH* whose objects are the Y: H*-&#x3E;D such that Y ( - ) ( w ) is

representable, for o E { (2,1), (2,1), (1,0)}.

REMARKS. 10 To a distributor 6 : C*XB -k is associated a functor A ,
from B to ? and, since MC* and (fC* are equivalent, a functor from B
to aC* . More generally, problems in Differential Geometry and in Analysis
led to consider functors from a category B to Cf. Such a functor associates

to each e E Bo a category action ( Ce , A e’ k’e ) ; then B operates on the ca-

tegory sum of the Ce and on the set A sum of the A e . This situation is

easily internalized in H and enriched by giving supplementary structures

on the A e . In fact, it was this more general notion (suggested by that of

a sheaf of operators on a sheaf) which was first introduced (in [AB] to de-

fine distributions on infinite dimensionnal vector spaces) under the name

of ccatégorie de categories d’opérateurs&#x3E;&#x3E; and which is studied in [E1,5]
(and called espèce de structures dominee par des applications covariantes).

2° Distributors are the 1-morphisms of a bicategory (see [Bl] ), for a

law which can be suggested by that of the category of atlases of a catego-
ry defined in [E6] .
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1. THE CATEGORY OF DOUBLE FUNCTORS

A. Double categories.

1. In this section, we recall the initial naive&#x3E;&#x3E; definition of double

categories, as it is given in [E2] .

DE FINITION. A double category is defined as a pair (E° , E°) of catego-

ries with the same set of morphisms, satisfying the following conditions:

10 The maps source and target of 2:. define functors from E° onto

a sub-category of 2:0 .

2° The law of composition of 2:. defines a functor toward E° from

the sub-category of 5i° x 2° formed by the pairs of morphisms composable
in the category E° .

(E° E° ) is then called a double category on E, and the categories
E° and ¿. are respectively its first category and its second category. A

double category on I is said small if 2 is a small set.

In [E2] it is shown that the axioms 1 and 2 are equivalent to the

following ones, where a, 8 and ao , P denote the maps source and tar-

get in 2:. and in 2:° respectively:
1° For each d E E , we have

20 If the composite d’o d exists in 2° , then

if the composite d. d exists in 2* , then

30 Permutability axiom: If the composites d’ o d , d’ o d, d . d , d’ . d’

are defined, then the composites

are defined and both are equal.
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This set of axioms being symmetrical relative to 2:. and to 2:°,
it follows that (Eo, E°) is a double category iff (2:. ,2:°) is a double ca-

tegory ; these two double categories are said symmetrical.

2. Notations.

A double category (Eo, E°) is generally denoted by a unique ita-

lic letter, for example D . In that case:

The underlying set 5i is denoted by D .

The first category 2:° is also denoted by D 1 , its symbol of composi-
tion by ol (instead of o ) , its mappings source, target and law of composi-
tion by a1 , 81 and K1 . .

The second category 2* is denoted by D2 , its symbol of composition
by o2 (instead of . ), its mappings source, target and law of composition

by ax2 , B2 and K2.
The set of objects of D’ defines a sub-category of D2, which is de-

noted by Do and called the second category of 1 -morphisms of D .

The set of objects of D2 defines a sub-category of D 1, which is de-

noted by D2 and called the first category of 1 -morphisms of D .

The categories Do and D2 have the same set of objects, which is

written Doo and called the set of vertices of D . The elements of D which

are not objects for D 1 nor D2 are called 2 -blocks of D .

Let d be a 2 -block of D . As a morphism of D 1, it admits a source

x = a1 ( d ) and a tar get x’ = 13 1 ( d ) and we write d : x -&#x3E; x’ . As a mor-

phism of D2 , it admits a source y = a2( d ) and a target y’ = f32( d) and

we write d : y x y’ .
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3. Exam p l es.

a) 2 -categories are defined as the double categories D such that the

objects of D2 are also objects of D1 , so that Do o = Do CD’ ; a 2-block
of D is then called a 2-cell. For example, we have the 2-category of na-

tural transformations (between small categories), denoted by (MDD,M° ) , y
or K, whose second category of 1-morphisms is J.

b) If 2° is a category and E0 the discrete category on 2 , then the

pair (Eo, E0) is a double category, called the discrete double category

on 20. Similarly, (E0,Eo) is a 2-category, called the discrete 2 -cate-

gory on LO.

c) If A is a category, ( A , A ) is a double category iff A is a commu-

tative category, i. e. a category coproduct of commutative monoids.

If D is a double category such that Di and D2 are discrete cate-

gories, then D1 = D2 .

d) Let A be a category. We denote by DA the double category of com-

mutative squares of A . Its underlying set is the set of commutative squa-
res (or quartets) of A , which are the 4-tuples ( y’, x’, x, y ) such that the

composites y’ . x and x’ . y are defined and equal.
Its first category, denoted by 8 A, is called the vertical category

of squares; its law of c ompos i tion is:

Its second category, denoted by DD A, is called the horizontal

category o f squares; its law of composition is:

There is an isomorphism from CD A

onto B A .
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With similar laws, the set of all (non commutative) squares of A al-

so becomes a double category.

e) Let D be a double category. If C is a sub-set of D which defines

a sub-category Cl of DI and a sub-category C2 of D2 , then (C 1, C 2)
is a double category C, called the double sub-category of D defined by
C (or by C 1, or by C2 ) .

In particular, among all the double sub-categories of D which are

2 -categories, there is a greatest one, namely that defined by the full sub-

category of D2 whose objects are the vertices of D .

The full sub-category of Dl whose objects are all the vertices of
D also defines a double sub-category of D , whose symmetrical double ca-

tegory is the greatest sub-2-category of the symmetrical of D .

f) Let D be a double category. Then,

are double categories, called respectively the first dual, the second dual

and the dual of D .

4. Double f unctors.

DEFINITION. We say that (D, O, C) is a double functor if C and D are
double categories and if cP is a map from C to D defining a functor from
C1 to D1 and a functor from C2 to D 2.

A double functor ( D, q6, C ) will often be denoted by an italic letter

f. In that case:

the map O is also denoted by L,
the functor ( D1 , q6 , C 1 ) by f l,

, 

the functor ( D 2, O, C2 ) by f 2.
Moreover, we say that 

f : C -D is a double functor,

or that O defines a double functor from C to D.

E X A M P L E S. a) The double functors between 2-categories are called 2-
functors.
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b) Let Eo and E’ o be categories. A map qb : 2 - 2’ defines a func-

tor f : Eo -&#x3E;E’o iff it defines a double functor from the discrete double ca-

tegory (Eo, E0) on 2° toward the discrete double category on 2’ ° . In

that case, there exists a double functor from the double category of com-

mutative squares 02° to D’ E’o defined by the restriction « to the commu-

tative squares) of the product map O x O x O x O. This double functor is

denoted by D f .

The double functors between small double categories are the mor-

phisms of the category j=2 of (small) double functors, whose objects are

the small double categories.
This category is equipped with the following forgetful functors:

11 i,’ F2 -&#x3E; F, which associates to the double functor f the functor f1,

p22: F2 -&#x3E; F, which associates f2 to f ,

P F2: F-&#x3E; M, which associates to f the underlying map f-

Moreover, there is an isomorphism O2: 5:2 -&#x3E; F2, which is its own

inverse, mapping the double category D on its symmetrical one (denoted

D21) and associating

We have the equality

B. Double categories as sketched structures.

Double categories may be considered both as categories in J or
as 0’5: 0 0-5: -structures in ? (called double categories in ?).

1. Categories in F.

Let ?(?) be the category of functors in(ternal to) if (this catego-
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ry has been defined in 0-C ).

P R O P O SITION 1. The category F2 of double functors is equivalent to the

category F: (F:) and isomorphic to a full sub-category of F ( F) .
A - We are going to construct two canonical equivalences, which will

be used later on.

1° a) Let D be a small double category. There exists a unique func-

tor n11 ( D ) : EF -&#x3E; F mapping the two distinguished cones y1 and y2 of

o- F on canonical pullbacks in ? and associating to the morphisms l , a,

B and K of Crj respectively:
the insertion from the sub-category Do of Dl into DI ,
the functors from D 1 to D2 defined by the mappings source and tar-

get a2 and 132 of D2.

the functor defined by the law of composition K2 of D2 from the sub-ca-

tegory ( D 2*D 2) 1 of Dl x D 1 on the set of composable pairs of D2 to D 1.

Hence, n11 ( D) is the unique category in ? such that n 11 ( D) ( 2) is the

first category D 1 and that PF=n 11 (D) is the category n1 (D2) in m as-
sociated to the second category D2 (cf. 0-C-3).

b) If f : C -D is a double functor, we have a unique functor

internal to ? such that n11 (f)(2) 
= f 1,

c) We have so defined a functor n11 :

It satisfies PP n11 = n1, where o-F pF is the functor:

Since n1 admits as a restriction an isomorphism from if onto a full sub-

category of F(M), the functor n11 admits as a restriction an isomorphism
from j= 2 onto the full sub-category ?(py) of F(F) whose objects are

the categories O in ? such that pj: (f is the category n1 (2:) in t asso-
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ciated to a category 2 (such a category in, J is called a pF:-structured ca-

tegory in [E2]).

20 We define now a functor S11 from F (F) onto -T2.
a) Let O: EF -&#x3E; F be a category in 5:. Then q6( 2 ) is a category 20

and pF O is a category in M; the associated category S1 (pFO) (defi-

ned in 0-C-3) is denoted by L.. The pair (Eo, E° ) is a double category,

whose image by n 11 is a category in ? equivalent to O (by its construc-

t ion). In particular, noting Eo, E °) by S11 (O) ), we have

for each double category C .

b) If ’T: O -&#x3E; O’ is a functor in 5:, then

is a double functor; in this way we have defined a surjective functor S11
from F (F ) to F. The composite functor

is ’tn identity functor, while

is equivalent to an identity. V

COROLLARY. F2 is equivalent to the category M o-F@o-F. 
A. From Proposition 6-0, we know that M o-F@o-F is isomorphic with

(Mo-F )o-F; this last category is equivalent to ? =F(F), and therefore
to F= 2’ according to the Proposition. V

DEFINITION. If D is a double category, n11 (D) is called the category

in 5: associated to D. If (t is a category in F, then is called

the double category associated to q;,

2. The sketch of double categories.

Since F2 is equivalent to JR o-F@o-F, it is natural to give the
DEFINITION. The tensor product o-F@o-F is called the sketch of double
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categories; it is denoted by o-F2 and its underlying category by EF2. - A

o-F2-structure (resp. -morphism) in a category H is called a double ca-

tegory (resp. a double functor) in H.

The category Ho-F2 of double functors in H is denoted by F2 (H).
It is equal to J(o-F@o-F since (Ho-F)o-F=(H o-F ) o-F . Proposition 7-0

asserts that EF2 is the rF=@rF -closure of {(2, 2) }.
PROPOSITION 2. There exist a surjective equivalence S2:F2 (M)-&#x3E; F2
and an equivalence n2: F-&#x3E;F2 (M) such that S2 n2 be an identity.

A. From Proposition 1 and from O-C-3, we get the equivalence n2:

which is constructed as follows:

If D is a small double category, 7J2( D) is the unique double catego-

ry in N mapping the distinguished cones of o-F2 on canonical pullbacks
in m, mapping the morphisms (L, n ) and ( n, 6 ), for nE {1, 2, 3, 4}, on
insertions and such that

If f: C -D is a double functor, n2(f) is the unique double functor

such that T ( 2 , 2 ) is the map L defining f .

We construct now a surjective equivalence’ 2: F= 2 (M) -) j= 2 :
If O: EF2 -&#x3E; M is a double category in m, then

are categories in M, and the pair of their associated categories
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is a double category on O ( 2, 2 ).
If T : cp -&#x3E; O’ is a double functor in N, the map T ( 2 , 2 ) defines a

double functor S2 (T): S2 (O)-&#x3E;S2 (O’).
We have so defined the functor S: j=2 (M) -&#x3E; F=2 .

Since S1 n1: F -&#x3E; F is an identity, the functor S2 7J 2 :

is an identity, and n2 (F2) defines a full sub-category of Y2 (M), iso-

morphic with F2. v

3. General results about a-structures in m may be applied to the

category F2 , according to Proposition 2. In particular:
P R O P O SITI ON 3 . 1° j=2 is a category admitting small projective limits

and small inductive limits.

2° The forgetful functor toward 5R as well as the two forgetful functors

p21 and p22 toward F preserve projective limits and filtered inductive limits.

3° The forgetful functor toward m admits quasi-quotient structures,

i. e. [E1] if D is a small double category on D and r an equivalence on

the set D, there exists a small double category quasi-quotient of D by r .

These results are deduced in [BE1] from general theorems about

internal categories (which would also apply to j= 2 (y)

C. Categories of general ized natural transformations.

If D is a double category and A a category, the functors from A

to the first category of 1-morphisms of D are the objects of a category,
denoted by T ( D , A ) , whose law is deduced from that of the second cate-

gory D2 underlying D . Functors from a category B to T( D, A ) may be

identified with double functors toward D from the «square product&#x3E;&#x3E; B. A »

1. The functor T 11 . 
PROPOSITION 4. There exists a functor T 11 : F2 x F* -&#x3E; F mapping the ob-
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ject ( D , A) onto the category T ( D , A) got by equipping the set of func-
tors from A to Dl with the law :

t’ 02 t is defined iff a2 L’ = 132 L and is then equal to the functor

A. 1° From Proposition 1-0 there exists a functor

mapping (T, g) E F(F)x F onto the natural transformation F(-,g).T:

(where g : B -&#x3E; A ). We denote by Tl 1 the composite functor:

20 Let D be a small double category and A a small category. Then

T11 ( D , A ) is the category T ( D , A ) associated to j= (-, A) O: E F-&#x3E; M,
where O is the category in ? associated to D :

- Its set of morphisms is F(O(2), A) = F(D1, A ) = L.
- Its law F(O(K), A) is defined on the pullback

and it maps ( t’ , t ) onto the functor O ( K ) . [ t’ , t ] :

a ..... t’ (a) o2 t ( a) from A to D1 .

30 Let h: D - E be a double functor and g : B - A a functor. T 1 1 (h, g )
is the functor from T ( D , A ) to T ( E , B ) defined by the map

F(-, g) n11 ( h) ( 2 ) = F(-, g) (h1) = F( b1 . g) .
which associates b1 tg to t E 5: ( D , A). V
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DEFINITION. The category T (D, A) defined above is called the category

of D -wise transformations from A to D . A functor t : A -Di is called a

D -wise trans formation from f to f’ , if f is its source and f’ its target in

T (D,A ).

F( D2o , A ) is the set of obj ects of T ( D , A). This definition, given
in [E2] (where T ( D , A ) was constructed directly), has been inspired by
the following example:

EXAMPLES. 1° Let B be a category, D B the double category of its com-

mutative squares. If A is a category, T(D B, A ) is identified with the ca-

tegory BA of natural transformations, by identifying a functor from A to

DD B ( i. e. a 0 B -wise transformation) with a natural transformation bet-

ween functors from A to B .

2° For any double category D, the category T ( D , 2 ) is isomorphic
with D2.

2. The square product of categories.

We are going to construct an adjoint to the partial&#x3E;&#x3E; functor

for each small category A .

DEFINITION. Let A and B be categories. We call the square product of

( B , A ) , denoted by B 8 A, the double category (B0xA, B x A0 ) (where
A0 and B0 are the discrete categories on the sets of morphisms of A and
B respectively).

B m A is a double category, since it is the product in j= 2 of the

double categories (B0, B ) and (A, A0) . Its laws are:
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REMARK. If we identify the block (b, a ) (sometimes written b D a ) with

its frame

we get an isomorphism from B D A onto a double sub-category of the double

category ( B X A ) .

D E F IN IT I O N . We say that ( D , O, (B , A)) is an al ternative double functor,
or that (f defines an alternative double functor from ( B, A ) to D if:

1° A and B are categories on A and B ;

2° D is a double category on D and O : B x A -&#x3E; D a map;

3° the partial map O ( b, - ) : A -&#x3E; D defines a functor from A to D1 for

every b in B ;

4° the partial map O ( - , a ) : B -D defines a functor from B to D2 for

every a in A .

PROPOSITION 5. Let A and B be categories on A and B. The double

category B D A is characterized by each of the following conditions:
1° 1 f D is a double category, a map O : B X A - D defines an al terna-

tive double functor from ( B , A ) to D iff O defines a double functor from
B D A to D.

2° B D A is a free object associated to B relative to the partial func-
tor T11 (-, A): F2 -&#x3E; F.

A. 1° Let D be a double category and O : B x A -&#x3E; D a map.
a) The category B0 X A being the coproduct category II {b} x A , the

bEB
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map O defines a functor from Box A to D1 iff the map

defines a functor from A to D1 , for each b in B . In the same way, since

B x A 0 = II B x { a }, the map 0 defines a functor from B x A0 to D2 iff
aEA

a) defines a functor from B to D2 for each a in A . Hence B. A

satisfies the first property.

b) Suppose that O (b,-) defines a functor f’( b): A -&#x3E;D1 for each b

in B . The map

defines a functor from B to T’( D , A ) iff:

- For each object e of B , f’ (e) is an object of T (D,A) , which

mean s th at f’ (e) (a) =O (e,a) i s an obj ect of D2 , for any a in A .
- For each composite b’ . b in B, we have f’ ( b’ . b ) = f’ ( b’ ) o2 f’ ( b ),

i. e. O ( b’ , b, a) = O ( b’ , a) o2 O ( b’, a) for each a in A .

These conditions are equivalent to say that O (-, a) defines a functor from
B to D2 for each a in A . In view of Part a, they are verified iff (f defines
a double functor from B D A to D .

2° By the preceding method, we associate to the identity of B 8 A a

functor v: B -&#x3E; T( B D A , A) such that v ( b ) be the functor

a l-&#x3E; ( b , a ) from A to ( B D A )1 , f or each b E B .

If f’ : B -&#x3E; T ( D , A ) is a functor, it follows from Part 1-b that the map O:

defines a double functor f : B D A -&#x3E; D . Then the functor T11 ( f, A ) . v ,
from B to T ( D , A ) , maps b onto the functor
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which associates f ( b, a ) = f’ ( b ) ( a ) to a E A , and hence is equal to f’ ( b ).
So v defines B D A as a free object associated to B relative to the func-

tor T11 (-, v).
COROLLARY 1. Let A, B and C be categories, There are bijections

. This results from Proposition 5, since CA is isomorphic with the

category T (0 C , A ) . The canonical composite bijection maps f : B D A -&#x3E;D C

onto the functor g :

COROLLAR Y 2. L et A and B be categories. 1 f D is a doubl e category,

there are canonical bijections:

F(T(D21, B), A) -&#x3E; F2 (D21, A D B)-&#x3E;F2 (D, B D A ) -&#x3E; F (T’(D, A), B).
6. Since ( B o A) 21 = ( B X Ao, Bo X A ) , there exists an isomorphism

h : ( b, a) H (a, b) from (B. A )2 1 onto A 8 B,

and

is a bijection l . Now, by sending a double functor from (B . A ) 
21 

to D 2 1

onto the functor from B m A to D defined by the same map we get a bij ection

From Proposition 5, there are canonical bijections

Composing all these bijections, we get the bijection

which sends the functor f’ : A -&#x3E; T( D21 , B ) onto the functor f" , from B
to T(D,A), such that f " ( b ) be the functor

COROLLARY 3. T11(D,-):F*-&#x3E;F: is coadjoint to the dual of T11 (D21,.)
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for each double category D .

A. The canonical bijections ’)IB, A defined above determine an equi-

valence ’)I,’ F=(T11(D21,=),-) -&#x3E; F*(=, T11 (D,-)): F*xF*-&#x3E;M. V

3. The functor D : F x F -&#x3E; j=2.
PROPOSITION 6. There exists a functor. from Fx F: to j=2 such that the
partial functor -. A be an adjoint of T11 ( -, A) for each small category
A . 1 f Fc denotes the f ull sub-category of F whose objects are the small
connected categories, then B maps 5:.,- x Fc onto a f ull sub-category of F2. 
. 10 If g:A -A’ and h : B -B’ are functors, the product map h xg

defines a double functor h 8 g : B m A - B’ . A’. We so define the functor

8 (h, g) -&#x3E; h D g from 5:x5: to j= 2 . 
20 The «canonical» adjoint of TI 1 ( -, A) : F2-&#x3E;F maps h : B -B’ onto

the double functor h’ : B m A - B’ 8 A associated to the functor v’ h , where

v: B -&#x3E; T(B D A, A) and v’: B’ -&#x3E; T(B’ D A , A),

are the functors defining B 8 A and B’. A as free objects. As v’ h maps

b E B onto the functor

a 1-(h(b),a) from A to B’0xA.

the functor h’ maps ( b , a) onto ( h ( b ), a) , and h’ = h n A . Hence the par-
tial functor -. A: F-&#x3E; j= 2 is the canonical adj oint of T11 ( -, A ) .

3° Let A , B , A’ and B’ be small connected categories and suppose
that f : B D A -&#x3E; B’ D A’ is a double functor. Since A and A’ are connected,

the components
- of B° X A are the sets {b} x A, where b E B ,
- of B’0 x A’ are the sets {b’} x A’, where b’ E B’,

The functor f1 : B° x A -&#x3E; B’0 X A’ mapping a component into a component,
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for each h E B , there exists a unique bb E B’ such that

In the same way defining a functor f2 : B x A0 -&#x3E; B’xA’ 0, for each a E A

there exists a unique a’a E A’ such that

Hence

which implies L = h x g, where the map
h : B -B’ associates bb to b E B ,

g: A -&#x3E; A’ associates aa to a E A .

These maps define functors h : B -&#x3E; B’ and g:A-A’,and f=hmg. V

D. Some applications.

1. The canonical double cocategory in F2°
PROPOSITION 7. 1° There exists a double cocategory L2 in j=2 which de-

fines an isomorphism from onto the full sub-category E F2* o f j= 2 who-
se objects are the double categories m 8 n, for m and n in f 1, 2, 3, 4 }.

2° 5=2 is the inductive closure of {2 D 2 1.
A. 10 From Proposition 4-0, the restriction Y2: E*F2 -&#x3E; F2 (M) of the

Yoneda embedding is a double cocategory in F2 (M). The composite

where S2 is the canonical equivalence (Proposition 2), is a double cocat-

egory in j=2’ and Y2 defines an isomorphism from ¿j=2 onto a full sub-

category of F2 (M) which is mapped by the surjective equivalence S2 on-

to a full sub-category of j= 2 . The equivalence S2 being faithful, so is t2 -
2° We are going to prove that

m 8 n = t2 (m, n), for m and n in {1 , 2 , 3, 4 } .

Indeed, so that Y2 ( m ,n ) :EF2-&#x3E; M maps th e pair

( 03BC, v ) E EF2 on to
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where Y1:Z*F -&#x3E;M EF is the Yoneda embeddi ng. From the construction of

S2 it follows that t2 ( m, n ) is the double category

where S1: F (M ) -&#x3E; F is the canonical equivalence (Proposition n-0). The

set Y1 ( m ) ( 2 ) is the set m underlying m and S1 (Y1 ( n ) ) is the catego-

ry n (see 0-C), so that

In the same way

Hence

3° The preceding results imply that t2 maps EF2 onto the full sub-

category of j= 2 whose objects are the double categories m 8 n . As

the faithful functor c2 is inj ective on the objects, whence injective.

40 sij being the r F-closure of {2} (see 0 - C ), Proposition 7-0

asserts that F2 (M)=M o-F@o-F=Mo-MF@ O"j= is the inductive closure of the
set {Y2 (2,2)}. The image j=2 of F2 (M) by the equivalence S2 is then

the inductive closure of the set whose unique element is

2. Generalized limits.

By analogy with the usual definition of a limit for a functor we de-

fine limits relative to D for functors toward the first category of 1-mor-

phisms of the double category D .

Let D be a double category and A a category. The category T (D, A)

of D -wise transformations (see C-1) admits for objects the functors from
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A to the first category Do of 1-morphisms of D .

The alternative double functor

determines a functor dDA : D1o -&#x3E; T(D, A) (Proposition 5-C). This functor

maps

- the vertex e of D onto the constant functor e^: A -&#x3E; D2o ,
- the morphism x : e = e’ of Do onto the constant functor x ": A -&#x3E; D1,

which is a D -wise transformation form e ̂  to e’^.

As for natural transformations, we will use a more geometrical&#x3E;&#x3E; lan-

guage : Let f : A - Do be a functor.

- If t : f -t e’" is a D -wise transformation toward a constant functor,

we say that t is an inductive D -wise cone, indexed by A , with vertex e

and basis f .
- A D -wise transformation t’ : e’^ f is called a projective D -wise

cone with vertex e’ and basis f.

- Let x : e -&#x3E; e’ be a morphism of Do . If t : f - e " is an inductive D-

wise cone, we denote by x t the inductive D -wise cone

x^o2t : f -&#x3E; e^ such that x t ( a ) = x o2 t ( a ) for each a E A .

Dually, if t’ : e’’’’-tf is a projective D -wise cone, then t’ x: e^-&#x3E;f is the

projective D -wise cone t’ 02 x’" such that

for each a E A .

DE FINITION. Let /: A -D2 be a functor. If t: f -t e’" (resp. t: e"-&#x3E; f ) is

a D -wise cone defining e as a free (resp. a cofree) object generated by f
relative to the functor dDA , then e is called an inductive (resp. a projec-
tive) D -wise limit of f and t is called an inductive (resp. a projective) D -

wise limit-cone.

REMARKS. Limits relative to a double category were introduced by Ehres-

mann in [E2] and some general properties of these limits are given in [Le] .
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Quasi-limits of Gray [G1], analimits and catalimits of Bourn [Bo] are ex-

amples of such limits which will be studied later on.

Let f : A -&#x3E; D2o be a functor. The inductive D -wise cone t with ver-

tex e and basis f is a D -wise limit-cone iff, for each inductive D-wise co-
1

ne t with basis f , there exists a unique morphism x in D. called the fac-
tor of t relative to t , such that t = x t.

The projective D -wise cone t’ with basis f is a D -wise limit-cone

iff, for each projective D -wise cone t’ with basis f , there exists a unique

morphism x’ in Do , called the factor of t’ relative to t’ , such that t’ = t’ x’ .

The terminology is justified by the following examples.

E X A M P L E S. 1° If B is a category and 0 B the double category of its com-

mutative squares, a functor f: A -B admits a projective (resp. an induc-

tive) D B -wise limit e iff e is a (usual) projective (resp. inductive) limit

of f . Indeed, if we identify T (D B, A) with BA and B with the second

category of 1-morphisms of 0 B, the functor doBA is identified with the
diagonal&#x3E;&#x3E; functor from B to BA .

2° If I0 is the discrete category on 1, a projective D -wise cone t in-

dexed by I0 and with vertex e is identified with the family ( t (i))i E I of
1-morphisms t ( i ) : e 4 ei of D; hence t is a D -wise limit-cone iff e is a

product of ( ei )i E1 in Do , the t( i)’s being the projections.
3° If D* is the double category (D1, D2*) which is the second dual

of D, then T ( D*, A ) is the dual of T ( D , A ) , so that a D-wise cone t is

an inductive D -wise limit-cone iff t is a projective D*-wise limit-cone.

DEFINITION. We say that Do admits inductive (resp. projective) D -wise
A -limits if dDA admits an adjoint (resp. a coadjoint), which is then called
a D -wise A -limit functor. If Do admits inductive (resp. projective) D-wise
limits for each small (or finite,...) category A , we say that Do admits in-

ductive (resp. projective) D -wise small (or finite,...) limits.
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2. REPRESENTABLE DOUBLE CATEGORIES

We are going to study the double categories D whose first catego-

ry of 1-morphisms Do admits D -wise 2 -limits. For them, the existence of
D -wise limits reduces to the existence of «enough» usual limits in Do . Fun-
damental examples of such double categories are the double categories of

squares of a representable (in the sense of Gray) 2 -category.

In all this chapter, we denote by D a double category, by « 0) and

 . &#x3E;&#x3E; respectively its first and its second law.

A. Representat i on of a 1-morph i sm.

DEFINITION. The double category D is said representable (resp. corepre-
sentabl e) if D2 admits projective (resp. inductive) D -wise 2-limits.

D is corepresentable iff its second dual is representable.
Let v : T ( D , 2 ) --i D2 be the canonical isomorphism mapping t on-

to t ( z ) , where z always denotes the morphism from 0 to 1 in 2. The com-

posite functor

is the insertion into D 2 of its sub-category Do . Hence D is representable

(resp. corepresentable) iff the insertion Do C-&#x3E; D2 admits a coadjoint (resp.
an adjoint). In particular, for 2 -categories, these definitions are equivalent
to that given by Gray [G2] .

Let D be a representable double category. If y : e -&#x3E; e’ is a mor-

phism of Do and if r: s -&#x3E;y is a 2 -block of D defining s as a cofree ob-

j ect generated by y relative to the insertion Do C-&#x3E; D2 , we call r a repre-
sentation of y in D . If d : s’=&#x3E; y is a 2 -block, there exists a unique 1-

morphism x : s’=&#x3E;s such that r. x = d ; this x is denoted by Idl and cal-
led the factor of d relative to r.
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If re : Se =&#x3E; e is a representation of a vertex e in D , it is also the

representation of e in the greatest sub-2 -category C of D ; it follows that

C is also representable. From Gray’s results [G2], we know that, if Do
(which is the category of 1-morphisms of C ) admits pullbacks, there exists

a category 1 e in Do mapping the morphisms a, B, i , v, v’, K of EF res-
pectively on:

the factor / e/ relative to re ,

the canonical projections ve and v’e of the pullback in D1o :

the factor ke = l(re . ve) o (re . ve’)/ relative to re.

Indeed, let D ( e, -) be the functor from the dual of Di to ? which maps:
the vertex s of D on the sub-category of Dl def ined by D2 ( e , s ) ,
the morphism x : s =&#x3E; s’ of Do on the functor c l-&#x3E; C. x from D ( e , s’ )

to D (e, s).

The functor pF= D ( e, -) is equal to D2 ( e , -) which, as re is a represen-

tation of e in D , is equivalent to D1 ( se , - ) , whence representable. Then
Proposition 8-0 associates to D ( e, - ) a category in D1o , which is Oe .

PROPOSITION 1. Let D be a representable double category such that Do
admits pullbacks. If y : e - e’ is a morphism o f D2 and i f Oe and cp , are
the categories in D1 associated above to e and e’, there exists a distri-

butor in D1o : 

where r : a - b sy =t y is a representation of y,
A. 10 We get a right category action ( k’ , ae’ Oe ) in D 0 1 by considering

the factor relative to r :
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and the pullbacks in Do

a) This action k’ is unitary. Indeed, if i’ is the factor [s , lel. a I
relative to the pullback P, then k’ . i’ = sy follows from the equalities

and from the unicity of the factor relative to r.

b) To show the associativity of the action, we consider the factors

relative to the pullback P, and we have to prove that k’. c = k’. c’. This

is deduced from the equalities:
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since

20 A similar proof shows that (Oe,, by, k") is a category action in

Do , where k" is the factor

relative to r and where we have the pullback P’ in DO :

3° For ( Oe, by , k" , k’ , ay , qb ) to be a distributor, it remains to prove

the compatibility&#x3E;&#x3E; of the two actions, i. e. k" . l’ - k’ . l, where

is a pullback and where

are the factors relative to the pullbacks P’ and P . Indeed, we get the equa-

lities :
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since

RE MAR K. 8 
Y may 

be defined as the distributor in Do associated (p. 24)
to the canonical functor Y from the dual of Do to the category mo- 8 which

maps the vertex s on the distributor ( D (e’, s), f3y, s’ K", K’, a y, s’ D (e, s)),
where Ks and Ks are restrictions of the law of D1 and where ay, s and
f3y , s are the maps from D2 (y, s) to D1o (e , s ) and Do (e’ , s) restrictions

of a1 and (31. Indeed, Y(-) (1,0) is re p resented by sy, Y(-)(2,1) and
Y(- )(2, 1) by se and e. respectively.

B. Existence of limits relative to a representable double category.

P RO P OSITION 2. 1 f D is a representable double category and i f D1o admits
pullbacks, then Do admits projective D -wise 3 -limits.

6. We denote by z , z’ and z" the morphisms of the category 3 :

Functors from 3 to a category A are in bijection with pairs of composable

morphisms of A . Let f : 3 - Do be a functor.

10 Let r : a -b and r’ : a’ -b’ be representations of f ( z ) and f ( z’ )
in D . By hypothesis there exists a pullback

P of ( a’, b ) in Do . We put
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Since

there exists a composite t ( z") = t( z’ ) ot ( z ) in D 1 . We have so defined

a D -wise cone t with vertex s and basis f.

20 t is a limit-cone. Indeed, let t’ be a projective D -wise cone with

basis f and vertex s’ . The 2 -block t’ ( z ) : s’ =&#x3E; f ( z ) admits a factor x re-

lative to r and t’(z’): s’ =&#x3E; f(z’) admits a factor x’ relative to r’ . Since

there exists a factor h = [x’. x] relative to P . From the equalities

we deduce that h is the unique morphism of Do satisfying t h = t’ . 0

COROLLARY. I f D is a corepresentable double category and i f D1o admits

pushouts, then Do admits D -wise inductive 3-limits.

6,. This results from Proposition 2 applied to the second dual of D ,
which is representable. 7

P R O P O S I T I O N 3. L et D be a re presentabl e doubl e category and A a small

(resp. a finite) category. 1 f Do admits small (resp. finite) projective limits,
then D2o admits projective D -wise A -limits.
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A. 10 Some notations.

a) The category H : Let tj; A: 2j -lll be the category in 11 associa-

ted to A and Y its restriction to the sub-category 2 of 2y generated

by {a, B, t, K, v, v’} . We denote by H the source of the discrete fibration
n: H - 5i associated to 1.j;. Then H is generated by the morphisms:

(v, x’, x), (v, x’, x), (K, x’, x) from (3, x’, x) to : (2 , x’ ),

( 2 ,. x ) and ( 2, x’ . x) respectively, where ( x’ , x ) is any pair of composa-
ble morphisms of A , 

(a, x) and (B, x) from ( 2, x) to ( 1, u) and (1, u’), where x

is any morphism in A , from u to u’ ,

( t, u): ( 1, u) -&#x3E; (2, u), for any object u of A.

Since EF is a finite category, H is small or finite when so is A .
b) For each morphism y in Do , we choose a representation of y in D :

and for each pair (y’, y) of composable morphisms of Do , we choose a

pullback P’y,y of (ay,, b y) in DJ :
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(This pullback exists, pullbacks being finite projective limits.) Since

there exists a composite

in D 1 and it admits a factor relative to ry’ oy, which will be denoted by

2° Let f : A -t D; be a functor. We are going to construct a projective
D -wise cone t with basis f .

a) There exists a functor p H -&#x3E; D1o defined as follows : it maps

(a , x ) and (f3, x) on a f(x) and on bf (x) , for each x in A ,

(t , u) on the factor / f (u)/ relative to rf (u) , for each u E Ao ,
(K,x’,x) on ky’,y’, (v, x’, x) on vy’,y and (v ,x’,x) on v’y, y,

for each pair (x’, x) of composable morphisms of A , where y = f ( x ) and

Since H is small (resp. finite), there exists a projective limit-cone 1 with

basis p and vertex s (in the usual meaning).

b) For each morphism x: u -u’ in A , we define t ( x ) = r f(x) . l (2, x ) .

The map associating t ( x ) to x in A defines a functor t : A -t D 1 . Indeed,

if u is an object of A , we get

since, l being a cone with basis p , we have

On the other hand, if x : u -u’ and x’ : u’ -u" are morphisms of A and if
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and the equalities

and

imply that the composite t ( x’ ) ot ( x ) is defined in Dl . From

and from the definition of ky’, y as a factor relative to ry., y , we deduce

Hence t : A -&#x3E;D1 is a D -wise cone. As

this D -wise cone admits f as its basis.

3° We are going to prove that t is a D -wise limit-cone. For this, we
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suppose that t’ is a projective D -wise cone with vertex s’ and basis f.

a) We first construct a (usual) cone l’ with vertex s’ and basis p as

follows:

for each object u of A , we define l’ (1, u ) as the 1-morphism

l’ (2, x ) , for each morphism x of A , is the factor of the 2 -block

t’ ( x ) : s’ =&#x3E; f(x) relative to rf(x)°

If x : u -’ u’ and x’ : u’ -u" are composable morphisms of A and if

y = f ( x ) and y’ = f ( x’ ) , we have

so that there exists a factor l’ ( 3, x’ , x) = [l’ ( 2, x’ ), l ( 2 , x )] relative

to the pullback P y’, y . 
b) We prove now that in this way we get a cone l’ with vertex s’ and

basis p . Indeed:

If x: u -&#x3E; u’ in A, then

If u is an object of A , we get

the factors being relative to rf (u).
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Let x : u -u’ and x’ : u’ -’ u" be composable morphisms of A and

write y = f ( x ) and y’ = f ( x’ ) . By definition of l’ ( 3 , x’, x ) , we have

Finally, p ( K , x’ , x ) . l’ ( 3 , x’ , x ) and l’ ( 2 , x’. x ) are equal, since both

are factors relative to ry. o y of

c) The projective usual cone l’ with basis p admits a factor d: s’ =&#x3E;S

relative to the limit-cone 1 , so that l’ = l d . For x in A , we have

Hence d is the unique morphism of Do satisfying the equality t’ = t d .

This ends the proof. V

More precisely, we have proved:

COROLLARY 1. I f D is a re presentabl e double category, A a category,
and if Di admits pullbacks and projective H-limits (where H is the cate-

gory defined in the preceding proof), then Do admits projective D -wise A -
limits,

COROLLARY 2. 1 f D is a representable double category and if Do admits
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small connected projective limits (resp. pullbacks and equalizers), then

D2 admits small (resp. finite) connected projective D -wise limits.

A . If A is connected, EF being connected it is easily seen that H
is also connected. Now a category admitting pullbacks and equalizers has

connected finite projective limits. So Corollary 1 implies Corollary 2. 0

By duality, it follows from Proposition 3:

PROPOSITION 4. 1 f D is a corepresentable double category and i f Do ad-

mits small (resp. finite) inductive limits, then Do admits small (resp. finite)
inductive D -wise limits.

COROLLARY. 1 f D is a corepresentable double category and if Di 0 admits

pushouts and cokernels, D2 admits finite connected inductive D -wise limits.

R E M A R K. 10 In the proof of Proposition 3, instead of H we could have used

the source if of the discrete fibration associated to the category in ? as-

sociated to A . Indeed, the functor p constructed in this proof extends in

a functor p: H -&#x3E; D1o . As H is a cofinal sub-category of H , the functor p
has the same limit as p, and this limit is the D -wise limit of f .

2° The preceding remark leads to a more abstract proof of Proposition
3 (which will be explicited later on for multiple categories). This proof pro-
ceeds as follows: Let f2 be the set of categories A such that Do admits

D -wise A -limits. As ? is the inductive closure of { 2} and as 2 belongs
to 0 (by definition of a representable double category), we will have Q x j= 0
if B belongs to Q when B is the vertex of an inductive limit-cone c: I =&#x3E; F

whose basis w satisfies:

w ( i ) E n for each obj ect i of I,

Indeed, the functor T11 (D, -): F-&#x3E;F, coadjoint to T 1 1 (D21,-)* , trans-
forms c into a projective limit-cone c with basis w =T11 (D, w-): I* -&#x3E; F and
vertex T (D , B ) . The canonical functor dDB is the factor relative to c of

the projective cone c’ with basis w defined by:

c’ ( i ) = dD w (i) for each object i of I.

Since c’ ( i ) admits a coadjoint for each i , a theorem of Appelgate-Tierney
[ AT] asserts that the factor of c’ also has a coadjoint; hence BE f2.
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C. The double category of squares of a 2 -category.

In this section we give a fundamental example of a representable

double category.

lfe denote by C a 2 -category, by o&#x3E;&#x3E; and by  . &#x3E;&#x3E; the symbols of the

laws of the categories C1 and C2.

1. The double category of up-squares of C is [GZ] the following
double category, which is denoted by Q ( C ) :

- Its 2 -blocks, called up-squares of C , are the 5 -tuples 

q = ( y’, x’, c, x, y) , where (y’, x’, x, y) is a

(non-commutative) square of C1o and c:y’.x -x’.y
a 2 -cell of C .

- The first law, said vertical composition and denoted by 8 , is

- The second law, the horizontal composition, denoted by rn , is:

(y’, x’ , c , x , y ) DD ( y’ , x’ , c , x , y ) = ( y’ ,x’. x’, (x’. c ) o (c.x ). x.x,y) 

The first and the second categories underlying Q ( C) will be deno-

ted by Q(C)B and Q(C)DD. Both admit as objects the 1-morphisms of

C . The identity of Q( C) 8 (resp. of Q (C) DD) corresponding to the 1-mor-

phism z will be denoted by z B (resp. by zm), or sometimes even by z -
Hence we write

q: x B -&#x3E; x’ B, q: y DD=&#x3E; y’ DD, or more simply q: x -&#x3E;x’, q: y =&#x3E;y’.
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"We may identify C with the greatest sub-2 -category of Q (C) by

identifying

The double category DC1o of commutative squares of C1o is identi-

fied with the double sub-category of Q ( C ) formed by the up-squares of the

form ( y’ , x’ , y’ . x , x’ , y ) (i. e. the up-squares q such that c be a 1-mor-

phism of C). In particular, this double sub-category is equal to Q (C) iff

, i . e. iff C is the discrete 2 -category on C2 .

2. The double category of down-squares of C .

This double category, denoted by Q l (C’) , is defined as the double

category of up-squares of the first dual (C1*, C2 ) of C . Hence its 2-blocks,

cal led down-squares of C , are the 5 -tuples ( y’ , x’ , c’ , x , y ) , where

( y’ , x’ , x , y ) is a (non-commutative) square of Co , 
c’: x’. y -y’. x is a 2 -cell of C.

The two laws, expressed with the laws of C only, are:

The double category D C1o is also identified with a double sub-ca-

tegory of Ql (C) .
The bijection:



274

from the set of up-squares of C onto the set of down-squares of C defines

a canonical isomorphism from Q (C) , to the double category symmetrical of

the double category 6jfC,).
3. Let f: C -K be a 2 -functor. ’We have double functors

associating
In this way are def ined two functors Q ( - ) and Q l (-) from the ca-

tegory of small 2 -functors into the category T2 of small double functors.

4. L imits in Q ( C) m.

PROPOSITION 5. 1 f C 0 1 admits projective A-limits preserved by the inser-

tion i : Co C-&#x3E; C2 then cri C1o admits pro jective A -l imits which are preser-
ved by the insertions j and j’ into Q (C) DD and Q l ( C) DD.

A. We denote by a and B the functors from the category K = m Co
to Cl defined by the maps source and target of the vertical category B C1o
(whose objects are identified with 1-morphisms of C). Let F be a functor

from A to K . ’We write:

Since K is isomorphic with the category ( Co )2 , there exists a projective
limit-cone T with basis F and the cones

are limit-cones with bases f and i.
10 i T is a limit-cone. Indeed, let T’: A -&#x3E; Q (C) DD be a projective

cone with basis i F. As t’ = a T’ is a projective cone with basis f , there

exists a factor x of t’ relative to t. There also exists a factor x of P rue-

lative to t, where t’ = 7 T. We have T’ (u)=(Yu’ P ( u), cu, t’( u), y’) , for
each u E Ao, where cu : y. t’ (u) -&#x3E; t’ ( u). y is a 2-cell. The equality

for each morphism a : u - u’ in A . Hence, there exists a proj ective cone
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with basis i f such that

for each object u of A .

Since t is a limit-cone, the hypothesis asserts that i t is a projective li-

mit-cone and there exists a factor c of t" relative to i t . From

we deduce, t being a limit-cone, a1 ( c ) = y . x . Similarly, 131 ( c ) = x . y’ .
It follows that (y, x, c, x , y’ ) . is an up-square q and, by its construction,

it is the unique up-square satisfying

T( u ) m q = T’( u ) for each object u of A .

2° The category Qf C) DD being identical with Q( C*)ITJ, where C*
is the first dual of C , the preceding proof applied to this dual shows that

j’ T is also a limit-cone. V

CO R OL L A R Y 1. 1 f Co admits projective A -limits preserved by the inser-

tion into C2, then 8 Cl 0 admits projective A -limits which are preserved by
the insertions into Q ( C ) B and Q ( C ) B .

A . This corollary is deduced from the proposition, via the canonical

isomorphism from Q ( C ) m onto Q ( C ) B (resp. from Q l ( C ) B onto Q l (C ) B )
which m aps m C1o onto B C1o. V



276

COROLLARY 2. I f C 0 1 admits inductive A -limits preserved by the insertion

into C 2, then DD C 0 1 admits inductive A -limits preserved by the insertions
into Q ( C ) C’3 and Ql( C ) rn ,

A. This results from Proposition 5 applied to the second dual of C . V

CO ROL L ARY 2. 1 f C, 1 admits I-products (resp. I-sums) preserved by the

insertion into C 2 then Q ( C) rn, Q l( C ) M, Q( C) 8 and Ql( C ) B admit

I -products (resp. I -sums).

A - This comes from Proposition 5 and its corollaries, applied to the

discrete category 1° on 1 . V

REMARK. Q ( C) DD does not always admit pullbacks, for up-squares which

are not commutative squares.

5. Representability of Q( C).

P R O P O SI TI ON 6. I f C is a representable 2 -category and if Cl 0 admits pull-
backs, then Q ( C ) is a representable double category.

0 . Ve consider an object of Q( C) rn , identified with a 1-morphism y

of C , where y : e =&#x3E; e’ . In the 2 -category C , there exists a representation
r’ : a’ -&#x3E; b’ of e’ ; there exists also in CI a pullback P

of ( a’ , y ) . Then q = ( y , b’ . p’ , r’ . p’ , p , s ) is an up-square of c. We

are going to prove that q is a representation of y in Q (C) . Indeed, let

q’ = ( y , x’ , c , x , s’ ) be an up-square of C , where s’ is a vertex of C , 

Since c : s’ =&#x3E;e’ is a 2 -cell of C , it admits a factor / c/ relative to the

representation r’ of e’ in C ; we have



277

so that there exists a factor h of (/ c/ , x ) relative to P . As

we get

The unicity of the factors asserts the unicity of the I-morphism h satis-

fying q DD h B = q’ V

COROLLARY. If C is a representable 2-category and i f Co acdmits pull-
backs, then Ql( C ) is a representabl e double category.

A. Since C is representable, so is its first dual. This dual admitting
also Co as its category of 1-morphisms, the double category of its up-squa-

res, which is Ql( C) by definition, is representable. More precisely, a re-

presentation of y : e =&#x3E; e’ is constructed as follows: Let r’ : a’ -t b’ be a

representation of e’ in C ; then r’ is also a representation of e’ in the first

dual of C , but its source in C1 * is b’ . Let

be a pullback in C1o. The down-square ( y , a’. l’ , r’.1’, l , s ) of C is a

representation of y in Ql( C ) .

P R O P O SI TION 7. If C is a corepresentable 2-category and i f Co admits

pushouts, then Q ( C ) and Ql( C) are core presentable double categories.

A. A proof similar to that of Proposition 6 and of its Corollary shows

that the 1-morphism y,’ e =&#x3E; e’ of C admits:

- as a corepresentation in Q ( C) the up-square ( s , v , v . r , a , y ) ,
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- as a corepresentation in Ql( C) the down-square ( s’ , v’ , v’ . r, v’ . b , y)
where r: a -b is a corepresentation of e in C and

are pushouts in Co . V

6. Limits relative to the double category Q( C ) .

P R O P O S I T I O N 8. 1 f C is a represen tabl e 2 -category such that Cl 0 admits

connected (resp. small, resp. finite) projective limits, then C1o admits con-

n ected (resp. small, resp. f ini te) projective Q ( C ) -wise and Ql( C ) -wise
limits.

A . This follows from Proposition 3, since Q( C) and Ql( C ) are both

representable double categories (Proposition 7) whose second categories of

1-morphisms are isomorphic to CJ. V

COROLLARY. 1 f C is a corepresentable 2 -category such that Cl admits

connected (resp. small, resp. finite) inductive limits, then Cl admits con-

nected (resp. small, resp. finite) inductive Q ( C ) -wise and Ql( C)-wise
limits. V

We are going to look more closely to Q ( C ) -wise limits and to com-

pare them with generalized limits introduced by Gray.
Let A be a category. The category T(Q(C), A) of Q (C) -wise

transformations indexed by A admits as objects the functors from A to Cl
since C. 1 is canonically isomorphic with the first category of 1-morph-
isms of the double category Q ( C). So a Q ( C ) -wise transformation t : f - f’
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is equivalent to the following data:

1° Functors f and f’ from A to C1o .
2° For each obj ect u of A a 1-morphism cu : f ( u ) -&#x3E; f’ ( u ) of C .

3° For each x : u -&#x3E; u’ in A , a 2 -c ell c x f’ ( x ) cu -&#x3E; cu , . f( x ) such
that, if x’ : u’ - u" in A , then

Indeed, these conditions mean that there exists a functor t from A

to 6fCjB such that

We have a similar description for Ql( C ) -wise transformations, ex-

cept that cx goes down&#x3E;&#x3E; instead of up&#x3E;&#x3E;.

In other words, if f and f’ are the 2 -functors from the discrete 2-

category on A toward C defined by f and f’ , the Ql( C ) -transformations
from f to f’ correspond to the quasi-natural transformations from f to f’
defined by Gray [G1] , called anadeses by Bourn [Bo], while the Q( C)-wi-
se transformations from f to f’ correspond to the quasid-natural transfor-
mations from f to P of Gray or to the catadeses of Bourn. (The way the

diagrams are drawn explains why we call up&#x3E;&#x3E; what these authors consider

as being ((down*.)

Let f : A - C’ be a functor considered as an obj ect of T ( Q ( C ) , A ).
An inductive Q ( C ) -wise cone t with basis f and vertex e corresponds to



280

a family (cx) x E A of 2 -cells of C such that:

c : f ( u ) =&#x3E; e is a 1-morphism of C, for each object u of A ,

cx: cu - cu’ -&#x3E; f(x) is a 2-cell, for x: u - u’ in A,

cx..x = (cx’. f(x))o cx , if x’: u’ -’u" in A

(the corresponding cone t associates to x : u -u’ the up-square:

This family corresponds to an inductive Q ( C ) -wise limit-cone if,

for each family ( cx )x E A satisfying the same conditions, there exists one

and only one 1-morphism y of C such that y . cx = cx for each x in A .

With this formulation, we see that the inductive (resp. projective)
Q( C)-wise limits are&#x3E;&#x3E; the cartesian quasi-colimits (resp. quasi-limits) of

Gray [G1] and also the inductive (resp. projective) catalimits of Bourn

[Bo], for 2 -functors from a discrete 2 -category. Hence Proposition 8 has

been announced by Gray [G2] and proved by Bourn [Bo] (in a more gene-
ral case which will be considered later on).

D. Examples and Applications to sketched structures.

1. Limits relative to the double category of quintets.

The 2-category )I of small natural transformations admits the cat-
egory y of functors as its category of 1-morphisms. It is representable
and corepresentable, a small category A admitting:

as a representation the natural transformation rA : B A =&#x3E; A associa-

ted to the identity functor of B A ,
as a corepresentation the natural transformation r’A : A =&#x3E;A x 2 , from

V= [-,0^l to [-1^] such that rA ( u )= ( u , z ) for each u E Ao .

An up-square of 31 is called a quintet and we denote by 2 the dou-
ble category 2-(M) of quintets (following [E2], where this double categ-
ory was introduced, as well as its sub-2-category M). Let 2l be the double
category of down-squares of n.

As if admits small projective and inductive limits, preserved by
the insertion into n. (which admits an adjoint and a coadjoint), Pro-
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position 5 asserts that on? adr.its small projective and inductive limits

preserved by the insertions into @ DD and into 2l DD .
RFMARK. The category M. is cartesian closed; it may be shown that 9- 00

is partially&#x3E;&#x3E; cartesian closed. More precisely:_
Let f: A -B be a small functor and K a small category; if there ex-

ist left Kan extensions along f for f unctors from A to K , each small func-
tor g: H -&#x3E; K admits a cofree object G relative to the partial product func-

tor -x f: 2 DD -&#x3E; 2 DD.

Indeed, G is the composite functor:

where L is the left Kan extension functor (adjoint to Kf). There is a si-
milar result replacing 3 by lllj and left Kan extensions by right Kan exten-
sions.

From Propositions 6 and 8, it follows:

PROPOSITION 9. The double category 2- is representable and corepre-
sentable and F admits small projective and inductive 2-wise limits.

In fact, Gray has given in [Gl] an explicit construction of 2- -wise

limits: Let F: A -&#x3E;F: be a functor, where A is a small category.

10 F admits as an inductive 9-wise limit the source K ( F ) ( denoted

by [1, F] in Gray) of the fibration kF : K(F) -A associated to F. (The
category K ( F ) is called in [E1] the «catégorie produit croise associee

a 1’ espece de morphismes) F . ) The category F ( u ) , for each object u of

A , is identified to a sub-category of K ( F ) . From a general result of Gray
(the Yoneda-like lemma [G1] ), it follows that, if F’ : A -&#x3E; F is a functor,

the 9-wise transformations from F to F’ are in a one-to-one correspon-

dence (a restriction of the adjoint K of d2A :F -&#x3E; T(2 , A) ) with the
functors h : K( F ) -&#x3E; K ( F’ ) such that kF, h = kF .

20 F admits as a proj ective 3-wise limit the sub-category L ( F ) of

K ( F )A formed by the natural transformations t: A =1 K ( F) such that kF t
is an identity. L ( F) is isomorphic with the category of crossed transfor-

mations, whose objects are the crossed homomorphisms (defined in [E1] );
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the set of components of its greatest sub-groupoid is called in [E1] the

first non-abelian cohomology class of F, by analogy with the case where
A is a group and F a A -module. This remark might be helpful to define

the higher order non-abelian cohomology classes of F (see also the Appen-
dix of Bourn [Bo] ).

2. L imits relative to a sub-2-category.

The following criterium is often useful in applications, for example
we will use it in the next section.

PROPOSITION 10. Let C be a 2-category and H a full sub-2-category

( i. e. HI and H2 are full sub-categories of Cl and C2 ). If the insertion

j: H1o C-&#x3E;C1o admits an adjoint (resp. a coadjoint) and if C1o admits Q (C )-
wise inductive (resp. projective) A -limits, then Ho admits Q( H ) -wise in-
ductive (resp. pro jective) A -limits.

A. Since H is a full sub-2 -category of C, the double category Q(H)
of the up-squares of H is a full double sub-category of Q (C), and the ca-

tegory T’ ( Q (H) , A) is identified with a full sub-category of T (Q ( C ), A ).
The hypotheses imply that the composite functor:

admits an adjoint (resp. a coadjoint). This functor taking its values into the

full sub-category T ( Q ( H ), A ) , we deduce that its restriction from HJ to
T ( Q ( H ), A ) also admits an adjoint (resp. a coadjoint). Hence Ho admits
inductive (resp. projective) Q( H )-wise A -limits. V

3. Limits relative to 2 -categories of bimorphisms between sketches.

In [BE] we have defined the category ifm" of morphisms between
small mixed cone-bearing categories, and its full sub-categories:

ifm’ , whose objects are the presketches o- (i. e. two distinguished co-
nes of a have different bases),

Pm’ , whose objects are the limit-bearing categories,
Jw = Fm’ rl Pm’ , whose objects are the prototypes,
Ym"gg (resp. FJJ), whose objects are the (J,J)-cone-bearin catego-
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ries (resp. the (J,J)-types), where J) and J are small sets of small cat-

egories.

These different categories X admit small projective and inductive
limits, and the following insertion functors admit adjoints:

1( is the category of 1-morphisms of a 2 -category M X, whose dou-
ble category of up-squares will be denoted by 2X.

Proposition 18-2 [BE] asserts that )1% is a representable (except
for = X Fm’ ) and corepresentable 2 -category, so that we deduce from Pro-

position 8:

PROPOSITION 11. ï admits small projective (resp. inductive) 2X(-wise

limits, for X = F=m" , Pm’ , Pm, F=m" JJ, 549 (res p. F JJ and Fm’ ).
6. Using the preceding results, we may give an explicit construction

of some of these limits. Let S : A -&#x3E;X be a functor, where A is a small ca-

tegory. We denote by F the functor from A to ? got by composing S with

the forgetful functor from f to 5:. If X is a proper sub-category of Fm" ,
we consider the composite functor S :

10 If f = ifm" or Fm"JJ, then S admits:
as an inductive .91(-wise limit the cone-bearing category K (S) got

by equipping K ( F ) (the inductive 3-wise limit of F) with all the cones

iu yu , where iu : F ( u ) -&#x3E; K ( F ) is the insertion and where yu is a distin-

guished cone of S ( u ) , for each obj ect u of A ;
as a projective 2X-wise limit the cone-bearing category L ( S ) got by

equipping L ( F) (the 2-wise projective limit of F) with the cones T such

that vu T be a distinguished cone of S ( u ) for each object u of A , where

vu : L ( F ) -&#x3E; F ( u ) is the valuation functor, which maps the natural trans-

formation t : A =&#x3E; K ( F ) onto t ( u ) .
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2° If 1( = Y.’ , then K ( S) is a presketch, which is the 2X -wise in-

ductive limit of S . If X = Pm or Pm’ (resp. = FJJ), it follows from part

1 and Proposition 10 that S admits as an inductive 2X-wise limit the li-

mi t-bearing category (resp. the (J, J)-type) freely associated to K ( S ) .
3° The insertion functors iu , for u E Ao , preserve connected limits ;

if A defines a preorder on the set of its objects, they preserve all limits.

Using these facts we deduce:

a) Let us suppose that X = Tn’ (resp. 9m ) and that the indexing ca-

tegories of S ( u ) are connected for each obj ect u of A , or that A defines

a preorder. Then K ( S ) is a limit-bearing category (resp. a prototype), so

that it is the inductive 2X-wise limit of S. Moreover the insertion from the

category L ( F ) into K ( F ) A reflecting limits, L ( S ) is also a limit-bea-

ring category (resp. a prototype), projective 2X-wise limit of S .

b) Finally, if X = FJJ and if I and J are sets of connected catego-

ries, or if A defines a preorder, L ( S ) is a (J,J)-type, which is the
wise projective limit of S . V

4. Lax morphisms between sketched structures.

In this section 0- will be a projective limit-bearing category (E, r,
and 9 is the set of its indexing categories.

DEFINITION. If D is a double category and if (f and O’ are 0--structures
in the first category Do of 1-morphisms of D , a D -wise o--morphism from

O to O’ is defined as a 0--structure 7- in Dl such that

E X A M P L E . If B is a category and D B the double category of its commu-

tative squares, the D B -wise or-morphisms are identified with or-morphisms
in B (by identifying a functor to 8 B with a natural transformation to B ).

PROPOSITION 12. 1 f D is a double category and if the functors

preserve projective limits indexed by elements of g, then the D -wise o-

morphisms define a sub-eategory of T( D, E).

A. Let T be a D -wise o- -morphism from O to O’ and T’ a D -wise
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o--morph-ism from 0 , to qb " They have a composite T" = K2 [T’, T ] in

T ( D, 2), which is a D -wise transformation from 4 to 4J ". Let y Era

cone with basis f : 1 -5i; the cone T"y = K 2 [T’, T] y is the image by
K2 of the cone y’ , with basis [T’ f, Tf]: 1 --1 D2* D2)1 such that

Since 7Y and T’ y are limit-cones in D 1 , the cone y’ is a limit-cone in

the category ( D2 * D2 )1 , which is the pullback of (a2, 132) ; its image by
K2 , which is 1/ is a limit-cone in D 1 . Hence II is a o- -structure in

D1 , i. e. a D -wise a- -morphism from O to 1;".

We consider now the case where D is the double category of up-

squares of a 2 -category C .

D E F I N I T I O N . Let C be a 2 -category, O and O’ two cr-siructures in Co 
A C -lax o- -morphism from O to O’ is defined as a Q ( C ) -wise o- -morphism
7 from O to 4J’ such that T f y) be a commutative square for any morphism
y of I, if f : I -&#x3E; E is the basis of a cone y E r .

P R O P O S IT I O N 13 . 1 f C is 2 -category and i f Cl admits pro jective limits

indexed by elements of J and preserved by the insertion into C2 , then the

C-lax o- -morphisms de f ine a sub-category o f T ( Q ( C ) , E ) .

. Let 7 and 7’ be C -lax cr-morphisms from O to O’ and from O’
to O" , and 7" their composite in T ( Q ( C ), E). If f : I -&#x3E; E is the basis

of a cone y E r’ , since 7f( y) and 7’ f ( y) are commutative squares, so is

7" f( y) =T’ f(y)DD T (y) for each y in I,

Co admitting projective I-limits preserved by the insertion into C2 , the
functor from I to DD C1o restriction of Tf admits a proj ective limit which

is also a projective limit of Tf (Prop. 5); hence the limit-cone 7’Y takes
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its values in 8 B Co1, as well as T’ y. The composite

is a commutative square, so that T" y takes its values in B C1o and, con-

sidered as a cone in BCo , it is a limit-cone (limits in B Co = ( C!)2 be-
ing computed pointwise). Hence (Proposition 5) T" y is a limit-cone in the

category Q (C) B. This proves that ’r" is a Q( C)-wise o- -morphism, i. e.

a C -lax o- -morph i sm from O to 1;". V

5. L ax doubl e f unctors.

We apply here the preceding results to the sketch o-F (EF , rF=)
of categories.

DEFINITION. Let A and B be double categories, 4JA and OB the cor-
responding categories in F. A 31-lax o-F-morphism from 1; A. to OB is

called a lax double functor from A to B .

The lax double functors from A to B are exactly the 3-wise trans-
formations (where 2 is always the double category of quintets) ’r such

that T (03BC) be a commutative square for 03BC E { a ,B, v , v’ , v , v’}. In-
deed, these conditions imply that

are pullbacks in B F (and therefore in 2), B since pullbacks in B F =F2
are computed pointwise and OA and OB are o- F-structures.

It follows from Proposition 13 that the lax double functors between
small double categories define a sub-category of T (2, EF) .

Let A and B be double categories, OA and OB the associated

categories in F; we denote by  o&#x3E;&#x3E; the laws of A’ and B1 , by  o &#x3E;&#x3E; those

of A2 and B2 , by a, b, i , k and a’, b’ , i’ , k’ respectively the images of

a, (3, L , K by 4A and OB -
PROPOSITION 14. The lax double functors from A to B are in one-to-
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one correspondence with the 4-tuples ( go , g, t, t’ ), where

1° g : A1 -&#x3E; Bl and go : A2o -&#x3E; B2o are functors such that

and

This implies the existence of a functor g’ :

2° t : i’go -&#x3E;gi and t’ : k’ g’ -gk are natural trans formations.
3° The following coherence axioms are satisfied:

6. Let ? be a lax double functor from A to B . We take for g and for

go the functors T( 2 ) and T( 1 ) , for t and’ t’ the natural transformations

arising in the quintets T (t ) and T ( K ). Condition 1 is satisfied, T (a ) and

T (B ) being commutative squares. The two coherence axioms are respecti-

vely deduced by pointwise computation from the axioms

2o If ( go , g, t, t’ ) is given, we construct as follows a lax double func-

tor T:

T (a) and T (B) are&#x3E;&#x3E; the commutative squares
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and g’ is their canonical ullback in BY (and also in 9-B),
and

As EF is generated&#x3E;&#x3E; by a, B, t , K , the other quintets T (k ), for N in

EF, are then deduced as composites or factors relative to the pullbacks:

(in BF). The axioms ( u ) and (a) imply that we have so defined a functor

T:EF-&#x3E;2B. V 
REMARKS. 1° Let A and B be 2-categories. The 4-tuples considered in

Proposition 14 are then the morphisms of bicategories from the bicategory
A to B defined by B6nabou [B2] (called pseudo-functors in [G1]); as
a natural transformation toward the discrete category A2 is an identity, any
2-wise cry-morphism from CPA to OB is a double functors.

20 By a process of laxification&#x3E;&#x3E; similar to that leading from 2 -cate-

gories to bicategories and from 2 -functors to morphisms of bicategories,
Moreau [M] defines lax double functors between dicategories, i. e. cate-

gories equipped with a second law which is unitary and associative «up to

isomorphismsf&#x3E;&#x3E;, which reduce for double categories to those considered here;

he generalizes Proposition 14 to the case where A and B are dicategories.

3° The cry-morphisms are identical to the cry-morphisms (see Part

C - 0), where o-F is the sketch (EF, rF) in which the pullbacks are

But M-lax o-F-morphisms are only those lax double functors T correspon-

ding to 4 -tuples ( go , g , t , t’ ) such that t is an identity (since the factors

T’(ja) and T-(jB) must be commutative squares); they are said unitary.
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Let A and B be double categories. We denote by

the fibrations corresponding to OA and OB. With the notations of [E1] ,
a morphism of K ( A ) is a triple m = ( z, 03BC, s ) , where u : w -&#x3E;w’ is a mor-

phism of sij , where s is an object of 4J A (ú) ) and

Identifying OA (w ) to a sub-category of K ( A ) and the cartesian&#x3E;&#x3E; morph-
ism (s’, 03BC, s) to (03BC, s), we get m = z.(03BC, s) in K ( A ) .

PROPOSITION 15. There is a bijection from the set of lax double functors

from A to B onto the set o f functors h : K ( A ) - K ( B) such that:

for each cartesian morphism ( 03BC, s ) , where u E {a , f3, v , v’ , v, v’]

A. This bijection is a restriction of the bijection K’ (considered after

Proposition 9) from the set of 9-wise transformations from OA to OB onto

the set of functors from K ( A ) to K ( B ) commuting with the f ibrations to

. Indeed K’ maps ’t- onto the functor h whose restriction to OA (w) is
T (w) for each object ú) of EF and such that

if t03BC is the natural transformation arising in the quintet T( fL ).. » Hence, h
satisfies the condition (l) iff t is an identity (i. e. iff T (fL ) is a commu-
tative square) for

This proposition reduces the study of lax double functors to that

of ordinary functors.
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