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CATEGORIES OF SKETCHED STRUCTURES

by Andrée BASTIANI and Charles EHRESMANN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XIII - 2

INTRODUCTION. 

In the last decade algebraic structures have been defined on the ob-

jects of a category V : 

1° A multiplication on an obj ect e of V is a morphism k from a pro-
duct e X e to e ; monoids on e , groups on e , ... are obtained if further

axioms are imposed on k by way of commuting diagrams ( [Go] , [EHI ).

(The product may also be replaced by a «tensor product », but this point
of view will not be considered here.)

20 The theory of fibre spaces and local structures led to p -structured

categories (such as topological categories, differentiable categories, or-

dered categories, double categories) [E6] relative to a faithful functor p
from V to the category of mappings ( * ), and more generally to categories
in V (or category-objects in V).

Algebraic theories of Lawvere [Lw] (see also [B] ) give an axio-
matic way to define universal algebras; but they do not cover structures

defined by partial laws, such as categories. However, all these structures

may be defined by « sketches ». Other examples of sketched structures are:

categories equipped with a partial or a total choice of limits [Br], «dis-

cretely structured) categories [Bu] , adjoint functors [L2] , and also «less

algebraic) structures, such as topologies [Br] .

More precisely, let cr be a cone-bearing category, i. e. a category

(or even a neocategory) Z, equipped with a set of cones. A cr -structure in
V is [E3] a functor from 2 to V , applying the distinguished cones on

(*) A category will be considered as the category of its morphisms and not, as usu-
ally, as the category of its obj ects.
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limit-cones; a o--morphism in V is a natural transformation between cr-

structures in V . We denote by VO- the category of cr-morphisms in V .

There are many cone-bearing categories o-’ such that Vcr is equi-
valent to Vcr ; among them, we associate « universally » to 0-:

- a limit-bearing category 0- ( i. e. the distinguished cones are limit-

cones),
- a presketch b ( i. e. a functor is at most the base of one distingui-

shed cone),
- a prototype 7T (i. e. a presketch which is a limit-bearing category),

and, if 9 is a set of categories containing the indexing-category of each

distinguished cone of cr,
- a loose j-type T’ ( i. e. a limit-bearing category in which each func-

tor indexed by an element of 9 is the base of at least one distinguished
cone); for a universal algebra, 7’ « is » its algebraic theory;

- a 4 -type ’r ( i. e. a loose 9 -type which is a presketch).
Moreover:

- o-, cr, 7T and T are defined up to an isomorphism,
- T’ is defined up to an equivalence,
- if cr is a sketch ( i. e. if it is injectively immersed in 7T), then 7T and

cr are isomorphic, while T and ’r’ are equivalent.
The existence of 7T and 7 was proved in [E4] and [E5] under

the stronger assumption that o- were a presketch; this was necessary, the

proof using the existence theorem for free structures whose hypotheses are

not satisfied in the case of general cone-bearing categories. But subse-

quent works, in particular [Bu] and the (yet unpublished) paper of Lair on

tensor products of sketches [L] , showed that cone-bearing categories are
often more convenient, and so they convinced us of the importance of im-

mersing them in « universal) loose types.
We achieve this here by giving an explicite construction (by trans-

finite induction) of cr, 7T, T and T’ . These constructions are suggested
by the explicite construction of the free I-projective completion of a cate-
gory in [E] . When applied to a prototype, the constructions of T and r’

generalize theorems of [E] on completions of categories.
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These results are proved in Part I in the case where the distingui-
shed cones are projective, in Part II when there are both projective and

inductive distinguished cones. They may also be expressed as adjonctions
between the category S" of morphisms between cone-bearing categories,
and some of its full subcategories. In fact, S" is the category of 1-mor-

phisms of a representable and corepresentable 2 -category, and these ad-

jonctions extend into 2 -adjonctions.

Part III is devoted to the problem:

If 0- is a projective limit-bearing category on 5i and if V is under-

(P) lying a symmetric monoidal closed category 0, does Va- admit a

symmetric monoidal closed structure ?

We solve this problem in the case where 0- is « cartesian », i.e. where the

category Mcr of o--morphisms in the category ? of maps is cartesian closed
(Proposition 20 is a characterisation of such a 0-). More precisely, if 0- is

cartesian and if V admits «enoughs limits, then Vcr is underlying a sym-
metric monoidal closed category as soon as either the tensor product of

0 commutes with the projective limits considered on o-, or the insertion

functor from Va- to V E admits a left adjoint.
To prove this, we consider the symmetric monoidal closed category

0 defined by Day (Example 5 - 3 [D]) and we show that Va- is closed for

the closure functor (or Hom internal functor) of OE. The result is then de-

duced from a Proposition giving conditions under which a subcategory of

a symmetric monoidal closed category admits such a structure (these con-

ditions seem apparently slightly weaker than those we have just seen in a

recent paper by Day [D1]). Notice that we use only a partial result of [D] ;
his general result is used in [FL] to get solutions of (P) under another

kind of conditions (see Remark 2, page 82).

As an application, we deduce a symmetric monoidal closed struc-

ture on the category F(V) of functors in V (when a- is the prototype of

categories), as was announced in [BE] . We finally show that the closure
functor E on F(V) may also be constructed by a direct method (whose
idea is to define the analogue of the double category of quartets&#x3E;&#x3E; gene-
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ralizing the method used in a particular case in [BE]), which requires that
V has only pullbacks and kernels (and not even finite sums, which have

to be used in the first construction).

Sketched structures may be generalized in different ways: one of

them (proposed two years ago by the first of the authors in a lecture) is to

replace the cone-bearing categories by cone-bearing double categories ( 2-

theories of [Du] and [Gl] are examples of them). Another way consists

in substituting cylinders&#x3E;&#x3E; to the cones, as is done in a just appeared pa-

per by Freyd and Kelly [FK].

We use throughout the terminology of [E1], but we have tried to

take lighter notations, nearer to those used in most papers on categorical

Algebra. We stay in the frame of the Zermelo-Fraenkel set theory, with the

supplementary axiom of universes: Any set belongs to a universe.
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I. PROJECTIVE LIMIT-BEARING CATEGORIES

1. Neocategories and neofunctors.

Firstly, we recall the definition of a neocategory (or «graphe mul-

tiplicatifs [E1]). Graphs and also categories appear as «extremes examples
of neocategories.

A neocategory 2 is a couple formed by a set, denoted by Z, and
a partial law of composition&#x3E;&#x3E; K on 2 satisfying the following axioms:

10 K is a mapping from a subset of ExE (denoted by E*E and cal-
led the set o f composable coupl es) into E ; instead of K ( y, x), we write

y. x ( or y o x , or yx, ...) and we call y. x the composite of ( y, x).

20 There exists a graph (E, /3 , a ) (i. e. a and /3 are retractions

from 5i onto a subset of E, denoted by Eo), such that:

a) For each element x of 2 , the composites x. a(x) and B(x).x
are defined, and we have:

b) If the composite y . x is defined, then:

From the condition 2, it follows that the graph (2:, f3 , a ) is uni-

quely defined; moreover the set Eo of its vertices (called objects of Z) is

the set of unit elements (i. e. identities) of 2 . We say that a (x) is the

source of x , and that B(x) is the target of x . The elements of 2 are cal-
led morphisms of Z. We write

or in

instead of: x is a morphism of Z, with source e and target e’ . If e and

e’ are two objects of Z, the set of morphisms f: e - e’ in 2 will be de-

noted by e’ . Z. e or by 2: ( e’ , e ) (and not Z(e, e’) as usually ).

E X A M P L E S. 1° A graph (Z, B, a) may be identified with the neocategory
5i admitting 2 as its set of morphism s and in which the only composites are
x . a.(x) and B(x).x, for every element x of E.
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2° A category is a neocategory in which all the couples ( y, x ) where

a ( y ) = /3 ( x ) are composable (so that E*E: is the pullback of (a,/3)),
the law of composition being furthermore associative.

Let 5: and E’ be two neocategories. A neofunctor O from 5: to-

ward L’ is a triple (Z’ , c , Z ), where 0 is a mapping from 5i into Z’
such that 0 ( e ) E Z’0 for each e E Zo and that:

If y . x is defined in 2, then 0( y ) . 0( x ) is defined in 2’ , and

We say also that 0 : Z -&#x3E; I’ is a neofunctor; we write 0 (x ) instead of

0 ( x ) and qbo denotes the restriction 0o : Zo -&#x3E; Z’o of 0.

If 0 : Z -&#x3E; Z’ and 0’ : Z’ -&#x3E; Z" are two neofunctors, we denote

by 0’ . 0, or by 0 ¢, the neofunctor from to Z" assigning

to in

Neofunctors between graphs reduce to morphisms between graphs
(in the usual meaning [E1] ) and neofunctors between categories are ordi-

nary functors. 

Let Z and Z’ be neocategories. If 4 and Y are two neofunctors

from 2 to Z’ , a natural transformation T from 0 to Y is defined as a triple

( Y , To , 0 ), where ’T’o is a mapping associating to each object e of I a

morphism To ( e ) : 0 ( e ) -&#x3E; Y ( e ) of 2’ (also denoted by T( e)), such

that the composites Y ( x ). T( e ) and T( e). 0 (x) be defined and that

for each x : e - e’ in Z. We say also that ’r: if - Y is a natural trans-

formation (defined by To ).

EXAMPLES. 1° If u is an object of 2’, the constant mapping assigning
u to each morphism x in 2.: defines a neofunctor u ^: Z -&#x3E; 2’. If z : u -u’

is a morphism in Z’ , we denote by z^ the natural transformation (said cons-
tant on z ) from u ^ to u’^ such th at z ^( e ) = z f or e ach e E Z0.

20 A natural transformation from a constant neofunctor, i. e. a natural

transformation g : u ^ -&#x3E; Y , is called a projective cone in 5:’, indexed by
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Z, with base Y :Z -&#x3E; Z’ and vertex u . Similarly, a natural transformation

y’ : 0 -&#x3E; u ’ is called an inductive cone.

30 Let T: (t -&#x3E; Y be a natural transformation with qb : 5i - 5i’ . If

0’ : Z’ -&#x3E; 2u is a neofunctor, the mapping 0 ’To defines a natural transfor-
mation denoted by 0’ T : 0’ 0 - 0’ 1./J; if T is a projective (resp. inductive)

cone, 0’ T is also one. If 0" : 2’ - 2.: is a neofunctor, the mapping To 0"o
defines the natural transformation T0" : 0 0" -&#x3E; Y 0" .

Let 5i be a neocategory and Z’ a category. If

and

are natural transformations, the mapping -roll : Zo -&#x3E; Z’ such that

for each

defines a natural transformation T" : 0 -&#x3E; Y’ , denoted by ’r’ DD T. (This

is not true if Z’ is only a neocategory.) With this law of composition,
the set of natural transformations between neofunctors from 5i to Z’ be-

comes a category, denoted by N(Z’, Z) or by Z’ Z .
EXAMPLES. 10 Let z : u’ -u be a morphism of Z’. If y : u^ -&#x3E; Y is a

projective cone in 2’ , with vertex u , we denote by y z the projective
cone y DDz ^: u’^ -&#x3E; qj. If y’ : ¢ -&#x3E; u’^ is an inductive cone, we define z y’
as the inductive cone z^ DD y’ .

20 Suppose that 5i is the category 2 , with only two objets 0 and 1,

and one morphism a = ( 0, 1 ) from 0 to 1 . A functor ¢ : 2 - 5i’ may be

identified with the morphism ¢ ( a) of the category Z’ ; a natural transfor-
mation ’r: ct - 0’ may be identified with the quartet (commutative squa-

re) (0’ ( a ), T( 1 ) , T( 0 ), 0 ( a ) ) . Then the category ¿’ 2 reduces to the lon-

gitudinal category of quartets of Z’ (often called category of pairs), deno-

ted by DD Z’. By assigning ( y’, x’, x, y ) to the quartet ( x’, y’, y, x ) ,
we define an isomorphism from ao 2’ onto a category HZ’ , called the

lateral category o f quartets o f Z’ . The pair oo 2’, H Z’) is a double ca-

tegory [E6], written DZ’.

A projective cone y : u^ -&#x3E; 0 in the category 2:’ is called a pro-

jective limit-cone ( « limite projective naturalisée) in [E]) if, for any pro-
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jective cone y’ : u’^ -&#x3E; q6 in 5i admitting the same base than y , there exists

one and only one z : u’ -u in Z’ such that y z = y’ ; in that case, z will

be called the factor o f y’ through y , and denoted by limy y’ . Dually,
we define the notion of an inductive limit-cone.

If 9 is a set of categories, we say that the category 2 admits 9-projec-
tive (resp. J-inductive) limits if each functor 0: K -&#x3E; Z , where K E J , ad-

mits a projective (resp. an inductive) limit.

REMARK. Since we will essentially be concerned with projective cones

or projective limits, we call them briefly cones or limits; but the dual no-

tions will always be called explicitly inductive cone or inductive limit.

2. Cone-bearing neocategories.

By definition, a cone-bearing neocategory a is a pair (Z, T) , whe-
re 2 is a neocategory and r’ a set of (projective) cones in Z, said the

distinguished cones of o-, indexed by categories. The set of the indexing-

categories of all the distinguished cones is called the set of indexing-ca-

tegories o f a .

If CI’ is another cone-bearing neocategory (Z’, T’), a morphism
from a to cr’ is defined as a triple where Y : Z - 2:’ is
a neofunctor such that:

for any

We say also that Eb : CI - o-’ is a morphism defined by Y; we write:

if if

or, more generally, if y is a cone in 2:. Notice that the set of indexing-

categories of or must then be included in that of o-’.

If Y’ = (o-", y’, o-’) is also a morphism from o’’ to the cone-bea-

ring neoc ategory o-", then Y’ Y defines a morphism, denoted by

If qj is an isomorphism and if its inverse defines also a morphism from a’

to a , we say that Y is an isomorphism.
Two cone-bearing neocategories o- and o’ are said equivalent if
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there exist morphisms

and

such that Y Y’ and Y’ Y; be equivalent to identities (which implies the

equivalence of the underlying neocategories).

REMARK. Cone-bearing neocategories are sketches in the sense of [E3]

(but the notions of a sketch considered in [E4] and [E5] are more strict,

and here the word sketch will have the same meaning as in [E5]). They are
used in [Bul under the name «esquisse multiforme ». Lair needs them in

[L] to define tensor products of sketches. Morphisms between cone-bea-

ring neocategories are called homomorphisms between sketches in [E3] .

D E F IN IT IO N . A (proj ective) cone-bearing neoc ategory (Z, T) is called a

limit-bearing category if I is a category and if each distinguished cone

y E F is a (projective) limit-cone.

E X AM P L ES. 1° Let Z be a category and J a set of categories. Let F be

the set of all limit-cones in 5i with indexing-categories in J. Then (Z, F )
is a limit-bearing category, called the full J-limit bearing category on Z.

2° Let o- be a limit-bearing category ( 2 , F ) and K a category. Con-

sider the category of natural transformations ZK ; for each object i of K ,

denote by rri : 2K - 5i the functor associating T(i) to the natural trans-

formation ’r . Let r be the set of cone s y in 2.: K such th at:

for an y

Then (ZK , T) is a limit-bearing category [E3] , denoted by 0,K. In par-
ticular, if K is the category 2 and if 22 is identified with the longitudi-
nal category iu 2 of quartets of 5i (see example 2-1), we get the longi tu-
dinal limit-bearing category of quartets of a, denoted by DD o- . The cano-

nical isomorphism from rn 2: to H Z defines an isomorphism from DD o-, to

the lateral limit-bearing category of quartets of a, written H o- .

Let h be a universe [AB] ; an element of U is called a 11 -set (or
a small set). We denote by:

- F’o (resp. j= 0 ) the set of neocategories (resp. of categories) 2 whose
sets of morphisms are 11 -sets.
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- S"o the set of cone-bearing neocategories (2,?), where T and Z

are U-sets as well as K , for each indexing-category K of CT = ( 2 , r ) .
- 91 the set of limit-bearing categories belonging to 80
- m the category of all mappings between li-sets (following our conven-

tion to name a category according to its morphisms).
- F’ the category of all neofunctors qb : 2 - 2:’ , where 5i and 2:’ be-

long to F’o (this category is denoted by N’ in [El] ).
- Pj:, : F’ -&#x3E; M the faithful functor which assigns the map

to

and by p’ F’ : F’ -&#x3E; M the not-faithful functor associating

to

- if the full subcategory of F’ formed by the functors and by PF : F -&#x3E; ?)!

the faithful functor restriction of P5:, -
The morphisms 0 : (Z, T’) -&#x3E; (Z’ , T’) between cone-bearing neo-

categories (resp. between limit-bearing categories) belonging to 9 form a

category S" (resp. P’). Assigning 0 : Z -&#x3E; Z’ to qI we define a faithful

functor

Let pS" and pp, be the composite functors:

The following elementary proposition will be used later on.

PROPOSITION 1. S" admits j=o -projective limits and Fo -inductive limits;

qS" commutes with projective and inductive limits ; pS" commutes with pro-qS" commutes with projective and inductive limits; pS" commutes with pro-
jective limits and filtered inductive limits; P’ is closed in S" for projec-
-tive limits. (See also [E4] and [Lll .)

A. The proof is straightforward. Let F : K -&#x3E; S" be a functor, where K

is a h - s et, and write

for any

10 Let 2 be a projective limit of the functor qS" F ; then 5: is a pro-

jective limit of P S" P; denote by 77i : Z -&#x3E; 5:i the canonical proj ection and
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by r the set of cones y in Z such that
I

for any

Then (2, r) is a projective limit of F . If moreover F takes its values

in 9 ’ , we have also ( 2, T) E P’o .

20 qS"F admits [E1] an inductive limit Z’ , with canonical injections

vi : 2:i -+ Z’ . Let T’ Se the set of all cones

where i E Ko and

Then (Z’ , T’) is an inductive limit o-’ of F . If K is filtered, Z’ is [E1]
an inductive limit of pS"F . V

Let a be a cone-bearing neocategory (Z, T) and A its set of in-

dexing-c ategorie s.

D E F IN IT IO N . If o-’ is a limit-bearing category (Z’ , T’), we define a a-
structure in o-’ as a neofunctor Y : Z -&#x3E; Z’ defining a morphism Y : o- -&#x3E; a’
(we also say [E5] that Y is a realization of 0, in o-). If 2.:’ is a catego-

ry and if o- ’ is the full J -limit- bearing category on Z’ ( example I), a a-

structure in o’’ is called a a -structure in 2:’ .

The set S (o-’ , o- )o of o--structures in the limit-bearing category
o’ = (Z’ , T’ ) is the set of objects of a full subcategory of 2.:’ E denoted

by S(o-’ , o-) , and called the category o f morphisms between a-structures
in a’ , or category of o- -morph isms in or’ .

If 2:’ is a category, a a -structure in Z’ is just a neofunctor Y from
2: to Z’ such that Yy is a limit-cone, for any y E F . ’We will denote by

S(Z’, o-) , or by 2:’ a-, the full subcategory of Z’ Z whose objects are the
o- -structures in 2:’. Remark that Z’ o- admits S( o-’ , o-) as a full subcate-

gory, for any limit-bearing category o-’ on 2.:’ .

PROPOSITION 2. Let or be a cone-bearing neocategory, or’ a l imi t-bea-

ring category and Ho-’ the lateral limit-bearing category of quartets of o-’

(example 2). Then there exists a canonical bijection from the set of mor-

phisms of S(o-’ , o-) to the set S(Ho-’ , o-)o of o- -structures in B 0-’.

A. To a natural transformation T: Y -&#x3E; 0’, where Y : Z -&#x3E; 2, there
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corresponds the neofunctor T : E -&#x3E; B 2’ which assigns the quartet

to

The map’ f associating T to T is a bijection from 2:’ E to the set of neo-

functors from 2.: to HZ’ . (If we identify T with a functor from 2 to 20 E,
this bijection f is deduced from the canonical isomorphism:

The natural transformation T is a morphism between o--structures iff(*)
T is a cr -structure in Ho-’ . Therefore f induces a bijection

3. Limit-bearing category generated by a cone-bearing neocategory.

The study of the category S(o-’ , o-) of morphisms between a -struc-

tures in the limit-bearing category a’ will be much easier when the cone-

bearing neocategory o-, is itself a limit-bearing category. Hence the ques-

tion : Does there exist a limit-bearing category o- such that 8(o-’,o-) and

S(o-’, o-) are isomorphic ? The following proposition not only answers affir-

matively this question, but it gives an explicit construction of a smallest

a of this kind.

PROPOSITION 3. Let or be a cone-bearing neocategory (Z, T). There

exists a limit-bearing category or = (Z , T) and a morphism 6 : o- -&#x3E; o sa-

tisfying the following conditions:

2° If 1) is a universe such that a E S"o, then or E fPo .
3° cr is characterized, up to an isomorphism, by the universal property:

1 f o-’ is a limit-bearing category and Y : o- -&#x3E; at a morphism, then there

exists one and onl y one morphism y : o- -* o-’ such that Y’. 6 = Y.
A. By transfinite induction, we shall construct a «tower» of cone-bea-

ring neocategories o-z such that o-0 be o’ and that o-z+1 be deduced from

o-e by adding to ae «formal factors) through a distinguished cone y for

cones with the same base as ’Y. We will show that this tower ends for

(*) iff m ean s if and only if.
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some sufficiently big ordinal y , and that o- 03BC is the limit-bearing cate-

gor y 0,

10 Let us decribe the step from cr/ to o-Z +1 . Let o- Z be any cone-

bearing neocategory (Z Z, 7 ll!f ) .
a) If y E T Z and if y’ is a cone in 2e with the same base as y

we consider the pair (y , y’ ) (called the «formal factors» of y’ through

y ). Let D be the set of all these pairs; let U be the sum (« disjoint union»)

of ZZ and Q , with injections

and

We define a graph ( U, B, a ) in the following way:
- If x : u - u’ in 2 e , then

- If I where and then

Let L be the free category generated by (U, B, a); it is [E1] the « cate-

gory of paths) on (U, B, a) and U is identified with paths of length 1 .
Consider the smallest equivalence relation r on L such that:

if x’ , x is defined in Zz, 
and

if , if I and if

for any

where K is the indexing-c ategory of y .

There exists a quasi-quotient category [E1] of L by r , denoted

by ZZ ; since r identifies no objects, 2e is in fact the quotient category
of L by the smallest equivalence relation compatible with the law of com-

position of L and containing r . Let p: L - I ç be the canonical func-

tor corresponding to r . The map Lo v defines a neofunctor 6Z Z Z -&#x3E; ZZ
by the first condition imposed on r . Denote by TZ the set of all the cones

y , where y E r ç . Then (ZZ, TZ) is a cone-bearing neocategory Q
and 6 Z defines a morphism 6Z : o-Z -&#x3E; o-Z. Moreover, for each formal
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factor ( y , y’ ) c f2, we have

where

b) Suppose that a’ is a limit-bearing category (Z’ , r ’) and that Y
is a neofunctor defining a morphism Y : o-Z -&#x3E; a’ . Then there exists a uni-

que morphism

such that

Indeed, if (y,y’)E Q, where y : u ^ -&#x3E; 0, the cone Y y is a limit-cone

with the same base as the cone 1.j; y’; so there exists a unique y such

that (Y y) y = Y y’ , namely the factor of Y y’ through Y y. By assigning
y to the formal factor (’Y, y’) , we get a mapping f : Q -&#x3E; Z’. The unique

map f ’ : U -&#x3E; 2 ’ such that

and

defines a neofunctor from (U, f3, a ) (considered as a neocategory) to

This neofunctor extends into a functor F’ : L -&#x3E; Z’ . Since Cr’ is a limit-

bearing category, this F’ is compatible with r, so that there exists one and

only one functor

such that

This functor defines the unique morphism

such that

c) If 11 is a universe such that oy E S"o, then K , for each indexing-

category K- of o- Z and TZ are li -sets; it results that the set TK of cones
in 2.:ç indexed by K is also a 11 -set, as well as the set UJI-K I whereS KE’j
is the set of indexing-categories of a ç. From this we deduce succesively

that U, L and are It-sets, and that o-Z belongs to So’
20 We are now ready to construct the tower. Let 9 be the set of indexing-

categories of o-. If KEg, we denote by K the cardinal of K . (An ordinal

number Z is considered as the set of ordinals e such that 6  S ; the car-

dinal of a set E is identified with the initial ordinal equipotent to E ). Let

k be the ordinal which is the upper bound of the ordinals K , where KEg,
and let f1 be the least regular ordinal satisfying X f1 .
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Accepting the « axiom of universes », there exists a universe U to

which belongs T’ U Z U U K , i. e. such that a is an object of the cate-

gory S" corresponding to h . As K is alt-set, K belongs to 11 and, 9 be-

ing equipotent to a subset of the It-set T’ , the ordinal X belongs also to

’U, as well as 03BC. (Here we use the fact that the upper bound of the ordi-

nals which belong to a universe if is an inaccessible ordinal [AB]).
For each ordinal Z , let Z&#x3E; be the category defining the canoni-

cal order on f ; its set of objects is 6. (In particular, 2 =  2 &#x3E;) . By trans-

finite induction, we define a functor oi 03BC + 1 &#x3E; -&#x3E; §":
- First, w ( 0 ) = o-.
- Let S be an ordin a, 1 5 J.1 ; suppose we have defined a functor

such th at

and write

for any

We extend wS into a functor (A) S + 1 :  S + 1 &#x3E; -&#x3E; S" in the following way:
If S is a limit ordinal, w S+1 (S) is the canonical inductive limit,

denoted by o- S = ( ZS, TS), of the functor a; (which exi sts, Proposition 1)
and a) S + 1 (S , Z) : o- Z 

-&#x3E; 

o- S is the canonical injection, for any Z  S . We’
recall (Proposition 1 and [E1]) that Z S is the canonical inductive limit of

the functor pS"w S from S&#x3E; to m and that each composite y’ . y in ZS is

of the form w S + 1 (S, Z) (y’.y), for some Z  S , where y’ . y is a compo-

site in ZZ, and y = w S + 1 (S Z)(y), Y’ = w S+1 (S, Z) (y’).
If S is the successor of Z (that is : S = Z+1), then ú) S+1 ( S) will

be the cone-bearing neocategory (Z: S, TZ) associated to o- S in Part 1,

and w S+ 1 (Z + 1, Z ) : o-Z -&#x3E; o-S will be the morphism 6Z con structed in

Part I. The induction hypothesis o- E S"o implies o-S E S"o (Part 1).
- Finally, we put

By construction, or is an obj ect of S" .

30 a) By transfinite induction, we prove that Z is a category. Indeed,

suppose that S is an ordinal, S  03BC, and that ZZ is a category for any
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6 such that 0 # Z  S . If S = Z + 1 , then ZS = ZZ is a category, by

construction. If t i s a limit ordinal, ZS is the inductive limit of the func-

tor qS"wS ; since  S&#x3E; is a filtered category and since the 2: ç , for Z  S
and 0 # Z , are categories, the neocategory Z S is a category. Hence Z03BC
is a category 2. 

b) We are going to prove, by transfinite induction, that each cone y
of r is of the form 8 y , for some y E r’ . Indeed, we have r 0 = T. Let
t be an ordinal, S  03BC, and suppose that, for any Z  S , we have:

- If S is a limit ordinal, Proposition 1 asserts that

and the induction hypothesis implies that

for some

hence

It follows that:

- If S = Z + 1, by Part I-a, wehave:

wh ere

since y Z = w(Z, 0 ) y , for some y E I-’ . Therefore, in this case also,

c) The category 2 is determined independently of the universe U. For,
let t be another universe such that

and let S" be the category of morphisms between cone-bearing neocatego-
ries corresponding to 11. If F: C - S" and F ; C - A" are two functors ta-
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king the same values (i. e. F ( z ) = F( z ) for any z E C ), then they have

the same canonical inductive limit, according to the construction of this

limit as a quotient of a sum. So the inductive limit o- S of for a limit
ordinal S, does not depend on the choice of U. In particular, a is in-

dependent of 11.

d) 8 satisfies the condition 3 of the Proposition. Indeed, let be
a morphism (o-’ , Y , o- ) from a to a limit-bearing category o-’ = ( Z’ , T’) .
Part c above shows that we may suppose o’’ E S"o . Using the universal pro-
perty of the inductive limit ct of wS and that of 6 Z : o- Z -&#x3E; o- Z = o-Z+1
(Part 1 - b ), we construct by tran sfinite induction a sequence of morphisms

Y S : o-S -&#x3E; o-’, where S  03BC, such that Y0 = Y and

for any

Then Y03BC i s the uni que morphi sm Y’ : o- - a’ s ati sf ying Y’.6 = Y.
(Notice that, up to now, we have not used the fact that J..1. is a given

regular ordinal.)

4° To complete the proof, we have yet to show that CT is a limit-bea-

ring category, i. e. that each cone y E T is a limit-cone. This will imply
that the tower ends with a (this means that o- 03BC + 1 is isomorphic to ol

Suppose that y is a distinguished cone of 0,; then there exists some cone

y E T such that y = 6 y (Part 3 - b ). Denote by ¢ the base of y , by K

its indexing-category, by y Z the cone w (Z , 0 ) y E TZ , for each Z  03BC.
Let y’ : u’ " -i 0 be a cone in Z with the same base as y .

a) We are going to prove the existence of an ordinal Z  03BC and of a

cone y’ with the same base as the distinguished cone y ç such that we

have Z) y’. Then the «formal factors (yZ, y’) determine s a

morphism z of ZZ = Z Z + 1 satisfying the equalities:

which gives, after transformation by 

where

Indeed, since Z is the inductive limit of pS"w 03BC : 03BC&#x3E; -&#x3E; M, for each

obj ect i of K there exi sts an ordinal Z i  f1 and a xi E Z Zi such that
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Let k : i -&#x3E; i’ be a morphism in K . By construction of the inductive li-

mit a, the equality -y’( i’) = 6 0 ( k ) . y’ ( i ) means that there exists an
ordin al Z k such th at Çi  ek  f1, ei,  ek  f1 and

03BC being a regular ordinal such that

and for any

the upper bound 6 of the 6k, where k E K , verifies Z  03BC. For this or-

dinal 6 and for each k : i - i’ in K , we get from ( I) :

This shows that the map

such that

defines a cone "1’ in 2e with the same base as y Z = ce ( Z, O)y. Moreover
since, for each obj ect i of K , we have:

b) We have found a z such that

namely

Suppose that z’ is another morphism of Z satisfying yz’ = y ; we show
that z = z’ . Indeed, there exists an ordinal S  03BC and a morphism z’ in

Z S with w (03BC , S ) ( z ’ ) = z’ . We may suppose f  S. For each i E Ko , the

equality y’ ( i ) = y ( i ) . z’ , which may also be written

implies the existence of an ordinal Si such that S  Si  J.1 and

If I ’ is the upper bound of the Si , for i E Ko , we get as above S’  / 03BC and
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where ;;’ = ú) (S’ , S ) ( z’ ) . From the equality

it follows, by applying z

where z = w (S’ , E + 1 ) ( z ) . Hence and z are two morphism s such that

y S’ z = y S’ z’ , which implies

by construction of ZS’ + 1 = Z S’ (Part 1). Finally, applying w (03BC S’ + 1
we get z = z’ . V

D E F IN IT ION. With the hypotheses of Proposition 3, we call cr the limit.

bearing category generated by a .

COROLLARY 1. The insertion functor 1: P’ -&#x3E; S" admits a (left) adjoint.
’ admits Fo -inductive limits, and there exist quasi-quotient limit-bearing

categories.

A. The first statement results from Proposition 3.

If F : C -&#x3E; P’ is a functor, where C is a U-set, then I F : C - §" ad-

mits an inductive limit 0, (Proposition 1), and the limit-bearing category

a- generated by 0- is an inductive limit of F .

Let 0-’ be a cone-bearing neocategory (Z’ , T’) and p an equivalence
relation on Z’ . There exists a quasi-quotient cone-bearing neocategory or

of 0-’ by p (i. e. a qu asi-quotient pS"-structure [E1]); namely, o- = (Z, T) ,
where 5i is the neocategory quotient of Z’ by the smallest compatible equi-
valence relation on 2.:’ containing p and where

if

is the neofunctor corresponding to p. Hence the limit-bearing category (7

generated by o- is the quasi-quotient limit-bearing category of a’ by p .

If cr’ E P’o, then 0: is a quasi-quotient pP’ -structure of 0’1 by p. V

COROLLARY 2. L et a be a cone-bearing neocategory and o- the l im it-bea-

ring category generated by o-. I f al is a limit-bearing category, then the
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categories S( o-’ , o-) and S( o-’ , o- ) are isomorphic. In particular, ¿’ a- and

Z’ o- are isomorphic, for every category Z’.

A. Let H o-’ be the lateral limit-bearing category of quartets of cr’

(Example 2-2). We have constructed, in Proposition 2, bijections

and

By Proposition 3, there is a canonical bijection

assigning Y’ 6 to the a -structure Y’ , where 6 (o- , 6, o-) is the ca-

nonical morphism. The bijection g-1 d h defines the isomorphism from the

category S(o-’ , o-) to S(o-’ , o-) assigning T8 to ’r. V

REMARKS. 1° a is «universal) relative to all o’ -structures, and not only
to those which are « small enough ). The universe U is used as a tool in

in the proof of Proposition 3, and it does not appear in the conclusion (as

we have shown in Part 3- c ). We could have omitted It by considering «the

category of morphisms between all cone-bearing neocategories) (i. e. by ad-

mitting a theory of sets and classes).

2° In [L] , Corollary 1 of Proposition 3 is deduced from the general
existence theorem for free structures of [E] , the proof being identical with

the argument used in [E5] to prove the existence of the prototype of or. Abo-

ve, we have not only shown the existence of o-, but we have also given an

explicit construction of it, from which many properties of o’ may be deduced.

This construction is suggested by the explicit construction of a free §-pro-
jective completion of a category (Theorem 7 of [E]); the main difference,

apart from adding «no objects », lies in the fact that the hypotheses of The-

orem 7 of [E] (after adding «all formal cones») implied the injectivity of

the functor 6 Z : Z Z -&#x3E; Z Z+1 , for any ordinal (which was difficult to prove
and required a detailed description of the morphisms of ZZ+1 as «reduced
paths »); so, the category ZS , for a limit ordinal S, was just the union of
the categories ZZ , for Z  S. Thi s is no more true here, and we have to
define ZS, for a limit ordinal S, as the inductive limit of the functor

qS"wS : S&#x3E; &#x3E; - 5=’ .
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30 Proposition 3 may also be expressed as follows: Let cr be a cone-

bearing neocategory. There exists a limit-bearing category o- = (Z, T) ,

characterized up to an isomorphism by the property:

If U is a universe such that a E S"o, then a is a free structure gene-
rated by o- relative to the insertion functor from P’ to S" .

Intuitively, if cr = (Z , r ), the set Y belongs to the smallest universe

to which belongs Z , while cr solves the universal problem for any uni-

verse to which belongs 2 .

4. Loose types.

Let cr be a cone-bearing neocategory and 0-’ a limit-bearing catego-

ry. We have seen that there exist limit-bearing categories o- such that the

category S(o-’, or) is isomorphic with S(o-’,o-). In fact, we have cons-

tructed a cr which is minimal. Now the question arises: If any functor is

the base of a distinguished cone in or’ , does there exist a or with the sa-

me property? We are going to solve this problem relative to a given set of

categories.

We denote by 9 a set of categories.
D E F IN IT ION . If a- is a cone-bearing neocategory (resp. a limit-bearing

category) whose set of indexing-categories go- is a subset of J, we also

say that cr is a J-cone-bearing neocategory (resp. a J-limit-bearing cate-

gory).

In particular, cr is a Jo- -cone-bearing neocategory.
D E F IN IT IO N . Let cr be a limit-bearing category (Z, T) and 9 its set of

indexing-categories. We say that is a loose type (or, more precisely,
a loose it-type) if each functor q6 : K - Z, where K E J, is the base of at

least one distinguished limit-cone y E h .

This condition implies that 2 admits J-projective limits.

If It is a universe such that J is a It-set, we denote by S"g (resp.
, resp. LJ) the full subcategory of S" whose obj ects are the J-cone-

bearing neocategories (resp. the J-limit-bearing categories, resp. the loose
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J-types) o- belonging to S"o.

P R O P O SIT ION 4. L et a- be a J-cone-bearing neocategory (Z, T). There
exists a loose 9-type o- (unique up to an equivalence) and a morphism 6 =
(o-, 6, o’) satisfying the following condition where 0-’ is a loose J’-type for
a set if of categories containing J :

1 ° If Y : o- o-’ is a morphism, there exist morphisms Y : o- -&#x3E; o-’
such that Y’ . 6 = Y , and two such morphisms are equivalent.

20 I f Y’ = (o-’, Y’, u) and Y" = ( o-’, y;1I, o-) are morphisms and i f
T: Y ’ 6 -&#x3E; Y" 8 is a natural trans formation (resp. an equivalence), there

exists one and only one natural transformation (resp. equival ence)

such that

Moreover, if U is a universe such that 9 is a U-set and CT E S"o, then we

have o- E LJo.
A. We will again construct, by transfinite induction, a tower of cone-

bearing- neocategories which stops («up to an equivalence ») at the first re-

gular ordinal greater than all the ordinals K , where K E 9. The method
is similar to that used in Proposition 3, but, in the « non-limit steps from

o-e to o- Z + 1, we will add also «formal cones» for each neofunctor indexed

by an element of 9.

1° Let us first describe this non-limit step. We suppose that o-e is a

cone-bearing neocategory (ZZ, TZ) .
a) Let us consider:

- the set Q of pairs (y , y’ ) (or «formal factors))), where y E T Z and

y’ is a cone in Ee with the same base as y ,
- the set M of neofunctors 0 : K - 2:ç, where K E 9, which are not

the base of any distinguished cone y E T Z,
- the set M’ of pairs (i , 0 ) , where O E M and where i is an object

of the indexing-category of O,
- the sum («disjoint unions) U of 2e 7 f2 , M and M’ , with injections:

We describe a graph ( U, B, a ) in the following way:
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- if , th en

with and

- w(O) is a vertex, for each 0 6 M,
- if ( i, cp) E M’ , we have:

We denote by L the free category generated by (U, B, a) and by r the

equivalence relation on L satisfying both the condition (P) of Part 1, Pro-

position 3 and the condition

There exists a quotient category Ee of L by the smallest equivalence re-
lation compatible on L and containing r . Let p: L -&#x3E; ZZ be the canoni-

cal functor corresponding to r ; the map 12 v defines a neofunctor 8e from

2.: ç to 3!e - 
If cP: K - ZZ belongs to M , let y0 be the cone in ZZ with ver-

tex p( w ( O )) and base 6Z O such that
for any

(it will be called «the formal cone associated to O»). Put:

Then (ZZ, TZ) is a cone-bearing (neo)category a ç and 6Z defines a

morphism 8ç: o- Z -&#x3E; o-Z.
When U is a universe such that J is a It-set and 0- ç 6§o’ , the set 

of neofunctors O : K -&#x3E; ZZ, where K E J , is a ’U -set, as well as the set of
cones in ZZ indexed by elements of J. It follows that. M , AT and Dare

U-sets. Hence a-ç E S"o.

b) Let g’ be a set of categories containing J and cr’ a loose g’ -type
If is a morphism, there exists at least one mor-
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phism Y’ : o- Z -&#x3E; cr’ such that Vj’ - 6 Z = lp -
If Y’ exists and if O E M, then 4j’ will transfer the formal cone

y O into a distinguished cone y’ of o-’ admitting Y O as base; since there

may be several cones of this kind, y;’ will be defined «up to a choice)

of cones y’ .
Hence, for each element O: K - ZZ of M, we choose a distin-

guished cone nO : e O -&#x3E; 1./; cP of T’ and we define mappings

by

by

by where y is the unique morphism such

that (Y y ) y = Yy’ .

As in Part 1, Proposition 3, there exists a unique functor F’ : L - 2:’ «ex-

tending) Y, f, g , g’ , and a unique functor:

qj’: 5!e - 2’ such that Y’ p = F’ .

Moreover the equivalence relation r is such that Y’ is a o- Z-structure
in or’ . By construction, ’f! defines the unique morphism Y’ : o- Z -&#x3E; or’ sa-

tisfying the conditions:

Y’ 6Z = Y and Y’ y O = n O for any cp E M.

c) If o-’ is a loose type, if Y’ = (o-’, Y’, o- Z) and Y" = (o-’, Y", o-Z)c) I f o-’ IS a loo s e t ype, if Y’ = 0-, Y’, o-4, ) and Y" = a- Y" , o-Z )
are morphisms and if T: Y’ 6 Z -&#x3E; Y" 6Z is a natural transformation, there

exists a unique natural transformation T’ : Y’ -&#x3E; Y" such that T ’ 6 Z = T.
Indeed, let us consider the lateral limit-bearing category H o-’ =

(H Z’, T) of quartets of 0-’ . We identify the obj ects of B 2:’ with the mor-

phisms of 2’. Since Y-’ is a loose type, H o-’ is also one. Proposition 2

canonically associates to ’T a neofunctor T : ZZ -&#x3E; H Z’ defining a mor-

phism T : o- Z -&#x3E; Ho-’. If 0: K belongs to M , the cones Y’ y O and

Y" y O are two distinguished limit-cones with bases Y’ 6Z O and Y" 6 Z O. Sin-
ce T O : Y’ 6 Z O -&#x3E; Y" 6 Z O is a natural transformation, there exists a uni-

que morphism xO in Z’ such that:

By assigning to an object i of K the quartet
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we define a cone ’174,: xk 
" - TO in E2’ which belongs to T (by the defi-

nition of H o-’). P art b asserts the existence of a unique morphism

T’ = ( 8 0-’ , T’, o- Z) such that T’ 6 Z = T and T’ y O = n O
for any O E M .

Let T’: 8 -+ 6’ be the natural transformation to which T’ is associated;

the equality T’ 8!f = T implies

A

and, for each O E M, from T’ yO = n O, we deduce

0 and 0’ define morphisms from o-e to o-’ . Hence, using Part b, we get

and

Since T’ and xo are determined in a unique way, T’ is the unique natu-
ral transformation from tj;’ to tj;1I satisfying T’ 6Z = T. Moreover, if ’r is

an equivalence, x O is invertible for every 0 E M , so that T’ is also an

equivalence.

20 a) Let X be the upper bound of the ordinals K , where K E J , and

J.L the least regular ordinal greater than X. We can choose a universe ’l1,
such th at

then o- E e S"o. As in Part 2, Proposition 3, we see that J.L is a It-set and

we define by transfinite induction a functor ú):  03BC + 1 &#x3E;-&#x3E; S" (whose va-
lues are independent of If) satisfying the following conditions, where

for any

- w (0) = o-;
- for each limit ordinal S, with S  03BC , we take for o- S the canonical

inductive limit of the functor wS :  S &#x3E; -&#x3E; S" restriction of w, and for

ú) (S , Z ) the injection from o-e to o- S , if Z  S .
- If S = Z + 1 , where Z  03BC, then 0-, is the cone-bearing (neo)cate-
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gory o-Z associqted to o-Z in Par t 1 and w (S , Z ) is the morphism 6Z.
We write

when

b) Let o-’ be a loose J’-type, where J’ contains J, and §: o- -&#x3E; o-’

a morphism. Using Part 1-b, we construct by transfinite induction mor-

phisms Tt : o-t - cr’ for each S  03BC , such that

if

In particular Y03BC, is a morphism Y’: Cr - or for which Y’. 6 = Y.
Now, let Y’ and 1./;" be two o--structures in o-’ and ’T’: Y’ 6 -&#x3E; Y" 8

a natural transformation. Suppose that S is an ordinal, S  03BC , and that,
for each Z  S , there exists a natural transformation

such that for any

- If S = Z + 1 , P art 1- c shows the exi stence and the unicity of a na-

tural transformation TS : Y’w 03BC S -&#x3E; Y" w 03BCS such that TSwSZ = TZ, and so

- If S is a limit ordinal and if Te : ZZ -&#x3E; B2’ is the neofunctor asso-

ciated to -re , for any Z  S , there exists a unique neofunctor

such that for an y

since It is the inductive limit of wS . Hence the natural transformation

corresponding to TS is the unique nat,ural transformation

satisfying for any

- By transfinite induction, we so define a natural transformation T03BC, 
which is the unique natural transformation

such that

3° We have yet to prove that o- = (Z , T) is a loose 9 -type.
a) We see that 2 is a category as in Part 3- a Proposition 3. Suppose

that y is a distinguished cone of F. By a method similar to that used in
Part 4 - a , Proposition 3, we get an ordinal S  03BC and a cone y E T S such
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that y = w03BCSy , and we still deduce similarly that y is a limit-cone.

b) Let O’: K - 2 be a functor, where K E J . There exists a cone

y E r with base O .
Indeed, for each k E K , there exists an ordinal Çk  03BC and a mor-

phism xk of Lg k such that O’( k ) = w (03BC, Zk) ( xk ) . If the composite
k’ . k is defined in K , the equality O’ ( k’ ) . O’ ( k ) = O’ ( k’ . k ) implies

the existence of an ordinal Zk’,k greater than Zk , Zk, and Sk’ . k such
that Zk’, k  03BC and (1):

We denote by f the ordinal upper bound of the family of the Zk’, k, where
( k’, k ) belongs to the set K* K of composable couples. Since K  03BC, the

cardinal of K * K is strictly less than the regular ordinal 03BC, so that

Z  03BC. Put

for an y

if the composite k’. k is defined, we get

(by applying w (f , Zk’. k) to ( 1 )); so, we have defined a functor
such that

By construction of L ç + 1 = ZZ (Part 1), there exists a distinguished cone

yO E T Z +1 with base wZ+1 ZO. Hence w 03BC Z + 1 y O is a cone of T,

admitting w 03BC Z O = O’ as its base. 0

D E F IN IT ION. If o- = (Z , T ) is a loose type satisfying the conditions of

Proposition 4, we call o- a loose J-type generated by o- (or of o-) and

Y a loose J-projective completion of or .

COROLLARY 1. Let a- be a J-cone-bearing neocategory and a a loose

J-type generated by o- . 1 f o-’ is a loose J’ -type, where J’ contains 9 , the

categories S( 0-’ , o- ) and S( o-’ , o- ) are equivalent.

A. Let be the canonical morphism. We have a func-

tor F : S(o-’ , o-) -&#x3E; S(o-’ , o-) assigning T’ 8 to the natural transformation

T’ between a-structures in o-’ . This functor defines an . equivalence. In-
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deed, for each o- -structure Y in 0-’, Proposition 4 asserts the existence

of a-structures y;’ in o-’ for which T’ 6 = Y ; choosing one of them, we
denote it by G ( Y ) . If T : Y -&#x3E; e is an element of S(o-’ , o-) , there exists
a unique natural transformation

such that

(Proposition 4). From the unicity of G(T), it results that we define in this

way a functor G : S ( s’ , d ) - S ( d’ ,d). The equalities
for any T,

mean that F G is an identity.
On the other hand, for each a-structure tjJ’ in d’, we have

so that there exists a unique equivalence n(w’): w’ -&#x3E; G F (w’) for which

n (w’ )d is an identity. If T’ w’-&#x3E; e’ is an element of S(d’,d), we get

since

and

Hence we have defined an equivalence n: IdS(d’ , d) -&#x3E;G F. ’7

COROLLARY 2. L et o’ be a J-cone-bearing neocategory (E,T) and 2’

a category admitting J-projective limits. Then the category E’ d is equiva-
lent to the ull subcategory of E’ E whose objects are the functors from E
to E’ which commute with J-projective limits, E denoting a loose J-projec-
tive completion of o-.

A. Let us denote by o- = (E, T) a loose I -type generated by a- and

let o-’ be the full J-limit-bearing category on E’; since o-’ is a loose type,

the categories

and

are equivalent, by Corollary 1. If w’ :E -&#x3E; I’ is a functor, it commutes with
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J-projective limits iff each functor from K E J to E is the base of a limit-

cone y,, where w’ y is a limit-cone. Hence w’ is a d-structure in 2:’ iff

q i commutes with J-projective limits. This means that 2’ " is the full sub-
category of E’ E whose objects are functors commuting with J-projective
limits. 0 

COROLLARY 3. A loose 9-projective completion 5! o f a J-cone-bearing
neocategory cr is characterized up to an equivalence by the conditions:

1 ° !admits, 9 -projective limits.
2° There exists a a-structure 8 in E satisfying the universal pro-

perty : 1 f E’ is a category admitting J-projective limits and if tp is a 0--

structure in E’ , there exists a functor w’, unique up to an equivalence,
such that w’ commutes with J-projective limits and W’ d = qj -

A. Condition 2 results from Proposition 4, applied to the full J-limit-

bearing category o-’ on 2:’. V

REMARKS. 1° The construction of the loose J-type or = (E , T), gene-

rated, by d= (Y,T ), is yet suggested by the explicit construction of a

free J-projective completion of a category (Theorem 7 [E] , in which 5i is

a category and T is void); the difference is that we do not require that

there exists only one cone of T with a given base (this problem will be

studied in Paragraph 5). Notice that the general Proposition 4 and Corol-

laries cannot be immediatly deduced from the general existence theorem of

free structures. Indeed, if or’ is a loose 9 -type (E’, r’) and if A is a sub-

set of E’, there does not exist a «smallest» loose J-type extracted from
’ and cont aining A .

2° The loose J-type o- is defined up to an equivalence, and not up to

an isomorphism (as the limit-bearing category generated by o-); so, Propo-
sition 4 does not imply the existence of an adjoint for the insertion func-
tor from lJ to sng. In fact, we have proved the following result:

Let LJ~ (resp. S"J~) be the quotient category of LJ (resp. of S"J) by
the equivalence (generated by): w and "f;’ are equivalent iff there exists an

equivalence between the neofunctors defining them. This category has the
same objects as 29 (resp. as S"J). From Proposition 4, it results:
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COROLLARY 4. Let o- be a J-cone-bearing neocategory; there exists a

loose J-type d satisf ying the following condition:

If U is a universe such that J is a ’l1-set and o- E S"o, then o- i s a

free structure generated by o- relative to the insertion functor LJ -&#x3E;S"J~.

5. Presketches. Prototypes. Sketches.

These are special cone-bearing neocategories and limit-bearing

categories. We are going to show that a cone-bearing neocategory gene-
rates a presketch and a prototype 7T. If d is mapped injectively into 7T

(we then call o- a sketch), the limit-bearing category generated by cr is

itself a prototype, isomorphic with tt.

D E F IN IT IO N. A cone-bearing neocategory (E,T) is called a (projective)
presketch if there exists at most one distinguished cone y E T with base

a given neofunctor d. A limit-bearing category which is a presketch is

called a prototype.

The cone-bearing neocategory (L, r) is a presketch iff r’ is the

image of a mapping assigning to some neofunctors d: K - 5i a cone in

E with base d. So, the notion of a presketch is equivalent to that used

in [E5]. In particular, as in [E5] a prototype «is » a category equipped with

a partial choice of projective limit-cones.

’11 being a universe, we denote by §’ (resp. by 9 ) the full subca-

tegory of §" whose objects are the presketches (resp. the prototypes) be-

longing to §" . It results from [E51] that §’ and P are closed in S" for pro-

jective limits.

PROPOSITION 5. L et 0- be a cone-bearing neocategory (E,T). There

exists a presketch d= (E, T), determined up to an isomorphism by the

following condition:

I f 11 is a universe such that a- E S"o, then o- is a free structure gene-
rated by a- relative to the insertion functor from S’ to S"

A. We shall construct or by transfinite induction, the idea being at

each step to « identify) distinguished cones with the same base.
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10 Let d E be a cone-bearing neocategory (E E , TE ) . We consider
the smallest equivalence relation r on E E such that:

(P") {y(i)~yf (i), for each i E Ko , if "1 and y’ are two cones of T E
with the same base, indexed by K .

There exists a canonical quasi-quotient neocategory E E of E E by r (it

is [El] the quotient neocategory of 2:ç by the smallest equivalence rela-

tion containing r and compatible with the law of composition and with the

maps source and target of E E ). Let d E : 2.:ç --t E E be the canonical neo-

functor and put:

Then d E is a cone-bearing neocategory and d E defines a morphism d E
from d E to d E .

If ’U is a universe, the quotient of a It-set is a 11-set, so that if
is a It-set when E E is a It-set; if 1,f is also a It-set, I- e is alt-set.

If or’ is a presketch (E’ ,T’ ) and if w = (d’, w, d) is a morphism,

qj is compatible with r , and the unique neofunctor

such that

defines the unique morphism

such that

20 Let J..L be the smallest regular ordinal such that K u for each

indexing-category of cr . As in Proposition 3, by transfinite induction we

construct a functor w : u &#x3E; -&#x3E;S" satisfying the following properties, where

for any

- w ( E ) , for any limit-ordinal E  u, is the canonical inductive limit

of the functor w E: E &#x3E; -&#x3E; S", restriction of w, and ú) ae - d E is

the canonical injection;
- d E, for an ordinal E=E+1  u, is the cone-bearing neocategory oe

associated to d E in Part I, and w is the morphism d E of Part 1.

We denote by d=(E,T) the neocategory cr thus obtained, and

by =( d,d ,d ) the morphism w(u ,0) . As in Part 3-b, Proposition
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3, we see that

for any

Let a’ be a presketch and w: 0- - o-’ a morphism; the universal

properties of the inductive limit and of Se (Part 1) permit to define by trans-
finite induction a unique sequence of morphisms w E : d E -&#x3E; d’ , E  u,
such that wo=w and

for

3° It remains to prove that o- is a presketch. We suppose that y and

y’ are two distinguished cones of T with the same base. Then there exist

cones y : u^ -&#x3E;d and y’: u’^-&#x3E;d’ of r’ such that

and

Let K be the indexing-category of y (and of y’). For each morphism k
of K , the equality d d(k) =d d’ ( k) implies the existence of an ordinal

k such th at Çk u and

If E is the ordinal upper bound of the family of the E k, for k E K , we have
E  J-L (since I-L is regular and K  J-L ). By construction the cones

and

are distinguished cones of d E with the same base. Hence they are identi-

fied in d E+1, i. e. we get

Applying w (u, E +1) , it follows y =y’. V

COROLLARY 1. The insertion functor from S’ to Sit admits a left adjoint.

D E F IN IT ION. A presketch 0- satisfying Proposition 5 is called a presketch

generated by o-.

COROLLARY 2. Let o- be a cone-bearing neocategory, 0- a presketch ge-
nerated by o- and o-’ a prototype. Then the category S( 0-’ , d) is isomor-

phic with S(d’,d) .

A . The Proof is similar to that of Corollary 2, Proposition 3. V
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REMARK. In [F] Proposition 5 is proved more generally for V -categories,
where V is a monoidal closed category.

P R O P O S IT IO N 6. L et o- be a cone-bearing neocategory (E, T). There

exists a prototype a- defined up to an isomorphism by the condition:

1 f U is a universe such that d E S"o, then d is a free structure gene-
rated by o- relative to the insertion functor /rom T to S". 

A. The prototype d will be constructed by transfinite induction, as

end of a  tower &#x3E;&#x3E;. The method is similar to that used in Proposition 3, the

only difference being that the non-limit step has to be slightly modified in

the following way:
Let us suppose that O"ç . is a cone-bearing neocategory (E E, T E ) .

As in Part 1, Proposition 3, we consider the set f2 of the «formal factors »

(y , y’), where y E T E and y’ is a cone in E E with the same base as

y , the same graph (U, B, a), on the sum U of E E and and the free
category L generated by it. Let r’ be the smallest equivalence relation on

L satisfying the condition (P) formed by the condition (P) of Part 1, Pro-

position 3 and the condition

for any object i of the indexing-category of y
when and

(deduced from the condition (P") of Proposition 5), where v : E E-&#x3E; U still

denotes the canonical injection.
Then 3:,f is the canonical quasi-quotient category of L by r’ (we

recall [E1] that E E is defined as follows: let L’ be the quotient neocategory
of L by the smallest compatible equivalence relation containing r’ and the

free category L" generated by the graph underlying L’ ; the category E E
is the quotient category of L" by the smallest compatible equivalence re-

lation such that

is defined in L’ ).

if 5:e is a U-set, E E is also one.

Apart from this modification (i.e. r’ satisfies both (P) and (vP"),
not only(P)), the construction of o- and of the canonical morphism d from
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o- to cr is essentially the same as done in Proposition 3; the proof of Pro-

position 3 may also be copied to prove that each morphism § from o- to

a prototype is of the form w’ .d. Finally an argument similar to that of

Proposition 3 shows that the distinguished cones of 0- are limit-cones,
and we prove as in Part 3, Proposition 5, that two distinguished cones ad-

mitting the same base are identical. Hence c- is a prototype. V

COROLLARY 1. The insertion functors from P to S" and from P to S’
admit (left) adjoints. The categories S’ and P admit --inductive limits.

1 f (E,T) is a cone-bearing neocategory, there exists a quasi-quotient pro-

totype of it, by an equivalence relation on 2 .

A. The proof is similar to that of Corollary 1, Proposition 3. V

DEFINITION. A prototype d satisfying Proposition 6 will be called a pro-

totype generated by 0-. If the canonical morphism d : d -&#x3E; d is injective,
we say that o- is a sketch.

COROLLARY 2. If 0- is a cone-bearing neocategory and a- a prototyp e ge-
nerated by o-, for every prototype o-’ , the category S (d’, d) is i somor-

phic with S(d’, o-) .

A. The proof is similar to that of Corollary 2, Proposition 3. V

REMARK. The existence of an adjoint for the insertion functor from ? to

S’ is deduced in [E5] from the general existence theorem for free structures.

This fact is generalized in [F] for V -c ategories, where V is a monoidal

closed category. Sketches are introduced in [E5]. Naturally each prototype
is also a sketch, and every sketch 0- generates a prototype of which 0- is

a sub sketch.

P R O P O SIT IO N 7. Let o- be a sketch, o- a l imit-bearing category genera-

ted by cr and tt a prototype generated by o-. Then u and 7T are isomorphic.

6 . Let us denote by

and

the canonical morphisms. Since Tr is a fortiori a limit-bearing category, it

exists a unique morphism
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such that

(this is valid even is o- is not a sketch). If o- is also a prototype, then

there exists a unique morphism

such that

and, from the equalities

and

we deduce that d is an isomorphism, whose inverse is II’ . Hence Propo-
sition 7 will be proved if we show that d = (E,T) is a prototype, when

cr is a sketch.

Indeed, let y and y’ be two distinguished cones of T with the

same base d’. Since

(Proposition 3), there exist cones y and of h such that y = 8 y and

y’=dy’. The cones II y and II y’ are distinguished cones of the pro-

totype Tr ; as n = II’ .d, we get

and

so that Fly and IIy’ have the same base II’d’. Hence IIy =IIy’ . The
injectivity of I1 implies y = y’ and, therefore, y = y’ . V

We denote by S the full subcategory of S’ whose objects are the

sketches a E So" -

PROPOSITION 8. Let o- be a cone-bearing neocategory (E,T) and let

II= (tt ,II, d) be the canonical morphism from o- to a prototype 77 = (E, r )

generated by d- The presketch d image of o- by I1 is a sketch, cbarac-

terized up to an isomorphism by the condition:

If Tj is a universe such that o- E S"o , then d is a free structure gene.
rated by o- relative to the insertion functor from § to §’.

A. We denote by I the sub-neocategory of E defined by the set II(E )
and by n:E-&#x3E;E the insertion neofunctor. Let II’:E-&#x3E;E be the neofunc-

tor restriction of Il and F the set of cones II’y, where y E T. Then,
o- is a cone-bearing neocategory, II’ defines a morphism Tl’
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from o- to 0’ and 7J defines a morphism n : d-&#x3E;tt . Moreover n. II’ = II.

2° We are going to prove thai 7T is also a prototype generated by 0 ,

the canonical morphism being n; it will follow that d is a sketch 7J being

injective. Indeed, let d’ be a prototype and §": d - cr’ a morphism. By
definition of 7T, there exists a unique morphism

such that

this equality may also be written w’ .n .II( = x".II 
’ 

and, II’ being sur-

jective, it follows that -;P’ is also the unique morphism satisfying

30 Let d’ be a sketch (E’, T’) and w: d-&#x3E; d’ a morph ism. It re-

mains to exhibit a morphism

such th at

the surjectivity of II’ will imply the unicity of such a morphism. Indeed,
the canonical morphism II" = ( d’, II" , d’ ) from or’ to a prototype (E’, T’)

generated by or is injective, o-’ being a sketch. As 7T is a prototype ge-

nerated by cr , there exists a unique morphism w’ (d’,l’,n) such that

As 9’ T maps E= II’(E) into II" (E’) and as II" is injective, there is

a unique neofunctor

such that

it satisfies w"II’=w, since II" is injective and
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If we have for some from the equality

we deduce II"w"’y E T’, the neofunctor II"w defining a morphism. Now,
11" is injective and T’ is formed by the cones II" y’, where y’ 6rB Hen-
ce, qj 111 = E r’ ’ . 

So, w"’ defines the unique morphism

such that

COROLLARY 1. The insertion functors from 8 to S’ and S" admit l e f t ad-

joints ; 8 admits j= 0 -inductive limits. 0

DEFINITION. A ske tch 8 satisfying the condition of Proposition 8 is cal-

led a sketch generated by o-.

COROLLARY 2. Let o- be a cone-bearing neocategory, d a sketch gen e-
rated by o- and 0-’ a prototype. The categories S(d’, o-) and S(o-’ d)
are isomorphic.

A. The proofs of these corollaries are similar to that of Corollaries

1 and 2 , Proposition 3. V

6. Types.

A loose type which is a presketch will be called a type. We are go-

ing to show that each J-cone-bearing neocategory 0- generates a J-type T
which is defined up to an isomorphism (and not only up to an equivalence,
as the loose 9-type 0-- generated by 0-). Moreover ’r is equivalent to a,

when o- is a sketch.

We still denote by I a given set of categories.
DEFINITION. A J-cone-bearing neocategory which is a presketch (resp. a

sketch, or a prototype) will be called a J-presketch (resp. a J-sketch or a
g -prototype). A loose 9 -type which is a presketch is called a 9 -type.

A 9-type d=(E,T) may be identified with a category 5i admit-
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ting J-projective limits, equipped with a choice of a limit-cone with base
0 for each functor 0: K -&#x3E;E, where K E J (i. e. with a 9 -type as defined
in [E5] ). If J is a U-set, denote by S’J, S6, Tg and 54 the full .sub-ca-

tegories of S"g whose objects are respectively the J-presketches, the 9-

sketches, the J-prototypes and the 9-types belonging to S"o .

P RO P O SITION 9. Let d be a J-cone-bearing neocategory. There exists a

9 -type o- characterized up to an isomorphism by the condition:

If U is a universe such that 9 is a ’lJ -set and o- E S"o, then d is a

free structure generated by o- relative to the insertion functor FJ C-&#x3E; 
A. The construction of o- is obtained by modifying the construction

of the loose J-type generated by 0- (Proposition 4) in a way similar to that
used to deduce in Proposition 6 the construction of the prototype from Pro-

position 3. In fact, we have only to modify the transition from o-e to d E + 1
by also identifying two distinguished cones with the same base. More pre-

cisely :
10 If O-e is a cone-bearing neocategory (E E , T E ) , we define as in

Part 1, Proposition 4, the graph (U, B, a) and the free category L it ge-

nerates. But now we denote by E E the canonical quasi-quotient category
of L by the equivalence relation satisfying not only conditions (P) and (P’)
as in Proposition 4, but also the condition (vP") of Proposition 6. After

this modification,

and

are defined formally as in Part 1, Proposition 4.

Now, let J’ be a set of categories containing J , let 0-’ be a 9 -type

and § = (d’,w,d E) be a morphism. For each functor d: K -&#x3E;E E, where
K E J, there exists one and only one cone n d E T’ with. base d. Hence,
by the method of P art 1- b , Proposition 4, we get one and only one morphism

such that

(while in Proposition 4 the morphism §’ was only defined up to an equiva-
lence, the choice of n d being not unique).

20 By transfinite induction, exactly as in Proposition 4:
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a) we cons truc t a functor w:  fl +1 -&#x3E; S" , wh ere fl is yet the least

regul ar ordin al such th at K  u, for e ach K E J;
b) putting d = w ( fl) and 8 = w (u, 0), we prove that a is a loose

J-type;
c) using th e last statement of Part 1, we show th at, if w :d-&#x3E;d’ is

a morphism from a- to a g’ -type, where J’ contains J, there exists a uni-
qu e morphism

satisfying

Finally, we see that o- is also a presketch (and therefore a J-type),
by an argument similar to that used in Part 3, Proposition 5. ’7

COROLLARY 1. Let 9 be a U-set; the insertion functors f rom FJ to S’J,
to 8"’,’ to sg, to 9’ and to LJ admit left adjoints. FJ admits Fo-induc-
tive limits. There exists a quasi-quotient 9-type of a J-cone-bearing neo-
category (E, T) by an equivalence relation on I .

The proof is similar to that of Corollary 1, Proposition 3. V

DEFINITION. A J-type d- satisfying the condition of Proposition 8 is cal-

led a 9 -type generated by o- . 

COROLLARY 2. Let o- be a J-cone-bearing neocategory and cT a 4-type
generated’ by o-. 1 f o-’ is J’-type, where g’ contains I , the categories

S(d’,d) and S(d’,d) are isomorphic.
A. The proof is similar to that of Corollary 2, Proposition 3. V

REMARKS. In [E5J Proposition 9 is deduced from the existence theorem

for free structures. The explicit construction of or given here generalizes
that of Theorem 7 [E] (where h is supposed void). Proposition 9 may be

extended for V -categories (see [F]) .

PROPOSITION 10. Let o- be a g-presketch (2.:, r),

and

the canonical morphisms from o- to a loose 9 -type o-- = (E, F ) and to a g.
type T generated by o-. Then the following conditions are equivalent:
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1 ° cr is a sketch;

2o d is injective;
3° 0 is injective.

1 f they are satisfied, T and o- are equivalent.

A. 10 Notice that, to prove the injectivity of d, it is sufficient to

exhibit an inj ective 0- - structure 1./; in a loose it-type o-’ ; indeed, there

exists then a neofunctor w’ defining a morphism from a to o-’ which sa-

tisfies w’d =w ; this equality implies the injectivity of 8 when w is

injective. In particular, if 0 is injective, 8 is also injective, for 6 is

a 0--structure in the (loose) J-type ’r. Similarly, 6 will be injective as

soon as there exists an injective 0--structure in a J-type.
We denote by tt a prototype (E,T ’ ) generated by o- and by n

the canonical morphism from 0- to 7T.

a) If e is injective, then a- is a sketch. Indeed, since ’r is also a

prototype, there exists a unique morphism

n’: tt -&#x3E;t such that II’ ·II=0.

e being injective, 11 is injective, i. e. 0- is a sketch.

b) Supposing o- is a sketch, we now prove the injectivity of d. Let

I be a universe to which belong K , for any K E J , and u’ . E. u , for any

pair (u", u) of objects of 3 . The category 11 of maps between U-sets

admits then J-projective limits, so that the category E’ = mE* of natural
transformations, where E* is the dual of E, admits 9--projective limits.
Hence the full it-limit-bearing category cr’ on I’ is a loose it-type. If we
consider the Yoneda immersion Y from 2 to E’, it is injective and it com-

mutes with proj ective limits; so Y defines a morphism Y : 7T - 0-’ . A for-

tiori, Y.II: 0- -+ U’ is a morphism from 0- to a loose J -type and, 11 being
injective by definition of a sketch, Y.II is injective. From the initial re-

mark, we deduce that 8 is also injective.

20 We have yet to show that, if 8 is injective, 6 is injective and T

is equivalent to o’ . For this, we will use the following result:

a) Let cr’ be a loose J-type (E’, T’ ) and w an injective u-structure
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in d’. Then there exists a subset r" o f r’ such that (E", T") is a g.

typ e d" and that w defines also a morphism w: d -&#x3E;d" .
Indeed, let 0’ : K - 2’ be a functor, where KEg. Since w is in-

jective, there is at most one neofunctor

such that

and, 0- being a presketch, there exists at most one distinguished cone

y E T with 0 as its base; hence there is at most one cone y E T’ such

that d’ is the base of wy E T’. If such a cone y exists, we denote the

cone 1./; y by yd’; otherwise, we choose one cone y’ E T’ with 0’ as its

base, and we denote it by yd’. The set r’" of cones

where and

is a subset of T’ , and (E’, r") is a 9-type 0-"; by construction, qj de-

fines a morphi sm from 0- to cr" .

b) We suppose now that 8 is inj ective. P art a applied tao 8: o’ -’ o’

asserts the existence of ait-type 0" such that T’ is a subset

of T and that 8 defines a morphism d’: 0- - o-’ . By definition of the

type generated by d, there exists a unique morphism 8" = (d’ , d" , t) sa-

tisfying d" . 0 = d’. This implies the injectivity of 0.

The identity of Y defines a morphism 7j: o- d-&#x3E; and we have:

n.d’=d. There exists a morphism 0’= (T, 0’ , a) such thai 0’ · d= e.
From the equalities

it follows (Proposition 4, condition 2) that the functor d" 0’ which defines

the morphism 77 d". 0’:d-&#x3E; a- is equivalent to the identity of E. On the

other hand, the equalities
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imply that the functor 0’ 8" defining the morphism 0’ . n. 8/1: t-&#x3E; t is an

identity. Hence, 0’ defines an equivalence from d to T. 0

COROLLARY. Let a- be a 9-prototype (E,T). The canonical morphism
0 : d-&#x3E;t from o- to a 9-type T = (E, T) generated by cr is injective.
Moreover, f is a loose J-projective completion of d. ’7

REMARK. The injectivity of 6 was shown in Theorem 6 of [E] .

li. MIXED LIMIT-BEARING CATEGORIES

7. Mixed sketches and mixed types.

Up to now, we have always considered neocategories equipped with

projective cones. Dually, we could deduce similar results for neocatego-

ries 5i equipped with a set of inductive cones (since this is equivalent
with equipping the dual of 2 with projective cones). In this paragraph, we

will generalize all the preceding results to the case where the neocategory
is equipped with both projective cones and inductive cones.

We denote by J and J two sets of categories.
DEFINITIONS. 10 A mixed cone-bearing neocategory (resp. category) is

a triple (E, T, i7 ) , where 2 is a neocategory (resp. a category), r a set

of projective cones in 5i indexed by categories and V a set of inductive

cones in 2 indexed by categories. We say more precisely that (E,T ,V)
is a (g J)-cone-bearing neocategory if the indexing-category of each y
of r’ belongs to J and th at of each K 6V belongs to J.

20 If moreover 5i is a category, if T is a set of projective limit-cones

and 0 a set of inductive limit-cones, then (2’, r , 0 ) is called a mixed

l imit-bearing category (or, more precisely, a (J,J) -l imi t-bearing category).
3° A (J,J)-limit-bearing category (2:, T, Bl) is called a (mixed) loose

(J,J) -type if each functor d: K-&#x3E;E, where K E J (resp. where K E J) is

the base of at least one cone y E F (resp. of at least one cone K E V ).

4° A (J , J ) -cone-bearing neoc ategory (E ,T-V) is c alled a ( mixed)
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(J, J)-presketch if two different cones of r (resp. of V) have different

bases. A mixed presketch which is a mixed limit-bearing category (resp.
a loose (J, J)-type) is called a mixed prototype (resp. a (J,J)-type).

50 A morphism between-mixed cone-bearing neocategories is a triple

(d’,w,d), where

and

are mixed cone-bearing neocategories and w: -&#x3E;E’ is a neofunctor such

th at

for any

6° Let o- be a mixed cone-bearing neocategory and d’= (2.’ , r’ , V’)
a mixed cone-bearing category. A neofunctor qj defining a morphism w from
o- to o’’ (still denoted by w: cr - d’ ) is called a 0--structure in o’’ . We

denote by S( 0-’ , o-) the full subcategory of E’ E formed by the natural trans-
formations between 0--structures in u’ .

E X A M P L E S. 1o Let E’ be a category. The full (J ,J)-limit-bearing cate-

gory on 5i’ is th e triple (E’, r’ , V’)= o-’ , where r’’ is the set of all the

projective limit-cones in 2’ indexed by a category KE J and V’ the set

of all the inductive limit-cones in 2’ indexed by a K E J. If cr is a mixed

cone-bearing neocategory, a d-structure w in o-’ is called a 0-- structure

in 5i’ , and 8( o-’ , 0-) is then denoted by S( 2’, o-) , or by E’ d.

20 Let K be a category and d = (E, T ,V ) a mixed cone-bearing ca-

tegory. We denote by uK the mixed cone-bearing category (Ek, T, i7 ) ,
where F is defined as in Example 2- 2 and V is defined dually from V .

When a- is a mixed limi t-be aring category, such is dK. If K is the cate-

gory 2 , as in Example 2 - 2, we deduce from cr2 the longitudinal mixed co-

ne - bearing category m o- of quartets of a- and the lateral mixed cone-bea-

ring category 8 d o f quartets of d ( th ey are mixed limit-bearing categories
when such is d).

P R O P O S IT IO N 11. Let u be a mixed cone-bearing neocategory and d’ a

mixed cone-bearing category. There is a canonical bijection from the set

o f morphisms o f the category S( o-’ , d) onto S( B 0-’ , 0-)0 .
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A. The proof is similar to that of Proposition 2. V

Let U be a universe. We denote by:
- Sm"o the set of mixed cone-bearing neocategories (E, T, V) such

that E, r , V are U -sets, as well as K , for any indexing category K of

a cone y of F or V .
- Sm" the category of morphisms between elements of S4 -
- 

q&#x26;" 8m" - J’ the functor associating 41 to (d’, w, o-) .
- Pm’, Sm’, ?w the full subcategories of Sm" whose objects are those

0- E Sm"o which are respectively mixed limit-bearing categories, mixed pre-
sketches and mixed prototypes.

- S"JJ, LJJ and FJJ, if 4 and J are U-sets, the full subcategories
of Sm" whose objects are those 0- E Sm"o which are respectively (J,J)-
cone-bearing neocategories, loose (J,J) -types and (J,J) -types.

- S"JJ and LJJ~ the otient categories of S"jg and 219 by the equi-
valence relation generated by:

(d’ ,w,d)~(d’, w’,d) iff there exists an equivalence -q: w-&#x3E;w’
The category S" may be identified with the full subcategory of Sm",

whose objects are those (E,T, V)E Sm"o such that V is void; similarly
P’, S and P may be identified with subcategories of Pm’, Sm’ and 5’tn.

The categories LJ and P will be identified with LJJ and FJJ correspon-
ding to the case where the set J is void.

We also obtain the analogous categories of morphisms between in-

ductive cone-bearing neocategories as subcategories of Sm" .

PROPOSITION 12. Sm." admits Fo - projective limits and Fo -inductive li-

mits ; qSm" commutes with projective limits and with inductive limits. The

categories Pm’, Sm’, Pm are closed for projective limits in Sm", as well

as FJJ, when 4 and J are it-sets.
A. The proof is similar to that of Proposition 1. The distinguished pro-

jective cones on the limit are defined as in Proposition 1, while the distin-

guished inductive cones are defined dually. V

PROPOSITION 13. L et o- be a mixed cone-bearing neocategory. There exist:
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a mixed limit-bearing category o-,
a mixed presketch tt’,
a mixed prototype n,

characterized up to an isomorphism by the condition:

1 f h is a universe such that o- belongs to Sm"o, then 0-, 7T’ and 7T

are free structures generated by o- relative to the insertion functors toward

Sm" f rom res p ecti vel y Pm’, Sm’ and Pm.

A. Let j..L be the least regular ordinal greater than K , for any cate-

gory K indexing either a cone of r’ or a cone of V. We construct o- (resp.
7T’, resp. tt) by transfinite induction, as the end of a tower of mixed cone-

bearing neocategories O-ç’ for E u, as in Proposition 3 (resp. 5 , resp.

6), the only difference being in the non-limit step which we now describe.

We suppose for this that d E is any mixed cone-bearing neocatego-
ry (E E, TE, VE).

10 In the construction of o-, we associate to o-e the mixed cone-bea-

ring neocategory d E= e T E, V E) defined as follows. We denote by:
- n the set of pairs (y , y’) (or «formal factors)), where y E T E and

y’ is a projective cone in E E with the same base as y .
- n the set of pairs (K’, K) (or «formal cofactors*), where K E 0

and K’ is an inductive cone in 2’ with the same base as K .

- U the sum of E E, n and n, with injections:
A

- (U, B, a) the graph such that:

if x : u - u’ is in 2 , . 
if (y, y’ ) E n and if y and have u

and u’ as vertices .

if (K’,K)E n and if K and K’ have u

and u’ as vertices.

- L the free category generated by (U, 8, a) and r the smallest equi-
valence relation on L satisfying the condition (Pm) obtained by adding

Condition (P), Part 1, Proposition 3, and
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if iEKo ,

if z E 2: ç and-z. K(i) = K’(i) for any i E Ko ,

where ( K’, K ) E n and K is the indexing-category of K .

- E E the quasi-quotient category of L by r and p: L - 5i, the ca-

nonical functor.

The map It v def ine s a neofunctor The triple O-e =
where

and

is a mixed cone-bearing neocategory and 8, defines a morphism

2° In the construction of 7T’ , we associate to oy the following mixed

cone-bearing neocategory Cr, : Let r be the smallest equivalence relation

on E E satisfying the condition (P" m) obtained by adding to the condition

(P") of Proposition 5 the condition:

(P" i ) K (i)~K’ (i), for any i e Ko, if K and K’ are two cones of V E.
with the same base, indexed by K .

We denote by Ye the quasi-quotient category of E E , by r and;we define the

canonical neofunctor 8e E E-&#x3E;E E and the sets T E and V E formally as in
Part 1. Then d E = (E E, T E, V E) and 8e d E -&#x3E; d E is defined by d E.

30 In order to get tt, we construct ag as in Part 1, replacing only
the condition (Pm) by the condition (Pm) deduced from the conditions (Pm)

and (P"m) (as (P) was deduced from (P) and (P") in Proposition 6).

4° To prove that C; (resp. 7T’ , resp. tt) has the properties indicated

in Proposition 13, we use the same arguments as in Proposition 3 (resp. 5,

resp. 6) for the distinguished projective cones, and dual arguments for the

distinguished inductive cones. (This is possible, since the parts of the

constructions involving inductive cones are just deduced by duality from

those involving projective cones.) V

D E F IN IT ION. With the hypotheses of Proposition 13, we call or (resp. T
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resp. Tl) a mixed limit-bearing category (resp. a mi xed presketch, resp. a

mixed prototype) generated by 0-. We say that o- is a mixed sketch if the ca-

nonical morphism from a- to 7T is injective.

We denote by Sm the full subcategory of Sm’ whose objects are

the mixed sketches 0- E Sm6 .

PROPOSITION 14. L et o- be a mixed cone-bearing neocategory. There

exists a mixed sketch o- defined up to an isomorphism by the condition:

If U is a universe such that a- E Sm"o, then 0- is a free structure ge-
nerated by o- relative to the insertion functor from Sm to Sm".

A. Let (tt, II, d) be the canonical morphism from 0- to a prototype

generated by cr and å- the mixed presketch image of o- by II. Then a proof
similar to that of Proposition 8 shows that 0=- is a sketch satisfying the

condition of Proposition 14. V

PROPOSITION 15. Let a- be a (g, J)-cone-bearing neocategory. There exist
- a loose (J,J)-type o-, de fined up to an equivalence,
- a (J,J) -type T, de fined up to an isomorphism,

satis fying the condition:

Let h be a universe such that J and g are ’lI-sets and o- E Sm"o. Then
b and T are free structures generated by o- relative to the insertion func-
tors respectively form 249 to S"~JJ and f rom FJJ to S"JJ.

A. The construction of Cr (resp. of t) is done by transfinite induction

by a method similar to that used in Proposition 4 (resp. 9 ), the only modi-

fication occuring in the non-limit step, which we now describe.

Let d E be a (J, J) -cone-bearing neocategory. We consider the sets
- E E, n, M and M’ , defined as in Part 1, Proposition 4,
- n, M and lii’ defined dually as follows:

n is the set of pairs of cones (K’ , K), where K E V E and K’ is

an inductive cone in 5i f with the sa.me base as K ,

M is the set of neofunctors qb : K - E E, where K E J, which are not
the base of any inductive cone K E V E, 
M’ is the set of pairs (d, i ) , where d E M and i e Ko .
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We denote by U the sum of these seven sets, by

the canonical injections into U . We get a graph (U, B, a) by imposing

I condition (G) of Proposition 13 and

if (i, d) E M’,
if (d, i ) E M’ 

Let L be. the free category generated by this graph and r the smallest equi-
valence relation on L satisfying the condition (Pm) of Part 1 (resp. (Pm),
of Part 3), Proposition 13, the condition (P’) of Proposition 4 and

There exists a quasi-quotient category le of L by r and, if p is

the canonical functor from L to E E, then p v defines a neofunctor d E
from Ze to E E.

Let qb: K - If be a functor. If d E M, we define a projective cone

yd: p(w(d))A -&#x3E;dEd, the « formal projective cone associated to cP», by

for any

we define an inductive cone Kd: d E d -&#x3E; p(w (d)), the formal
inductive cone associated to d&#x3E;&#x3E;, by:

for any

We denote by
- F ç the set of cones d Ey where y E T E, and yd where (f E M,
- V E the set of cones 8,f K where K E V E, and Kp where 0 E M!
- 

d E the mixed cone-bearing category (E E, T E, V E),
- 8e : d E-&#x3E; d E the morphism defined by 8

If w = (d’,w, d E) is a morphism from o-e to a loose (J,J) -type
d’ we can choose one (resp. to a (J,J) -type d’, there exists one unique)
distinguished projective cone n d in or’ with w d as its base, for each

d,E M, and one distinguished inductive cone n d’ with w d’ as its base,

for each 0’ E M . As in Part 1 Proposition 4, we see there is a unique mor-
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phism such that

The construction of d (resp. of ’r) is done just as in Proposition
4 (resp. 9), but with this modified definition of d E. The proof of Proposi-
tion 15 is completed similarly. V

DEFINITION. With the hypotheses of Proposition 15, we call 0- a loose

(J,J) -type generated by a and t a (J,J) -type generated by 0-. The ca-
tegory underlying o- is called a loose (J,J) -completion of o- .

The preceding Propositions admit the following corollaries:

COROLLARY 1. In the diagram

the insertion functors admit left adjoints, all the categories admit j= 0 -induc-
tive limits and the functors toward m admit quasi-quotient structures.

COROLLARY 2 . T he coroll ari es o f Propositions 3 , 4 , 5, 6 , 8 and 9 are still

valid when (projective) cone-bearing neocategories are replaced by mixed

cone-bearing neocategories.

Let 0- be a (J,J) -cone-bearing neocategory. We will denote by:
or a mixed limit-bearing category,
7 a mixed prototype,

a loose (J, J) -type,
t a (J,J)-type,

generated by o-. From Corollary 2, we deduce: 

COROLLARY 3. 1 ° 1 f d’ is a (J,J) -type, the categories
and

are isomorphic, and they are equivalent to S (u’ , -r’) -
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2° 1 f 5i’ is a category admitting g -projective l imits and g -inductive
limits, the categories L’ 0" and E’d are isomorphic, and they are equiva-
lent to the category LT.

PROPOSITION 16. L e t cr be a (J,J)-cone-bearing neocategory. T’he fol-

lowing conditions are equivalent:
1 ° c- is a mixed sketch.

2° The canonical morphism d : cr - T’ is injective.
3 ° The canonical morphism e : d -&#x3E; T is injective.

1 f they are satified, then

{ 
7T is isomorphic with or,
T is equivalent to T’ .

A. The proof is just similar to that of Propositions 7 and 10, except

that Part I- b of Proposition 10 must be modified as follows.

We suppose that 0- is a mixed sketch (E,T, V); we want to exhi-
bit an injective o--structure in a loose (J,J)-type. As in Proposition 10,

we consider the canonical morphism II = (tt, II, 0-) from o- to a prototype

tt=(E,T,V) generated by o- , a universe such that K , for any cate-

gory K belonging to I or J, and u’. E. u, for any pair ( u’, u ) of objects
A A E*of E, are U-sets, and the Yoneda immersion Y from E to But Y

does not commute with inductive limits. So we take the full subcategory E"
E*of E’=mE* whose objects are functors F: E-&#x3E;m commuting with J-pro-

jective limits.. It is known (see, for example, [J]) that 5i" admits j= 0 -pro-
jective and inductive limits. (In fact, 2" is closed for projective limits in

’ and the insertion functor from E" to 5i’ admits a left adjoint). Moreover,
there exists [Lb] a restriction

of

which commutes with proj ective limits and with J-inductive limits. It fol-
lows that the full (9, 5) -limit-bearing category on E" is a loose (J, J )-type
o’", and that Y’ defines an injective morphism Y’:tt -&#x3E;d". Hence Y’Il

is an injective 0--structure in the loose (g,g) -type d" . V

REMARK. If d is a mixed limit-bearing category, the  type part* of Propo-
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sition 15 and the injectivity of e are stated in Theorem 15 [E]. The ex-

plicit constructions of the generated loose (J,J)-type and (J,J)-type T
are yet suggested by that of Theorem 8 [E] (the construction of the type

T has also be done for V -categories [F]). Proposition 16 generalizes
Theorem 14 of [E] (which corresponds to the case T=O=V ).

D E F IN IT IO N . Let cr be a mixed (J,J) -cone-bearing neocategory. If o’’

is a mixed limit-bearing category , we say that 0- is o-’-regu-
lar if each 0- -structure in E’ is equivalent to a 0- -structure in 0-’. If 0- is

d’ -regular for each (J,J) -type o-’ , we say that a- is regular.

This definition means that the insertion functor from S( 0-’ d) to

E’d defines an equivalence between these two categories.

COROLLARY. L et d- be d (J,J) -sketch and 0-’ a mixed prototype (resp.
a (J,J)-type) (E’,T’,V’). Then cr is d’-regular iff a prototype (resp.
a (J,J) -type) d generated by a- i s o-’-regul ar.

A. We denote by (d,d ,d) the canonical morphism, by F the func-

tor from E’ d to E’d assigning 0’ d to e’ . By Proposition 16, 3 is also
a limit-bearing category (resp. a loose (g, J)-type) generated by a. So, ac-
cording to the proof of Corollary 2, Proposition 15 via Corollary 2, Propo-
sition 3 (resp. via Corollary 1, Proposition 4), there exists a functor G from

E’ d to E’ d’ such that G is an inverse of F (resp. such that F G is an

identity and G F is equivalent to an identity).
10 If 3 is 0-’ -regular and if J..L is a a- -structure in 2.:’, there exists

an equivalence rj’ from the d-structure G(u) in E’ to a d-structure Eb ’
in Cr’ , and n’ d : G (u)d-&#x3E;w’d is an equivalence from ,c.c, to the cr-struc-

ture w’d in d’ , since G(u) d = F G(u)=u.So d is o-’ -regular.
20 We suppose that 0- is 0-’ --regular. Let v be a ;’-structure in E’;

there exists an equivalence E from v 5 to a d-structure w in d’, and
G(!f) is an equivalence from G(v d) to G (w). By definition of cr, there
exists a d-structure w’ in o-’ satisfying F(w)=w’d =w. As w’ is

equivalent to G F(w’) = G (w) and v to G(v d ) = G F ( v ) , the func-

tors v and w’ are equivalent. Hence, d- is 0-’ -regular. V

R E M A R K. Most usual sketches are regular. More generally, we say that
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0- is loosely d’-regular if the categories 2:’ d and S( 0-’ , d) are equiva-
lent. From Corollary 2, Proposition 15, we deduce at once that o- is loose-

ly 0-’ -regular., where o-’ is a mixed prototype (resp. a loose (J,J)-type,
resp. a (J,J) -type) iff so is a prototype (resp. a loose (J,J -type, resp.
a (J,J) -type) generated by d. In several papers, regular means loosely

regular. In particular in [L] , each mixed cone-bearing neocategory its uni-

versally immersed into a loosely regular one.

8. Corresponding 2 -categories of bimorphisms.

In this paragraph, we give a reformulation of the preceding results
in terms of 2-categories. The categories Pm’, Pm,... appear as the catego-
ries of 1-morphisms of representable and corepresentable 2 -categories and
the adjoint functors constructed above extend into 2-adjoints.

2-categories will be considered as those special double categories
(or category-objects in F) (C*, C L for which the objects of the category
C. are also objects of the category C...l- (they are often considered as 5f-

categories, relative to the closed cartesian category F).
Let e be a 2-category (C. , C’) . The categories C 

* 

and CJ.. have
the same set of morphisms, denoted by C , and whose elements are called
bimorphisms (or 2,- cells) of C. The category C 

* 

will be called the catego-

ry of bimorphisms of e (or « strong category&#x3E;&#x3E; [G]), and written C’ , while
C L , also denoted by C , is called the transverse category ( ’or « weak» ca-

tegory) of e. We say that an object of 6 
* 

is a vertex of C, and that an ob-

ject of C L is a 1-morphism (or 1-cell) of The set of 1-morphisms de-

fines a subcategory of e., denoted by lCl . If h is an element of C, it

is both a morphism h : f -&#x3E; f’ in C and a morphism in C*, with source the
source e of the 1-morphism f (or f’) in I c I and with target the target e’

of f in I C 1; to « visualizes the two laws, we will write:
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or, more precisely:

The 2-category is said representable (resp. corepresentable)

[G1] if the insertion functor I from |C I to the category of bimorphisms
C 

* 

admits a coadjoint (resp. a left adjoint) 0 - A cofree (resp. free) struc-

ture generated by a vertex e of (! is called a representation (resp. a core-

presentation) of e . Hence 0 e is a representation of e iff there exists a

bimorphism de; o e - e such that, for each bimorphism h : e’ -&#x3E;e, there

is a unique 1-morphism

satisfying

If C is a representable 2-category, the triple on lCl associated
to the pair (I, O ) of adjoint functors admits the category of bimorphisms
of e as its Kleisli category.

"We still denote by h the 2 -category of natural transformations asso-

ciated to the universe It (we call a 2 -category by its bimorphisms , and

not by its vertices, as usual). Its category of 1-morphisms I n I is the ca-

tegory Y of functors associated to U. Its transverse category is the sum

of the categories E’ E, where 5i and 2:’ are categories whose sets of mor-

phisms belong to It. The law of its category of bimorphisms is the lateral

composition of natural transformations: If

and

are natural transformations, their lateral composite, denoted by 7j ·’r or by
’T ’r is the natural transformation:

31 is representable and corepresentab.le, a representation of the ca-

tegory 5i being the lateral category 8 E: of quartets of 2 and a corepresen-
tation of 2 being the product category x 2 (see [G1]).

Using 7t, we are going to define a representable and corepresentable
2 -category, whose category of 1-morphisms is the category of morphisms
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between mixed cone-bearing categories.

D E F IN IT IO N . A bimorphism between mixed cone-bearing categories is de-

fined as a triple t = (w’, t,w), where

and

are morphisms between mixed cone-bearing categories and ’r: w-&#x3E;w’ is

a natural transformation between the underlying functors.

We also say that T is a bimorphism from w to w’ defined by ’r ,

denoted by one of the following formulas:

Let o- and cr be two mixed cone-bearing categories. We define the

longitudinal. category S(d’,d) of bimorphisms between 0- and 0-’ as the

set of bimorphisms r: d-&#x3E; 0-’ equipped with the longitudinal composition:
The longitudinal composite of (t’ , t) exists iff

and

and it is then equal to the bimorphism, denoted by t’ oaT,

defined by the natural transformation T’ oo ’r.

The category S(d’,d’) is trivially isomorphic with S(d’,d).

and are bimorphisms, where

and

the natural transformation t"t defines a bimorphism

we call 0 the lateral composite of (t" , t) and we denote it by ?’" t.

We consider still the set &#x26;n" 0 of mixed cone-bearing neocategories
associated to the universe and the corresponding category of morphisms
Sm". We denote by:

- ifmi the subset of 8mg formed by those cr whose underlying neoca-

tegory is a category,
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- j=m.8 the full subcategory of Sm" of morphisms between mixed cone-

bearing categories belonging to Fm"o,
- NFm" the 2-category of bimorphisms associated to 11: its category

of bimorphisms is formed by the bimorphisms T : d-&#x3E; cr’ such that 0- and

or’ belong to -Tin" , the law of composition being the lateral composition;
the law of its transverse category is the longitudinal composition (cate-

gory sum of the categories S(d’ ,d)). In particular, the category of 1-

morphisms is Fm" .
- ’ and NFm. the 2 -categories of bimorphisms between mixed pre-

sketches and sketches on a category, i. e. the full sub-2 -category of NFm"
whose sets of vertices are respectively

and

- 1rP m’, 1rP m, NLJJ and NFJJ, where I and J are U-sets of catego-
ries, the 2-categories of bimorphisms between mixed limit-bearing cate-

gories, prototypes, loose (J,J)-types and (J,J)-types, i. e. the full sub-

2-categories of hifm" whose sets of vertices are respectively Pm’o, Pmo,
0 and FoJJ. 

All these 2 -categories are canonically equipped with a faithful 2-

functor toward )I -

PROPOSITION 17. The 2-category NFm," is representable and corepre-
sentable.

A. Let 0- be a mixed cone-bearing category (E, T, V).

10 o- admits as a representation the lateral mixed cone-bearing cate-

gory 8 o- of quartets of 0-, for any universe It such that o-,E Fm"o.
Indeed, let a and b be the functors from BE to 2 defined by the

mappings source and target of the longitudinal category m 2 . By defini-

tion (Example 2-7), 8d is the category 8 E equipped with the sets
- T of projective cones y such that a y E T and by E T,
- V of inductive cones K such that a K E V and b K E V .

In particular, a and b define morphisms

and
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To the identical morphism of 8 d, Proposition 11 associates a bimorphisms

(where i is the natural transformation from a to b assigning the morphism
x of 2 to the object x of 8 E).

Let o-’ be a mixed cone-bearing category (E’, T’’ , i7 ’ ) and

a bimorphism. The unique functor T’ :E’-&#x3E;8 E such that /T = ’r defines

a morphism from o- to 8 d (Proposition 11), which is the unique morphism

such that

Hence NFm" isrepresentable, B 0- being a representation of cr.

20 We denote by:
- 2: the category Ex2,
- v and v’ the functors from to E associating respectively (x, 0)

and (x, 1) to the morphism x of E,
- T the set of cones vy and v’y, where y e T,
- V the set of cones V K and v’ K, where K E V .

Then (E T V) is a cone-bearing category o’ and v and V’ define mor-

phisms v and V’ from 0- to cr. By assigning (e , (1, 0)) to an object
e of E, we get a natural transformation 0:v-&#x3E; v’, and therefore a bimor-

phism 0= (v’ ,0, v ) : d -&#x3E;d.
0- is a corepresentation of 0- in NFm" for any universe cU such

that 0- E Fm"o. Indeed, let

be a bimorphism, where o-’ is a mixed cone-bearing category (E’ ,T’, V’).
As E is a corepresentation of 5i in 1i, there exists a unique functor

such that

This functor defines a morphism T’: Cr - d’, since

and

for any distinguished cone y in 0-. Then T’ is the unique morphism sa-
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tisfying

A

The cone-bearing category d considered here above will be deno-

ted by o- X 2..

R E M A R K . a- X 2 is not defined as the product of two cone-bearing catego-
ries. However, if I and J are given sets of categories, we can define a

A

prototype 2 by equipping 2 with the set of all « constant) proj ective cones

in 2 indexed by a category KEg, and with the set of all constant induc-
tive cones indexed by a category of J. Then, for each (g, J) -cone-bearing
category 0- , the product or x 2 in Fm" is identical with dx2

P R O P O SIT IO N 18. Let f denote anyone of the symbols

where I and J are ’l1-sets o f categories.
1 ° If X # j=m’, then nx is representable, a representation of a ver-

tex a- being 8 d .

2° If 1( A L JJ and X A FJJ, then nx is corepresentable, a corepre-

sentation of a- being o- x 2 .

3 ° NFJJ is corepresentabl e, a corepresentation o f o- being a (J, J)-
type generated by d x 2 .

A - 10 A full sub- 2 -category nx of the representable (resp. corepre-

sentable) 2-category NFm" to which belongs a representation (resp. a co-

representation) of each vertex d of nï is representable (resp. corepre-

sentable). So assertions 1 and 2 result from the following facts.

a) If o- is a mixed limit-bearing category, so is B 0-. Since a constant
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functor toward 2 admits its unique value both as a projective limit and

as an inductive limit, a- X 2 is also a limit-bearing category. Hence NPm’

is representable and corepresentable.
b) If Cr is a mixed presketch (resp. prototype), d x 2 is also one, so

that NFm’ and h9m are corepresentable.

c) Let d be a mixed prototype (E,T, V). Then the mixed limit-bea-

ring category 8 d is also a presketch, i. e. a prototype. Indeed, let y be

a distinguished projective cone in 8 d , with base T and vertex x . Objects
of B 2.: are identified with morphisms of 5i and we denote yet by a and b

the functors from 8 E to 5i determined by the mappings source and target
of 00 E. By construction, a y and by belong to F , so that a y and b y
are the only cones of T with bases a T and b T (for 0- is a presketch).

Moreover, b y being a proj ective limit-cone, x is the unique morphism of

2 such that

where

is the natural transformation canonically associated to the functor T to-

ward B 2.:. Hence y is the unique distinguished projective cone in 8 or ,
with base T. Similarly, there is at most one distinguished inductive cone

of B (7 with a given base. This proves that 8 d is a mixed prototype. A

fortiori, NPm is representable.
d) If 0- is a (J, J)-type (resp. a loose (J,J)-type), so is 8 d, which

implies that NFJJ and NLJJ are representable.
e) Let 0- be a mixed sketch (E,T , V), where 5i is a category; let

TI be the canonical morphism (tt,II, d) from d to a prototype 7T gene-

rated by o- .

8 d is a mixed sketch. Indeed, let IT be the canonical morphism

from 8 d to a mixed prototype it generates. From Part c , it follows that

8 tt is a prototype. The functor B 11 (assigning

to

defines a morphism 8 II : 8d -&#x3E;8tt. So there exists a unique morphism
fl" such that 8 II = II" II’. Since II is injective, 8 II is also inj ective
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and the preceding equality implies the injectivity of II’. Therefore, 8 d

is a mixed sketch, and NFm. is representable.

Similarly, dx2 is a mixed sketch, because the functor II x2 de-

fines an injective morphism 11X2 from dx2 to the prototype tt x2 (P art

b). So 1tj=m is corepresentable.

20 Let d be a (J,J)-type. Then o-X2 is not a (J,J) -type, but it

generates a (J,J)-type a - By tran sitivity of free structures, d is a free

structure generated by o- relative to the composite insertion functor

A fortiori d is a corepresentation of o- in the full sub-2-category NFJJ
of )NFm".V 

COROLLARY. NFm’ is not representable.

A. L et Cr be a mixed presketch (E,T, V), where E s a category.
lo 8 0- may not be a presketch. Indeed, we still denote by a and b

the functors from B 2: to 2: determined by the mappings source and target
of 00 E. Let T : K - BE be a functor and T: K ; -7 the corresponding
natural transformation. If

are cones of T, for any. morphism x:e -&#x3E;e’ in E such that y’ x = T 00 y,
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there exists a cone yx : x^ - T in 8 E such that

and

and this cone is distinguished in 8 d. As y’ is not necessarily a limit-
cone, there may exist another

such th at

and so another distinguished cone y y in 8 d with base T’ . Then 8 d is

not a presketch.

2° Let us suppose there exi st s a representation 3 of 0- in N Fm’ and

denote by 77 = (d , 73, d) the canonical bimorphism. Let

be the canonical bimorphism defining 8 d as a representation of a- in the

2-category NFm" (Proposition 17). There exists a unique morphism

We are going to show that tp is an isomorphism, which is impossible in

the case where 8 d is not a presketch.

a) w is an isomorphism. Indeed, let ’r: E’-&#x3E;E be any natural trans-

formation. It defines a bimorphism t: o-’ -&#x3E; o-, where o-’ is the mixed pre-

sketch on E’ without any distinguished cone. There exists a unique mor-

phism T = (d, T, d’) such that n.T = ’r; this means that T is the uni-

que functor satisfying 7J T = ’T. Hence 7J defines the underlying category
of 3 as a representation of 5i in 31. As j defines 82 as a representa-

tion of 2: in 71, the functor w such that jw= 7J is an isomorphism.

b) The inverse w-1 of qj defines a morphism from 8 0’ to d. Indeed,
let y be a distinguished cone of B 0-. We get a mixed presketch 5 by

equipping 8 E with y as its only distinguished cone; j defines a morphism
j : d-&#x3E;d. So there exists a unique morphism
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satisfying

in other words, w’ is a functor such that w’y is a distinguished cone

of o- and nw’ =j. It follows jww’ =j, which implies that ww’ is an
identity functor. w being an isomorphism, we have w’=w-1 . Hence,
(8 d, w-1, cr) is a morphism, inverse of 1/l . V

REMARK. The 2-category NLJJ is not corepresentable, but it is weakly

corepresentable [G1], a vertex a- admitting as a weak corepresentation
a loose -types o- generated by d X 2 . More precisely, let e be the

canonical bimorphism defining a- X 2 as a corepresentation of 0- in NFm"

(Proposition 17, Part 2) and 8 : d x2 -&#x3E;d the canonical morphism. If cr’

is a loose (J,J)-type, t’ : d -&#x3E; d’ a bimorphism, there exists a morphism

T’ , defined up to an equivalence, such that T’. (d. 0)= t’.

If I and 5 are U-sets of categories, we denote by NFm"JJ the

full sub- 2-category of NFm" whose vertices are those (J,J)-cone-bea-
ring categories belonging to S"oJJ 
P RO P OSITION 19. In the following diagram o f 2-functors,

where the 2-functors toward n assign to a bimorphism (a-’ I e d) the

natural transformation e all the 2 -functors admit 2 -adjoints.

A. All the 2 -functors of the diagram are 2 -functors between represen-
table 2 -categories, which commute with the representations by Proposition
18. Moreover their restrictions to the categories of 1-morphisms admit left

adjoints. Indeed, this results from Corollary 1, Proposition 15, for the in-

sertion 2 -functors. Now let pX: NX-&#x3E;N be one of the 2 -functors toward

n. Assigning to a category 2 the trivial mixed prototype 5: on 2 (without
any distinguished cone) and to a natural transformation ’r : E-&#x3E;E’ the bi-
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morphism t: E-&#x3E;E’ defined by t, we get a 2 -functor JX: N-&#x3E; NX; its res-
triction Jf 1: ? -&#x3E;X is an adjoint of the restriction lPX I: f - if of PX. So

Proposition 19 follows from the lemma:

20 LEMMA. Let h be a representable 2-category and p:J( -&#x3E;C a

2 - functor satisfying the following conditions:

- For each vertex v o f H, let a v: o V - v be a bimorphism which

defines 0 V as a representation o f v; then p ( a v) defines p ( O v) as

a representation o f p ( v ) in C.
- The functor lp 1: 1 Hl -&#x3E; 1 e I restriction of p admits an adjoint q.

Then q extends into a 2 -adjoint of p .

a) The functor P* : X* -(2* underlying p admits an adjoint Q* ex-

tending q . More precisely, for each vertex o- of C, the canonical mor-

phism d d: d-&#x3E; p (q(d)) corresponding to the pair of adjoint functors

( lpl , q) defines also q(d) as a free structure generated by 0- relative

to p. Indeed, let 0- be a vertex of C and v = q(d). If v’ is a vertex

of h and 7: d-&#x3E; p (v’) a bimorphism in C, there exists a unique 1-mor-

phism T:d-&#x3E; p (O v’) such that p (a v’)· T =t, since p (av’) de-

fines p (O v’) as a representation of p (v’). To T is associated a uni-

que 1-morphi sm

such that

From the equalities

it follows that is the unique bimorphism

such that

Hence, v is a free structure generated by Cr relative to p.



167

b) The map underlying the adjoint functor Q. of p. also defines

a 2-functor Q :C -&#x3E;H, so that Q is a 2-adjoint [G] of p . Indeed, we

denote by:
- C(d’,d)’ the subcategory of the transverse category e of C for-

med by the bimorphisms 0: d -&#x3E; d’.
- C (y’, À), if X: p-&#x3E;d and X!: cr’ -&#x3E; p’ are 1-morphisms of C th e

functor from C(d’,d’) to C(p’, p) assigning the composite À I . 0.y to

0 : a- =: 0-’ .

Let o- and 0-’ be vertices of C ; we write

and

As p is a 2 - fun ctor, there exists a functor

defined by a restriction of p . The map gd assigning p (t’). Sd. to the

bimorphism t’: v t &#x3E;v’ defines the functor

P art a proves that g d is a bij ection; it follows that g d is an isomorphism.

The functor

associates Q (0) to 0:d -&#x3E; u’, since S ( e ) is the unique bimorphism

such that

The category C L being a sum of the categories C (d’, d’, we deduce
that Q defines a functor from e to H(, and also a 2-functor Q . V

REMARK. Proposition 19 gives a more axiomatic proof of Corollary 2,

Propositions 3 or 15.
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Ill. MONOIDAL CLOSED CATEGORIES OF SKETCHED MORPHISMS

Let d be a projective limit-bearing category and 0 a symmetric

monoidal closed category [EK]. Under some conditions on o’, the catego-

ry Vd of d-morphisms in the underlying category V of 0 admits a symme-
tric monoidal closed structure. This is applied to the category of functors

(or « category of category objects )) in V .

10. Cartesian closed structures on mo-.

After some notations, we give conditions on d, insuring that md

admits a cartesian closed structure.

If 0: p -’ p’: L - K is a natural transformation, for any y: e - e’

in L, we denote by 6(y) the morphism 0(e’). p(y) = p’(y). 0(e).
Let P : K’ x K -&#x3E; C be a functor (of «two variables,)). If p : L -K

is a functor, we denote by P ( s , p - ) the functor from L to C assigning
P ( s, p ( y ) ) to y E L , for each obj ect s of K ; we denote by P ( x, p - ) (or

by P (x, p), if this does not lead to any confusion) the natural transforma-

tion from P(s, p-) to P(s’, p-) such that P(x, p-)(y) = P(x, p(y)),
for any y E L , if x : s -&#x3E; s’ is a morphism in K’ .

If p - IdK , we write P (x, - ) instead of P ( x, p -) . If p is the dual
q* of a functor q, we write also P ( x, q- ) instead of P (x, q* -) .

Similar notations are used relative to the other «variables, and for

functors of «more than two variables ».

Let K be a category. The functor HomK : K X K* -&#x3E;m will often

be denoted by K ( -, - ) , so that the set of morphisms x : e -&#x3E; e’ in K is

written K ( e’ , e ) (and not K ( e, e’ ) as usual).

We say that K admits a cartesian closed structure if there exists

a cartesian closed category K , whose underlying category is K . This

means that K admits finite products and that, for each object e of K,
the partial product functor - X e : K - K (corresponding to a choice of fi-

nite products on K ) admits a right adjoint. Then we call closure functor
on K a functor D : K x K* -&#x3E; K such that D ( -, e ) is a right adjoint of

- X e , for any object e of K (such a functor is the internal Hom -functor
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for a closed category [EK] underlying a cartesian closed structure on

K ). The product functor X and D are defined up to an equivalence, so

that K is determined up to an isomorphism of cartesian closed categories.

From now on, we denote by:
- d a proj ective limit-bearing category (L, T),
- I the set of indexing categories of o- ,

- d* the «dual of u), which is the inductive limit-bearing category

(E*, T *) , whose distinguished inductive cones correspond by duality to

projective cones y E T,
- 1( a universe, to which belong 2 and I , for each I E J,
- m the category of maps between U-sets.

The functor E (-, u):E-&#x3E; m commuting with projective limits,
it is a d-&#x3E;structure in ? for each object u of 2. Hence the Yoneda im-

mersion Y from E* to ? takes its values in the category mer of d-

morphisms (i. e. of morphisms between 0--structures) in m. We denote by
Y the functor from X to Md, restriction of Ý.

This functor Y is in fact a d*-structure in md, called the Yone-

da d-*-structure. ( Indeed, this will result from Proposition 3 - 1 [Lb] ,
if md( F, Y-) is a cr-structure in ? for each object F of md, i. e. for

each cr-structure F ; this holds since, by Yoneda Lemma, we get

Let V be a category. The category VO- of 0--morphisms in V is

a full subcategory of VE, closed for equivalences (i. e. a functor equiva-
lent to a 0r-structure in V is also one). If V admits projective limits in-

dexed by a category K , the category Va- admits also proj ective limits in-

dexed by K , and the insertion functor from VO- to V E commutes with these
limits [E4] (since in V E these limits are computed evaluationwise and

projective limit functors commute with proj ective limits of any kind). In

other words, VO- is closed in V yi for projective limits indexed by K .
Since ? admits Jo -projective limits, where Jo is the set of all

the categories whose sets of morphisms are U-sets, md admits also j= 0 -

projective limits. In particular, md admits finite products. From the ca-
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nonical product functor on N, we deduce the product functors X and X

on ? and on md. For each cr -structure F in md, we denote by - X F the

canonical partial product functor from md to md, which assigns to a d-
structure F’ in ? the 0--structure F’X F in m such that

for each morphism x : u - u’ in 2:. It is a restriction of - X F : mE -&#x3E; mE .
In particular, for any object u of 2, we have the partial product

functor - X Y(u): md-&#x3E; md.

PROPOSITION 20. md admits a cartesian closed structur; iff the functor
- x Y( u ) commutes with J-inductive limits, for each object u of E. In

this case:

1° mo admits a closure functor M assigning to the pair ( F’, F ) o f
a-structures in m the functor mo ( F’ , F X Y-)= mo ( F’,-)( Fx-) * Y*.

2° For each a- -structure F in 5R, the functor M ( F, y.): E -&#x3E; mo is
a 0--structure in md, and M ( F’ , F ) = md( M ( F’ , Y-), F ) 

A. If md admits a cartesian closed structure, the partial product
functor - X Y( u ) admits a right adjoint, so that it commutes with induc-

tive limits, for any object u of 2.

We suppose now that - x Y(u) commutes with 9-inductive limits,
for each object u of 2 .

mE admits a cartesian closed structure whose closure functor At
associates mE(0’, -)(e x Y-)* to each pair ( 0’,0) of morphisms of

mE ( see for example [GZ], Chapter 2-1). To show that md admits a car-
tesian closed structure, it is sufficient to prove that M ( F’ , F) is a d-

structure when F and F’ are o--structures, for this implies the existence

of a functor M: md x (md)* -&#x3E;md restriction of M , and M is a closure

functor on m d. The proof will go in three steps.

10 Let F be a d-structure in ? and u an object of E. Then, the

functor M ( F, Y(u)) is a cr-structure in N. Indeed, by definition,

As F and Y(u)x Y(u’), for each object u’ of 2, are objects of the full
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subcategory md of Yff 2, we also have

so that this functor is the dual of the composite functor G:

where

- Y is a d*-structure,
- the functor Y(u) X - commutes with 9-inductive limits, since it is

equivalent to the functor - X Y( u) (the product functor being symmetrical)
which commutes with 9-inductive limits according to the hypothesis,

- md (F, )*commutes with inductive limits
Hence G is a 0- *-structure in ? and its dual M ( F, Y(u)) is a o--struc-

ture in t .

20 Let F be a cr-structure in m. From Part 1, it follows that the func-

tor M ( F , - ) Y*:E -&#x3E; ? takes its values in md. so it admits .as a restric-
tion a functor L:E -&#x3E;md. This functor L is a cr-structure in )9’. Indeed

let us denote by u for each object u of 2 the «projection functors from

md to lll, which assigns 0(u) to the o--morphism 8 . Projective limits

being computed evaluationwise in md (since the insertion functor from Yff 0-

to mE commutes with projective limits), L is a 0--structure in ma-iff 7T u L

is a d-structure in ? for each object u of 2. As

for each x e E , we get

The product being symmetrical, the functor ( Y - ) X Y( u ) is equivalent to

Y ( u ) X ( Y - ) ; a fortiori 7T u L is equivalent to Mo ( F, Y(u) X Y -) , which

is identical to the 0--structure M ( F, Y( u )) . So 7T uL is a 0-- structure in

m for each u , and L is a cr-structure in Mo denoted by M ( F, Y - ) .

30 Let F and F’ be a- -structures in m. Then M ( F’ , F) is a O--struc-

ture in 11 . Indeed, we have
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As M is a closure functor on ME, the functor ? (FB F X - ) is equivalent
to ME(M(F’,- ) , F) = ME ( - , F) M ( F’ , - ) . It follows that the func tor

is equivalent to the functor

This last functor is a o--structure in M , since it is the composite of the

o--structure M( F’ , Y - ) in to- with the functor Mo( -, F) which commutes
with projective limits. Hence M ( F’, F) is a 0--structure in 5R, and there
exists a functor M :Mo X ( Mo)*-&#x3E; Mo restriction of M . 0

DEFINITION. With the hypothesis of Proposition 20, for each 0--structure

F in N we call M (F, Y-) ( = M ( F, -) Y*) the o -structure in Mo associ a-

ted to F.

COROLLARY. If the insertion functor I from Mo to ME commutes with

9-inductive limits, then Mo admits a cartesian closed structure.

A. Let u be an object of 2.:. The partial product functor - X Y( u )

from ME to ? commutes with 9-inductive limits, since it admits a right

adjoint M( -, Y(u)). It follows that the functor

also commutes with it-inductive limits. As P takes its values in the full

subcategory mO" of ME, there exists a functor P’ from Mo to Mo res-

triction of P , and P’ commutes with 9 -inductive limits. P’ being the par-
tial product functor - X Y(u) on Mo, the hypothesis of Proposition 20 is

satisfied. So the Corollary results from this Proposition. V

REMARK. The insertion functor I from Mo to mE always admits a left

adjoint and Mo admits j=o -inductive limits ([J] or [Br]). If 7 commutes

with 9o -inductive limits, it admits a right adjoint (Theorem 2- 1 [GZ] ).
So the Corollary may then be deduced from the following result:

If V is a category admitting a cartesian closed structure and if V’

is a full subcategory of V such that the insertion functor from V’ to V

admits both a left adjoint and a right adjoint, then V’ admits a cartesian
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closed structure.

This last result proves also that, if o-’ is a mixed limit-bearing

category (E, r , Bl) and i f the insertion functor from mO"’ to ME admits
both a left adjoint and a right adjoint, then Mo’ admits a cartesian clo-

sed structure. However this condition on 0-’ is very restrictive.

10. Monoidal closed categories.

A) The monoidal closed category 07".
Let 5i be a category. We recall here the definition and some pro-

perties of the symmetric monoidal closed category 0 constructed by Day
[D] , were 15 is a symmetric monoidal closed category.

We denote by .’. I the subdivision category of E:
- its objects are the morphisms of E,
- for each morphism x : u - u’ of 2 which does not belong to Eo ,

there are in .’. 2 two morphisms

- there are no other morphisms in :.E, and the only composites are

those of a morphism with its source and its target.

(Intuitively, x is replaced by «an abstract triangle» with vertex x). Na-

turally, .’. 2 depends on the graph underlying the category 2.: and not on
the law of composition of 2.:.

Let V be a category. We define as follows a functor .’. from the

category V EXE* to the category V:.E: 
If k:E x E*-&#x3E; V i s a functor, .’. (k) : :. E.: -&#x3E; V is the functor assi-

gning X(u,u) to u e E o and

to

for each morphism x: u - u’ in 2.
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- If 8:k -&#x3E; k’ : E x E* =&#x3E; V is a natural transformation, .’. ( 8 ) is the

natural transformation from :. (k) to .’. (k’ ) assigning 8 (u’ , u) to the

morphism x: u - u’ in E .

If the functor :. (k) admits a projective limit s , then s is called

an end of X: E.: X E.: * -&#x3E; V.

We say that V admits I-ends if V admits .-.E-projective limits,
i. e. if each functor k : E x E* -&#x3E; V admits an end. In that case, if a choi-

ce of :. E-projective limits is done in V and if L : V:. E -&#x3E; V is the cor-

responding canonical proj ective limit functor, we denote by f 8 the mor-

phi sm L ( :. ( 8)), for each 8 e V E x E’* . We write also
instead of le

(the usual notation, which does not seem explicite enough, is fu 8(u,u)).
EXAMPLE. ? admits 2-ends, when 2 e Fo. Let Y and be two func-
tors from 2 to E’ e Fo and consider the functor

which assigns E’ (Y’(x’), Y(x)) to the pair ( x’ , x ) of morphisms of 2:.

The canonical end of this functor is the set E’ E( Y’ , Y) of natural trans-
formations from 1/l to 1/l’ .

From now on, we denote by C a symmetric monoidal closed cate-

gory ( V, T, i, a, b, c, m, D ) . In this notation:

- V is the underlying category,
- T : V X V - V is the «tensor product functors and we write

instead of

- i is the unit» (up to an equivalence) of T ,

- the equivalences defining i as a unit of T are
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and

- the equivalence defining the « associativity,&#x3E;&#x3E; of T is

- the equivalence defining the « symmetry» of r is

where 03BC is the symmetry functor from V X V to V X V, assigning

to

- D : VXV * - V is the closure functor, so that D ( -, s ) is a right ad-

joint of - T s , for each obj ect s of V.

We suppose that V ( s, i ) belongs to the universe U for each ob-

ject s of V, and that V admits sums indexed by U-sets. Then the func-

tor V ( -, i): V -&#x3E;M admits a left adjoint, which we denote by q . If E

is a U -set, q(E) is a sum U i in V ( of the family
E

wh ere for each z E E ) .

In fact, q defines [K] a monoidal closed functor from the cano-

nical cartesian closed category over ? to S, so that the functors

and

are canonically equivalent.

Let E be a category such that V admits 2.:-ends. Then Day ( [D] ,
example 5 - 3 ) has defined a symmetric monoidal closed category

as follows:

- If G and G’ are functors from 2: to V , the functor G ’ T G : E-&#x3E; V

is the functor T [G’, G ] which assigns G’(x) T G(x) to x e E . If

and

are natural transformations, the natural transformation

assigns 8’(u) T 8 (u) to the object u of 1 .
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- i^ is the constant functor from 5i to V , whose value is the unit i ,
- the natural equivalences i and b assign the natural transformations

a G and b G to the functor G : E -&#x3E; V ,
- the natural equivalence e assigns

to

where G", G’ and G are functors from E to V,
- the equivalence m assigns m [ G’, G ] : E =&#x3E; V to the pair ( G’, G )

of functors from E to V,
- if G’ and G are functors from E to V , then D ( G’, G ) is an end of

the functor from E X E* to V E assigning the natural transformation

to the pair (x’, x) of morphisms of 2 . We will write:

In fact, Day proves a stronger result: 0 E is a symmetric monoidal
closed category over 0, which means that the functors and natural trans-
formations in the construction above underly U-functors or U-natural trans-
formations. From this, we will use only that, G and G’ being functors from
2 to V , the functors

and

from (V E)* to V are equivalent. (This may be proved directly, using Fubini
Theorem on ends [ML] and the U-Yoneda Lemma [K] .)

B) Subcategories of a symmetric monoidal closed category.

We suppose here that 0 is a symmetric monoidal closed category

and V’ a full subcategory of V which is closed for D , i. e. such that it

exists a functor D’ : V’ X V’ * -&#x3E; V’ restriction of D . Then, under some

conditions, V’ underlies a symmetric monoidal closed category having
D’ as its closure functor. This will be applied in the next Section to

Ethe subcategory Vo of V .

If V’ is also closed for r, i. e. if it exists a functor
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restriction of T,

and if i is an object of V’ , then the natural equivalences a , bn c and m

admit restrictions a’ , b’ , c’ and m’ such that

is a symmetric monoidal closed subcategory of U. More generally:

PROPOSITION 21. We suppose that V’ is a full subcategory o f V , such

th at:

1° there exists a functor D’ : V’X V’ * -&#x3E; V’ restriction o f D ,

2° the insertion functor I from V’ to V admits a left adjoint J .
Then there exists a symmetric monoidal closed category 

where

A. We denote by 6 : Idv -&#x3E; I J the natural transformation defining J

as an adjoint of I , by i’ the object J (i) of V’ and by T’ the composite
functor J T(I-, 7-,).’

which assigns J ( f’ T f ) to the pair ( f’, f ) of morphisms of V’ .

lo Let s’ be an object of V’ . The functor - T’ s’ : V’ - V’ admits

D’ ( - , s’ ) as a right adjoint. Indeed, as D ( - , s’ ) is a right adjoint of - T s’,
the functor D ( - , s’ ) 1 is a right adjoint of J ( - Ts’ ) . As V’ is a full sub-

category of V in which D ( - , s’) 1 takes its values, the restriction

of

is also a right adjoint of the functor from V’ to V’ restriction of J (- Ts’) ,
i. e. of the functor - T’ s’ .

If T’ is a tensor-product functor on V’ whose unit is i’ , Proposi-
tion 21 will result from Theorem II - 5-3 of [EK] .

20 We will establish some facts to be used atterwards.

a) Let s’ and s" be objects of V’ and e of V . Then the maps

are bijections. Indeed, we denote by:
the morphism defining
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as a cofree structure generated by s" relative to the functor - Ts’ ,
the bijection assign-

ing

Since is closed for D , the obj ect D (s" , s’) belongs to V’ ,

-and, from the adjonction between I and J , we deduce that

is a bijection. The composite bijection

assigns so it is the map

The map is also a bijection, the equality

implying that is the composite bijection

b) O is the natural transformation

It is an equivalence, i.e. J ( s’ -T (s)) is a free structure generated by

s’ -Ts relative to 7. Indeed. let s be an object of V and s’ of V’; we write

s = J (s); then 0( s’, ,s) = J (s’ T 6 (s)) is the unique f such that
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From Part a, it follows that V( J ( s’ T s ), s’ T 6 (s)) is a bijection, so that
there exists a unique morphism

satisfying

There also exists a unique morphism g’ such that g’ .6 (s’ T s) = g . From
the equalities

we get g’ . f = J (s’ T s) and, from the equalities

we deduce successively

since V( s’ T’ s, s’ T 6 ( s)) is a bijection and f . g’= J(s’ Ts).

This proves that O (s’ , s ) admits g’ as an inverse, and O is an e-

quivalence.

c) Similarly,

is an equivalence.

30 We are going to show that T’ is a tensor-product functor whose unit

is i’ = J(i).

a) If s is an object of V’ , we denote by a’(s) the morphism

We so define a natural transformation a’ : Idv’ -&#x3E; -T’ i’ such that I a’ is

the natural transformatior_
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The morphism a (s) being invertible and 6 (s T i’).(s T 6 (i)) de-

fining s T’ i’ as a free structure generated by s T i (Part 2 - b), the mor-

phism a’ ( s ) defines s T’ i’ as a free structure generated by the obj ect s
of the full subcategory V’ relative to the insertion functor I. Hence a’ ( s )

is invertible. So a’ is an equivalence.
We define similarly the equivalence b’ : Idv’ -&#x3E; i’ T’-, which as-

signs 6 ( i’ T s) . ( 8 (i) T s) . b ( s ) to the obj ect s of V’ .

b) 03BC: V X V -&#x3E; V X V and 03BC’: V’ X V’ -&#x3E; V’ X V’ being the symmetry
functors », we have 03BC (I-, I -) = ( I X I) 03BC’. The equivalence m : T -&#x3E; T 03BC

defining the symmetry of T gives rise to the equivalence

which assigns the invertible morphism J ( m (s’ , s )) to the pair (s’, s) of

objects of V’ . As

the equivalence m’ is a symmetry of T’ .

c) We consider the functors

and

assigning to ( x", x’ , x ) respectively (x" I x’ rx) and (x" T x’ , x) . With

the notations of Part 2, let c’ be the natural transformation

which assigns

to ( s" , s’ , s ) , where s" , s’ and s are objects of V’ .
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Since (f , J c and 0’ are equivalences, c’ is also an eauivalence.

To prove that

is a symmetric monoidal closed category, we have yet to show that the three

coherence axioms are satisfied.

d) The coherence axiom on units asserts that, if s and s’ are ob-

jects of V’ , then

Indeed, we have the following diagram, where

(l) is a quartet, c being a natural transformation,
0 is a quartet, by definition of c’ ,

(â) is commutative, since we have

Q is commutative, as a consequence of the equality

(5) is commutative, by definition of b’ ,

(6) is commutative, by definition of T’ (similarly to (4)),

(D is commutative, the first coherence axiom being satisfied in the mono-

.idal category ( V , T, i , a, b, c ) .
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From this diagram we deduce

which implies, 6 (s’ T s) defining s’ T’ s as a free structure generated by
s’ T s relative to 1,

e) We consider the second coherence axiom (on associativity), called

axiom MC3 [EK] , which says that, if s , s’ , s" and s "’ are objects of V’ ,

the following diagram commutes.
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This may be proved directly from the axiom MC3 satisfied by T and from

the definition of c’ . But we can also use Proposition II- 2-1 [EK] , since
D’ and r’ are in the « basic situations of Chapter 11-4 [EK] . So r’ satis-

fies the axiom MC3 iff D’ satisfies the axiom CC3 of [EK] (associativity
coherence axiom for closed categories). As D is a closure functor on V , it

satisfies CC3 and, V’ being a full subcategory of V , the restriction D’

of D also verifies CC3 (which is independent of i and T). Hence T’ is a

tensor-product functor on V’ .

f) The coherence axiom on symmetry asserts that, if s , s’ and s" are

objects of V’ , the following diagram commutes:

This diagram is the exterior border of the following diagram, where:

(D, (4) and (7) commute, by definition of c’ ,

(2) commutes, m being a natural transformation,

(3) , @ and 3 commute, since m’ = J m (I- , I-) ,

(6) and (2) commute, as T’ = j T( I -, 1- ) ,

(10) commutes, ( V , T, i , a, b , c , m ) being a symmetric monoidal category,
the mapping

is a bijection (Part 2 - b ) .

From all these properties, we deduce that the exterior border of this diagram
commutes. Hence all the coherence axioms are satisfied, so that

is a symmetric monoidal closed category.
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COROLLARY. With the hypotheses of Section A on Z3, let 0-’ be a mixed

limit-bearing category (2.:, r , V) such that:

1 ° th e insertion functor from Vo’ to V E admits a l e f t adjoint,
2° Vo’ is closed for the closure functor D of the symmetric monoidal

closed category OE.
Then Vo’ is underlying a symmetric monoidal closed category whose closu-

re functor is a restriction of D .

6.. This results from Proposition 21 applied to OE and Vo’ V

P RO P O SIT IO N 22. Let V’ be a full subcategory of V such that:

1 ° i E V’ and T admits a restriction r’ : V’ X V’ - V’ ,
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2° the insertion functor I from V’ to V admits a right adjoint I’ .

Then there exists a symmetric monoidal closed category

where

V. The first condition implies that V’ defines a symmetric monoidal

subcategory (V’, T’, i, a’, b’, c’, m’) of (V , T, i , a , b , c , m).

Proposition 22 will result from Theorem II- 5 -8 [EK] if we prove

that, for each object s’ of V’ , the functor - r’ s’: V’ - V’ admits D’( -, s’ )

as a right adjoint. Indeed, I’ D(-, s’) is a right adjoint of (- Ts’ ) I . As V’

is a full subcategory of V , it follows that the functor D’ ( - , s’ ) : V’ - V’ ,

restriction of I’ D ( -, s’ ) , is a right adjoint of the functor - r’ s’ , restriction

of (- Ts’) I . 0

COROLLARY 1. W ith th e hypotheses of Section A on O, let o-’ be a mixed

limit-bearing category (L, r , V ) such that:
1° the insertion functor from V°’ to VE admits a right adjoint,
2° Va-’ is closed for the tensor product T of OE, and i’ is a o-’-struc-

ture in V .

Then Va-’ is underlying a symmetric monoidal closed category whose tensor

product is a restriction of T.

COROLLARY 2. L et or’ be a J-limit-bearing category (2.:,r) and V a ca-
tegory admitting J-projective l imi ts, sums indexed by cu-sets and L -ends.

If V admits a cartesian closed structure, and if the insertion functor from
Vo to VE admits a right adjoint, then Va- admits a cartesian closed struc-

ture (deduced from that of VE ).
A. Vo being closed for finite products in V E , this results from Co-

rollary 1, applied to a symmetric cartesian closed category 0 over V . 0

11. Symmetric monoidal closed category Oo.

If 0- is « cartesian ), Va- is closed for the closure functor of
(section 10-A), so that the preceding corollaries give symmetric monoidal
closed s tru c ture s on Vo.

As in the sections 10 and 11, we still denote by o- a projective
limit-bearing category (E, r) whose set of morphisms is a U -set, by A its
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set of indexing-categories, by Y the Yoneda o’*-structure in Mo.

DEFINITION. We say that 0- is cartesian if the functor - X Y(u) : Mo-&#x3E;Mo
commutes with J-inductive limits, for each obj ect u of E.

Proposition 20 says that 0- is cartesian iff Mo admits a cartesian

closed structure.

In all this Section, we will denote by V a category satisfying the

following condition

V (s’ , s) is a U-set, for any pair ( s’ , s ) of obj ects of V .

V admits I -ends.

V admits sums indexed by U-sets (this property may be replaced by
a weaker one, as is shown in Remark 2, after Proposition 23).

Finally, 0 denotes a symmetric monoidal closed category

(V,T,i,a,b,c,m,D),

q : M -&#x3E; V an adjoint of V ( - , i ) and the corresponding symmetric mo-

noidal closed category constructed by Day (Section 10-A):

PROPOSITION 23. We suppose 0- is cartesian. Then: there exists a functor
D’ : VoX (Vo)* -&#x3E; Vo restriction of D ; for each o--structure G in V, the

functor D’( G , q Y - ) assigning D ( G , q Y( x)) to x c 2 is a U-structure in

Vo. Finally, if G and G’ are 0- -structures in V, we have

V . 10 Let u be an object of 2 and G a o-structure in V . For each

object s of V , let GS be the functor V (D (G , q Y(u)) , s ) . We are going
to prove that the functors GS are 0-structures in M. This will imply [Lb]
that D ( G, q Y(u)) is a 0--structure in V , so that the functor D’fG, q Y - )
from I to Vo exists. Indeed, as V ( - , s ) commutes with projective limits and

;he functor GS is an end of the functor F :E X E * -&#x3E; ? assigning

The functors V(D(G-, -), s) and V(D(G-, s), -), from EX V* to m
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are equivalent, 0 being a symmetric monoidal closed category, as well as
the functors

and

So F is equivalent to the functor F’ assigning

to

where x and x’ are morphisms oaf 2 . Since q is adjoint to V ( -, i) and, by
definition of a symmetric monoidal closed category, V ( D -, i ) is equiva-
lent to V ( -, - ) , the functor F’ is equivalent to the functor F" from E x E*
to ? assigning to (x’, x):

It follows that Gs is also an end of F" .
As G is a cr-structure in V and V( -, s ) commutes with projective

limits, the functor G = V(G -, s) is a o-structure in M . We consider the

o’-structure M(G, Y - ) in Mo associated to G (Proposition 20); we have

by definition of the set of natural transformations between two functors as an

end. So G s is equivalent to the o-structure M ( G , Y( u )) in A fortiori,
G S is a o-structure in m, for any obj ect s of V .

20 Let G be a (T -structure in V . Then D’(G, qY-) is a 0--structure

G in V" , equivalent to G.E -&#x3E;Vo, where G (x’) : E =&#x3E; V is defined by

G (x’) (y) = G(y) (x) , for y E 2 . The proof is similar to Part 2, Prop. 20.

30 If G and G’ are o-structures in V , then D ( G’ , G ) is a (i-structure

in V. Indeed, D (G’ , G ) is an end of the functor H : E X E* -&#x3E; V E, assigning

to ( x’, x) . The functors

and

being equivalent (section 10-A ), D ( G’, G) is also an end of the functor

H’ from E X E * to VE assigning
to
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If u and u’ are objects of E, the functor H’ (u’ , u) is a cr-struc-

ture in V , for it is the composite functor

where D (G’ , q Y (u’)) is a o-structure in V (Part 1) and D ( - , G ( u ) ) com-

mutes with projective limits. Hence, H’ takes its values in Vo. As Vr is

closed for 5i-ends in VE (the category V admitting L- ends), it follows that

the end D ( G’ , G ) of H’ is a 0- -structure in V .

This proves the existence of a functor D’ : Vo X (Vo) * -&#x3E; Vo-, res-

triction of D . V

C O R O L L A R Y 1. I f o- is cartesidn and i f the insertion functor 1 from Vo to

VE admits a left adjoint J, it exists a symmetric monoidal closed category

where D’ is a restriction of D and T’ a restriction of i 7- .
6. By Proposition 23, Vo is closed for D. So this corollary results

from the corollary of Proposition 21. 0

C O R O L L A R Y 2. Under the following conditions, Va- defines a symmetric mo-

noidal closed subcategory Oo of OE:
1° o- is cartesian,

2° T commutes with 9 projective limits,

3° i A is a a- -structure in V ( for example, if all the indexing- categories

o f o- are connected or if i is a final object of V).

6. Proposition 23 asserts that V7 is closed for D .

If G and G’ are o--structures in V , the functor

is a o--structure in V , since [G’, G] is a 0- -structure in V X V and r is

commuting with J-projective limits. Hence Va- is also closed for 7-. Since

i’ belongs to Vo (condition 3), Va- defines a symmetric monoidal closed

subcategory of 0 E . V

COROLLARY 3. We suppose o is cartesirxn and V is a category admitting
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a carte.sian closed structure. If V satisfies condition (L), then Vo admits

a cartesian closed structure.

A. Let 0 be any symmetric cartesian closed category whose underly-

ing category is V (it is defined up to an isomorphism). Its tensor-product
functor T is in fact a product functor, so that it commutes with 9-projective
limits. As i is then a final object of V , the constant functor i A commutes

with projective limits; a fortiori, it is a 0--structure in V . Hence Corolla-

ry 2 asserts that Va- defines a symmetric monoidal closed subcategory Oo

of 0 . Since OE is cartesian, r being a product functor, so is Oo. V

E X A M P L E . Let V be a category admitting ifo -proj ective limits and Fo -in-
ductive limits; so it satisfies (L). If V satisfies also the condition:

(L’) {There exists an U -ordinal § such that. g -proj ective limits commu-

te with inductive limits indexed by  § &#x3E; , in V,

the insertion functor from Va- to VE admits a left adjoint [Fl]. Then, by
Corollary 1, Va- underlies a symmetric monoidal closed category as soon as

0- is cartesian. The condition (L’) is verified, for instance, when V is lo-

cally §-presentable [GU] , or when V is a fibred category over a catego-

ry satisfying (L’) f see [W] ).

REMARKS. 10 The third property of Condition (L) may be replaced every-
where by the less restrictive condition:

V admits sums indexed by the sets E (u’, u ) , where u and u’ are ob-

j ects of 2.

Indeed, in this case, let 11’ be the full subcategory of N whose objects
are the It-sets E such that there exists in V a sum IIi (of E exemplars

E

of i ), where i is still the unit of the symmetric monoidal closed category
O. Choosing such a sum q’(E) for each object E of t’ , we get a functor

q’ : M -&#x3E; V , which is a « partial adjoint)) of V (·, i) . The sets 2( u’, u ) are

objects of M’ . If E and E’ are objects of ?’ , then q’(E’ ) T q’(E ) is a sum

of E’ X E exemplars of i , since - T q’ (E) , being a left adjoint, commutes

with sums. Hence M’ is closed for finite products, and the functors



190

are equivalent. The proofs of Proposition 23 and of its Corollaries using on-

ly the values of q on sets E’ X E , where E and E’ are of the form E (u’ , u ) ,

they are also valid if we replace q by q’ .

20 We have not used the general result of Day [D] , but a very special
case of it (Example 5 - 3 of [D]). In fact, Day associates to any «premonoi-
dal symmetric structures P: E*X E -&#x3E; V a symmetric monoidal closed

category P whose underlying category is V In a forthcoming paper [FL]
Foltz and Lair prove that Va- is also closed for the closure functor of P E
when P defines a double O-costructure in V , i. e. when there exists a o*-

structure p in (Vo)o* such that

p(y)(x’)(x) = P( y, x’, x) , when x, x’ and y belong to E .

So, in this case and if the insertion functor from Va- to V E admits a left ad-
joint, Va- is underlying a symmetric monoidal closed category Po. Notice
that Proposition 23 and its corollaries cannot be deduced from this result

of [FL]. Indeed, the category 0 E used here is the category PF’ associated
to the premonoidal structure P such that

and P does not define a double or-costructure, even if cr is cartesian.

Application.
We denote by:

- o a sketch (definition p. 30) ( E , r), where E is a cU -set, 9 its set

of indexing-categories and cr a prototype ( E , r ) generated by 6- ,
- o’ a it-type ( V, r’), where V is a category satisfying Condition (L),,
- S(o’ , o) the category of o-morphisms ( i. e. of morphisms between o-

structures) in 0-’ ,
- S( oM, o) the category of tr-morphisms in the canonical J-type o-m =

( M ,rM) on m.
PROPOSITION 24. We suppose that 8’ is o’’ -regular and am-regular (defi-
nition p. 47 ) and that S (oM ,o) admits a cartesian closed structure. Then:

1° S(o’ , o) is underl ying a symmetric monoidal closed category i f V

underlies a symmetric monoidal closed category (3 and i f one o f the following



191

conditions is satisfied:
a) There exists an ordinal f in U such that the J-projective limits in V

commute with the inductive limits indexed by  § &#x3E; .

b) T commutes with 9 -projective limits and i’ is a o-structure in V .

2° S(o’ ,o) admits a cartesian closed structure if V admits one.

V. 1° o is cartesian. Indeed, tr being oM - regular, the categories mâ-
and S (oM, o) are equivalent. By Proposition 7 (page 30), the prototype 0-

generated by 6- is also a limit-bearing category generated by cr, so that Mo

is isomorphic to mô-. Hence, Mo is equivalent to S(oM, o) and, S (oM, o)
admitting a cartesian closed structure, Mo also admits one. It follows (Pro-

position 20) that 0- is cartesian. 

20 The categories S(o’ , o) and S(o’, o) are isomorphic (Corollary

2, Proposition 6). As 6- is o-’ -regular, the Corollary of Proposition 16 as-

serts that the prototype cr generated by 6- is also o’ -regular. This implies
that the category Va- is equivalent to S(a’ , a), and a fortiori to S(o’ , o).
Hence S(o’ , o) underlies a symmetric monoidal closed category iff Vo is

underlying one; so the proposition results from the corollaries of Proposi-
tion 23 and from the Example. V

12. Application to categories of structured functors.

Applying the preceding results to the «sketch of categories », we de-

duce, from a monoidal closed structure on V , a similar one on the category

of functors in V (or category of categories in V).

An integer n is considered as being the set {0, 1, ... , n-1} (i. e.

as a finite ordinal); we denote by n the category  n &#x3E; defining the usual

order on n .

Let V be the simplicial category: its objects are the integers, its

morphisms are the monotone maps between integers equipped with their usual

order. We denote by 5i the dual of the full subcategory of V whose objects
are 1, 2, 3 and 4. A set of generators of 5i is formed by the morphisms
drawn in the following diagram and by three other morphisms from 3 to 4.

The denomination of the morphisms will result from the following properties:
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In 5:, we have the two pullbacks

and t is a kernel of the pair ( 2 , t - a). 

We denote by:
- 7 the subdivision category of 2 and I’ the category with two objects

and two morphisms with the same source and the same target:

- y and y’ the projective cones indexed by 1 defining respectively
the pullbacks (( a, v), ( f3, v’ )) and (( v, v’), ( v’, v)), so that

- y" the proj ective cone indexed by I’ and defining t as a kernel of

(2, t. a), so that y"(0) =t.
- F the set y’} and F the set {y , yB y" }.
- § the singleton {I} and J the set {I, I’}.
- 0- and Cr the pairs (E , r) and (E , r) .
- oM the canonical S-type (M, rm) on the category M .

P R O P O SIT IO N 25. o and a- are regul ar prototypes, which are cartesian.

The category S(oM,o) is isomorphic to the category F of functors and

Mo is equivalent to F.

A. 1° o- is a prototype, y , y’ and y" being limit-cones. Let U be
the subcategory of 2 generated by the set of morphisms drawn in the dia-
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gram above and cry the presketch obtained by equipping U with the cones

(restrictions to U of) y , y’ and y" . Then crj is the sketch of categories
considered in [E2] , and S (oM, oF) is isomorphic to T.

Each morphism y in 2 and not in U having the vertex 4 of y’ as
its target, it is the factor of y’ y through y’ ; so the construction of the

prototype generated by cry (Proposition 6) stops at the first step and gives
o- - Corollary 2, Proposition 6 , asserts that S(oM, o) is isomorphic to

S (oM, oF) . So there exists an isomorphism from S(oM a) to 5:; it as-

signs to the 0--structure F in D1R the category whose set of morphisms is

F( 2), the law of composition being F( K) , the maps source and target

F(a) and F(B).
As cry is a regular sketch (Propositions 4 and 5 of [E2]), its pro-

totype cr is also regular (Corollary, Proposition 16). In particular, mo- is

equivalent" to F.
20 For each category V , the categories V’ and V’ are identical. In-

deed, a cr-structure in V is also a cr-structure in V . Now let F be a o-

structure in V . Since L is a right inverse of cx in E, the morphism F (t)
is a right inverse of F(a) ; this implies that F(t) is a kernel of the pair
(F(2), F(t). F(a)) in V. Hence F is a o"-structure in V.

It follows that mo- = is equivalent to j=. Since ? admits a car-

tesian closed structure, ma- also, i. e. o and cr are cartesian (p. 78). V

REMARKS. 1° A o-structure F in oM corresponds to a category on F ( 2 )

whose law of composition is F(K) , equipped with an injection F( L) de-

fining F(1) as a set of obj ects. So, S (oM, o-) is isomorphic to the ca-

tegory of functors between categories with a given set of objects.
2° In [E2] the sketch of categories was in fact defined as a «pointed

sketch &#x3E;&#x3E;, i. e. the t had to be mapped on a canonical injection. This con-

dition is expressed here by asking F (t) to be a  canonical &#x3E;&#x3E; kernel, so

that we have no need of pointed sketches.

DEFINITION, o is called the prototype of categories with objects and o-

the prototype of categories. If V is a category, we define a category in V

as a 0--structure in V , a functor in V as a 0- -morphism in V . If o’’ is a
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4-type, the -0---structures and o-morphisms in u’ are called categories in

o’ and functors in o-’.

The categories in V are called generalized structured categories.
in [E2] , category-objects in V in most papers. We denote by:

- if ( V ) the category Va- of functors in V : in particular F(M) =Mo.
- F(o’) the category S(o’,o) of functors in a 9-type 0-’ .

PROPOSITION 26. We suppose that V is a category whichadmits pullbacks,
kernels and sums o f pairs.

1° 1 f V admits a cartesian cl o sed structure, F( V) admits al so one.

2° L et O, (V, t, i, a, m, D) be a symmetric monoidal closed

category.

a) 1 f r commutes with pullbacks, if ( V ) defines a symmetric monoidal clo-

sed subcategory F(O) of C2 (Section 10)..
b) 1 f the insertion functor from F ( V ) to VE admits a left adjoint J , there

exists a symmetric monoidal closed category F(O) whose underlying ca-
tegory is F( V) and whose tensor product assigns J T [ G’, G] to the pair

( G’ , G ) o f functors in V.

V. 0- is cartesian (Proposition 25) and the only category I belonging
to J is connected. So Proposition 26 will result from the Corollaries of Pro-

position 23, if we prove that V satisfies the condition (L) of page 7R (mo-

dified according to Remark 1, page 81).
We may choose a universe 11 to which belong the sets V ( s’ , s ) ,

where s and s’ are objects of V (since we suppose the axiom of universes

satisfied). As E(u’ , u) , where u and u’ are equal to 1 , 2 , 3 or 4, is a

non void finite set, V admits sums indexed by E (u’ , u) . Finally, the sub-
division category .’. E of 2 is a finite connected category, so that the exis-

tence of E-ends in V follows from the

L EMMA. I f V is a category admitting pullbacks and kernels of pairs, it ad-

mits projective limits indexed by any category generated by a sub-neocate-

gory which is finite and connected.

V . This (probably well-known) result is proved by induction on the num-

ber n of proper morphisms (i. e. different from an object) of the finite con-
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nected generating sub-neocategory. The assertion is evident if n = 1 . We

suppose it valid for n = i and we take a functor F : C - V , where C ad-

mits a generating sub-neocategory B which is finite, connected, and has

i + 1 proper morphisms. We can find a sub-neocategory B’ of B which is

connected and has i proper morphisms. We denote by:
- y : e - u the unique proper morphism of B not in B’,
- C’ the sub-category of C generated by B’ ,
- F’ : C’ - V the functor, restriction of F .

By the induction hypothesis, there exists a limit-cone 0’: s’ ^ -&#x3E; F’ .

a) If u is not an object of B’ , then s’ is also a projective limit of F.

b) If u is an object of B’ and e is not in B’ , there exists a pullback

and we get a limit-cone 8 : s^ -&#x3E; F by defining

if 

c) If u and e are objects of B’ , let w be a kernel of the pair (8’ (u ) ,

F (y) . 8’ (e)) . Assigning 8 (u’) = 8’ (u’) . w to u’ E Bo we define a limit-
cone 8 : s’ - F . This proves the Lemma by induction. 0

COROLLARY. Let 0-’ be a 4--tyPe (V,r’), where V is a category admit-
ting sums of pairs. The properties 1 and 2 of Proposition 26 are also valid

if we replace F (V) by F( o) (resp. by S(o’,o) ).

V . This is deduced from Proposition 24 applied to Cr (resp. to o) by
an argument similar to the proof of Proposition 26. V

EXAMPLE. Let p be a saturated homomorphism functor [E1], i. e. p is

a faithful functor from V to the category M of maps and, if s is an object
of V and f a bijection with source p (s) , there exists one and only one
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invertible morphism f’ of V with source s satisfying p (f’) = f . Let o-’

be a I-type (V, r ’) such that p ’y is a canonical limit-cone in ? for any

cone y of r’. A category in o-’ is called a p -structured category and

j= (0-’) is identified with the category F (p) of p -structured functors [E2] .

The Corollary gives conditions for a symmetric monoidal (resp. a carte-

sian) closed structure 0 on V to determine a similar structure on F (p ) -
This statement generalizes Proposition 10 [BE] , relative to the case whe-

re p is equivalent to the base functor V ( -, i ) of 0 (this condition is ve-

ry restrictive, since p is supposed faithful). It implies for instance, if p

is the faithful functor PF: F - 5R, that the category F(pF) of double func-
tors admits a cartesian closed structure, since ? admits one (this does

not result from [BE], the base functor F(-,1) of if being equivalent to

the not faithful functor p’Cj which assigns to a functor O its restriction Oo).
13. Another construction of a c losure functor on F(V) .

We are going to give a direct construction of a closure functor of

F (O); this construction proves that such a functor may be defined even if

V admits pullbacks and kernels of pairs, but not sums of pairs.

A) Closure functor on if (M).
Let F : E - M be an object of F(M) - In N, we have the pullbacks

where the first one is the canonical one, i. e. E is the set of pairs

such that

So there exists a unique bijection f : E -&#x3E; F (3) satisfying

and

The map F ( K ) . f is the law of composition of a category C whose set of

morphisms is F( 2). We say that C is the category determined by F , and

we denote it by n ( F ) .

We get an equivalence n: F(M) -&#x3E; F by assigning to a morphism
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0: F - F’ of -F (M) the functor n(8): n(F) -&#x3E; n(F’) defined by the

map 8(2). 

We consider the category of functors in F (M) and, for

each object u of E, the « evaluation functors

and

which assign 8 (u) to 8. If u’ is also an object of E, we write

There exists an equivalence 17 from F(F(M) to the category

-F(pF) of double functors, described as follows:
- Let G be an object of F (F (M )) . Then G (2) = P (2)(G ): E-&#x3E;M de-

termines a category K4.. and the functor .

assigning to

determines a category K’ , since G(2) and G(-)(2) are objects of F(M).
The categories K’ and K-l- have G(2) (2) = P(2,2)(G) as their sets of

morphisms, and their laws of composition are, respectively, G( K)(2) and

G (2) (K) - The pair ( K’, K-l-) is a double category, called the double ca-

tegory determined by G. We denote it by 77(G).
- If 8:G -&#x3E;G’ is a morphism of F(F(M)), the map

defines the double functor n(8) from to
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P R O P O S I T I O N 27. Th ere exists a functor d: F:(M) -&#x3E; F (F (M) satis-

fying the .following conditions:

1° I f C is the category determined by an object F of F(M), the dou-
ble category’ determined by d ( F) is isomorphic to the doubl e category of
quarte ts o f C .

2° 1 f u and u’ are objects of E, the functor P ( u’ , u) d is equiva-

lent to P (u, u’)a, and P (u, 1-a is equivalent to P (u).

3° F(M) admits a closure functor M such that

for a pair (F’, F) of objects of F (M) and a morphism x of E.

V. We denote by Y the Yoneda cr*-structure in F (M). For an ob-

ject n of E, the category Cn determined by the object Y(n) of F(M) is

ispmorphic to the category n ; in particular:

The image of Y is isomorphic to the full subcategory of ? whose objects
are the categories 1,2,3 and 4. (It follows that a category K is isomor-

phic to the category determined by the object 5:( K, nY -) of F (M).)

10 Let hi be the closure functor on F (M) constructed in Proposition
20. For an object F of F (M), this proposition shows that M(F, Y-) is
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the o--structure in ma- (i. e. the category in F (M)) assigning the natural
transformation

to

Denoting M (F, Y-) by 0 ( F ), Proposition 20 also proves that NI satis-

fies the third condition.

To the functor M(-, Y-): F (M) XE - F(M) is canonically asso-

ciated the functor M’: F(M) -&#x3E; F(M) E such that M’(8) = M(8, Y - ) for

any 0 in F(M) . This functor takes its values in the full subcategory

F(F(M)) of F (M) E , since M’ ( F ) = d(F) for each object F of F (M).
Hence M’ admits as a restriction a functor d: F (M) -&#x3E; F (F (M)).

20 As Y(1) is a final object of F(M), for each object u of 2 the

functor

is equivalent to F(M) (-, Y (u)) , and therefore (by Yoneda Lemma) to P (u).
Let u and u’ be objects of 2 . We have: 

If we consider the « symmetry equivalence »

(such that the isomorphism

assigns (y, x) to (x, y)), we get the equivalence

30 Let F be an object of F(M)). We denote by C the category deter-
mined by F .

a) K being the category determined by d(F) (-)(2), there exists an iso-
morphism O(F) from K to the longitudinal category DD C of quartets of

C. Indeed, the functor

is equivalent to the functor F (C . n Y - X C2). So we get an isomorphism
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O (F): K’ -&#x3E; m C assigning the quartet

to the natural transformation k: Y(2) X Y(2) -&#x3E; F , element of K .

b) O (F) defines a double functor from the double category n( d (F)) =
( K’ , K.L) determined by "0 ( F) to the double category ( OH C, BC) of

quartets. Indeed, K 4- is the category determined by

From the symmetry of the product on F (M) we deduce that the functors

- X Y(2 ) and Y (2) X - from F(M) to F(M) are equivalent and that there

exists an equivalence rr: Y-X Y(2) -&#x3E; Y(2)X- where 7T(u) is the equi-
valence 7T( u, 2) considered in Part 2, for any object u of E. So, if 7T*

is the equivalence dual of 7T, we have the equivalence

and II (2) assigns kDD rr (2 , 2) to X: Y(2) X Y (2) -&#x3E; F. The isomorphism

T = n (II) : K-l- -&#x3E; K’ associates to k the natural transformation T (k) such

that, if x and y are morphisms of 2,

If T’ denotes the canonical isomorphism from m C to 8 C , it follows that

the isomorphism T’ O (F) T :

is defined by the same map O ( F ) as the isomorphism O (F) . V
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COROLLARY. The functor P ( 2, 2) a is equivalent to the functor P’, from

F(M) to m assigning to 8 : F - F’ the canonical pullback P’ ( 8 ), de-

fined by the following diagram, whose bases are canonical pullbacks in M :

6. Let F be an object of F(M) and 0 ( F ) the bijection considered
in the preceding proof, from K = P (2, 2) d (F) to the set o C of quartets

of the category C determined by F . There exists a bijection O ’(F) from
o C to the canonical pullback P’ ( F ) of (F (K), F(K) ), assigning

to the quartet

If we associate to F the composite bijection

we get an equivalence Y :

B) Closure functors on if ( V ) .

PROPOSITION 28. Let V be a category admitting pullbacks. There exists
a functor d : F ( V) - F (F ( V)) such that, i f G is a category in V, then

d (G)( 2) is equivalent to d(G)(-)(2) and, for s E V 0 and x E E,

V . We denote by L the full subcategory of F (M) v 
* 
whose objects

are the functors H such that the functor P (2) H = H ( - ) ( 2 ) : V * -&#x3E; M is

representable.
10 There exists an equivalence d: ?f V ) -&#x3E; L . Indeed we, have a func-

tor d’: V*XF (V) -&#x3E; ME such that
for

As V ( -, s ) commutes with pullbacks, d’ ( s , G ) = V ( G -, s ) is an object
of F (M) for each obj ect ( s , G ) ; hence there exists a functor d", from

V*XF (V) to F(M), restriction of d’. The functor d": F( V) -&#x3E; F (M) v*
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canonically associated to d" is injective, and it takes its values in a

(since P (u) d" (G) is the representable functor V ( G ( u ), - ) for any ob-

ject u of E). So it admits as a restriction a functor d from F (V) to L;
if 8 e F(V) , then d (8) : V* =&#x3E;F(M) is the natural transformation such

that d(8) (f) = V(-, f) 8, for any f e V . It is known (see [Go] and [E3])
that d is an equivalence; d-1: L -&#x3E; F (V) will denote an equivalence.

20 We denote by:
- Q" : v* X F (V) -&#x3E;F (M) E, the composite functor

which assigns d (V (-, f) 8) to ( f, 8) .
- Q’ the functor from E X F (V) to F (M) V* associated to Q".

If x: u - u’ is in V and 0: G - G’ in F ( V), we have

for any morphism f of V , and the natural transformation

is such that, for any f in V , we have

Let G be a category in V . We are going to show that the functor

Q’(-, G) takes its values in L . This will imply that Q’ takes also its va-
lues in the category L .

a) Q’ (-, G) is, a category in F (M) V*. Indeed, for each object s of

V , the functor Q’ (-, G)(s): E -&#x3E; F (M) is the object d ( V (G - , s )) of

F (F (M)) . It follows that the cone Q’ (- , G ) y, whose components in F (M)
are the limit-cones Q’ (- , G ) (s) y, is a limit-cone in F (M) V*, i f il is

equal to ’y or to y’ . Hence, Q’ (-, G ) is a category in F (M)V*.

b) We denote by R the functor from E to M V* assigning

P(2) Q’(x, G): V* =&#x3E;M to any x e E.

The functor Q’ ( - , G ) will take its values in S if we prove that R (u) is

representable for each object u of 2 . Indeed, for any f in V , we have
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- The functor P ( 2, 1 ) d being equivalent to P ( 2) (Proposition 27),

the functor R f 1 ) is equivalent to the functor assigning

to f ,

so that it is representable by G( 2 ) .
- The functor P ( 2, 2 ) d being equivalent to the functor P’ considered

in the corollary of Proposition 27, the functor R ( 2 ) is equivalent to the

functor R’ assigning P’ ( V ( G -, f ) ) to f E V. By definition of P’ and pull-
backs being computed evaluationwise in j= (m) V*, the functor R’ is a pull-
back in m V* of ( V ( G( K ) , - ) , V ( G( K ), - ) ) . Such a pullback is equiva-
lent to V( S, -) , where S is a pullback of ( G( K), G( K ) ) in V . So R (2)

is representable by S .

- Q’( 3, G) is a pullback of (Q’(a, G), Q’( B, G)) (Part a) and P(2)
commutes with pullbacks, so that R ( 3) is a pullback of ( R (a), R (B))
in m V *. We have just seen that R ( a ) and R (B) are natural transforma-

tions between representable functors; hence R ( 3 ) is representable.
- Q’( 4, G) being a pullback of (Q’(v’, G), Q’(v, G)), we deduce

similarly that R (4) is representable, as a pullback of (R ( v’ ), R (v )).

30 Q’ taking its values in L, there exists a functor Q: LX F (V) -&#x3E; L
restriction of Q’ . We denote by d’ the functor from F(V) to F(V)E ca-

nonically associated to the composite functor d-1 Q :

a) a ’ takes its values in F(F( V ) ). Indeed, if G is a category in

V, we have d’ (G) = d-1 Q (-, G ) . As ? is closed for pullbacks in F (m) V*
the functor Q(-, G) : E -&#x3E; L, restriction of the category Q’( -, G) in the

category F (m) V*, is also a category in L. The equivalence d-1 commu-
ting with pullbacks, 3 ( G ) is a category in F ( V ). It follows that there

exists a functor d: F= (V) -&#x3E; F (F ( V )), restriction of If G is a cate-

gory in V , if f is a morphism of V and if x E E, we get
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A fortiori d satisfies the condition (A) f we take f = s ).

b) Let G be a category in V . It remains to show that d ( G ) ( 2 ) is

equivalent to the functor d ( G ) ( - ) ( 2 ) : E -&#x3E; V assigning d ( G ) ( x ) ( 2 )
to x E L. Indeed, if F is an object of F (m) and C the category n ( F )
determined by F, there exists an equivalence

T(F) from ( P ( 2 ) d ) ( F ) = d ( F ) ( 2 ) to P ( 2 ) d ( F ) 

such that n ( T ( F ) ) is the canonical isomorphism from 8 C to cu C - This

defines an equivalence T from the functor P ( 2 ) d to the functor

P ( 2 ) . d : F (m) -&#x3E; F ( m ) &#x3E; assigning P ( 2 ) d ( 0 ) to 0.

We have the equivalence

from A to A’ . Since

for any f in V , it follows A = d( d( G ) ( 2 ) ). On the other hand,

for any x E ¿; so

for each f in V ; this implies A’ = d ( d ( G ) ( - ) ( 2 ) ) . Hence, T d( G ) be-

longs to L and d-1 ( T d( G)): d( G )( 2 ) -&#x3E; d ( G )( - )( 2 ) is an equivalence. v

D E F IN IT IO N . With the notations of Proposition 28, we call d ( G ) the dou-

ble category in V o f quartets of G , while d ( G ) ( 2 ) fresp. d ( G ) ( - )( 2 ) )
is called the lateral (resp. the longitudinal) category of quartets of G , and
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denoted by 8 G (resp. by m G ).

The preceding proof shows that the categories determined by

and

are isomorphic to the lateral and to the longitudinal categories of quartets
of the category determined by V ( G -, s ) , for any obj ect s of V . Moreover,

- 8 G and m G are isomorphic,
- B G ( 1 ) and oo G( 1 ) are isomorphic to G( 2 ),
- B G ( 2 ) and m G ( 2 ) are pullbacks of ( G ( K ) , G ( K ) ) in V .

REMARK. j=( V) is the category of 1-morphisms of the 2-category n ( V)
of natural transformations in V : If 6 : G - G’ and 9’ : G -G’are functors

in V , a natural transformation in V from 0 to 9’ is a functor 0 in V,

from G to B G’, such that d( G’ ) ( a ) oo o = a and d ( G’ )( B ) oo o = 0’

(by construction, we may clearly identify d ( G’ ) ( 1 ) with G’ ). When V ad-

mits pullbacks, it is known [ G1 ] that n ( V ) is a representable 2-category,
a representation of the category G in V being precisely the lateral catego-

ry 8 G in V of quartets of G.

PROPOSITION 29. Let v = ( V, r, i, a, b, c, m, D) be a symmetric monoi-

dal closed category, where V admits pullbacks and kernels of pairs.
1 ° There exists a functor E : 5: ( V ) X F ( V ) * -&#x3E; F ( V ) such that, for

a pair ( G’ , G) of categories in V , we have:

20 If the conditions of Proposition 26 are satisfied, E is equivalent
to the closure functor L’ of F ( V ) and d ( G ) is equivalent to the cate-

gory D’ ( G, q Y - ) in F ( V ), for any category G in V.

A. 10 The Lemma of Proposition 26 shows that the existence of pull-
backs and kernels in V implies there exist E-ends in V. It follows that

there exist also 2-ends in F( V ), which are computed evaluationwise. We
choose a E-end-functor S: F ( V ) E X E* -&#x3E; F ( V ).

a) Let G and G’ be categories in V. There exists a functor A from

E X E X E * to V which assigns

to
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The corresponding functor A’ : E X E * -&#x3E; VE , which assigns
to

takes its values in F ( V ), since A’( u’ , u ) is, for a pair ( u’, u ) of ob-

jects of 2 , the composite of the category d ( G’ )( u’ ) in V with the func-

tor D ( -, G ( u ) ) which commutes with pullbacks. So, there exists a func-

tor H (G’, G ): E X E* -&#x3E; F ( V ), restriction of A’ . We denote by E ( G’ , G )

the canonical end S H ( G’ , G ) in F ( V ).
b) Let 9 : 1 - G and 0’ : G’ -&#x3E; G’ be functors in V . If u and u’ are

objects of 2 , we have the natural transformation

from H(G’, G)( u’, u ) to H ( G’ , G)( u’ , u ). Assigning this natural trans-
formation to (u’, u), we get a natural transformation

We write

c) It is easily verified that we have so defined a functor

and a fortiori a functor

20 We suppose moreover that the conditions of Proposition 26 are sa-

tisfied, i. e. V admits sums of pairs and also either T commutes with pull-
backs or the insertion functor from F ( V ) to V E admits a left adjoint. Then
there exists a symmetric monoidal closed category F ( V ) whose closure
functor D’ is defined by D’ ( G’ , G ) = S H’ ( G’ , G ) , (Proposition 2 3) , the
functor H’ ( G’ , G ) : E X E* -&#x3E; F ( V ) assigning
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to

where q is a «partial adjoint) of V(-, i).

For any category G in V, we denote the category D’ ( G, q Y- ) in

F ( V ) by d ( G ).
a) Let G be a category in V. Then 8 (G) is equivalent to d (G).

Indeed, according to the proof of Proposition 23 (Part 1), for each object
u’ of 2, the category 8 ( G) is such that V ( ., s) 8 ( G )( u) is canonically

equivalent to d ( V ( G-, s)) ( u ), for any object s of V.

by Proposition 2R. Hence, denoting yet by d: F ( V ) -&#x3E; L the isomorphism
defined in Part 1, Proposition 28, we deduce that

and

are equivalent; a fortiori there exists an equivalence ç( G ) ( u ): 8( G)(u)-
d ( G ) ( u ). More precisely, we get an equivalence ç (G): d (G) -&#x3E; d( G ).

b) Let G and G’ be categories in V . We define an equivalence

assigning the equivalence

to

Moreover, there exists

- a functor H’: F ( V ) X F ( V )* -&#x3E; F =( V ) E X E*, defined as in Part 1,

such that D’ ( 0’ , 0 ) is an end of H’ ( 0’, 0) , for each pair ( 0 ’ , 0 ) of
functors in V ;

- an equivalence X : H’ - H assigning X ( G’ , G ) to ( G’ , G ) .

Hence S X : S H’ -&#x3E; f H is an equivalence, and D’ is equivalent to E. V

The construction of E does not depend upon the existence of sums

in V . This suggests that E could always be a closure functor on F ( V ) .
In fact, we have:

PROPOSITION 3 0. Let 0 be a symmetric monoidal closed category
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1 f V admits pullbacks and kernels of pairs and if T commutes with pull-

backs, then there exists a symmetric monoidal closed category

where E is the functor defined in Proposition 29 and where T assigns the

category T [G’, G ] to the pair ( G’ G ) of categories in V .

6 . Let r be the tensor-product functor on V E such that

for any

if e and 0’ are natural transformations. As T commutes with pullbacks,
G’ 7- G is a category in V when such are G and G’ . So, there exists a func-

tor T’ : F ( V ) X F ( V ) -&#x3E; F ( V ) , restriction of 7- and, F( V ) being a full

sub6ategory of VE, the canonical symmetric monoidal category on VE ,
whose tensor-product is 7-, admits a symmetric monoidal subcategory

since I " is a category in V , the category I indexing pullbacks being con-

nected. Hence Proposition 30 will result from Theorem II - 5 - 8 [EK] if we

know that E ( G’ , G ) is a cofree structure generated by G’ relative to the

functor - T’ G: F ( V ) -&#x3E; F ( V ), for each pair ( G’ , G ) of categories in V .

We will only sketch the proof of this assertion, omitting the purely techni-

cal computations.

10 The following remarks will be useful:

a) Let F and F’ be categories in V and f : F ( 2 ) -&#x3E; F’ ( 2 ) a mor-

phism of V . There exists a functor 0: F - F’ in V such that 0 ( 2 )= f
iff f satisfies the equalities: 

where f’ is the « pullback) morphism such that

and (it exists, the two first

equalities implying since F’( l) is

a monomorphism and a. v = B. v’ ).

In this case, we have
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and 0 ( 4 ) is defined by pullbacks. (The existence of e means that ad-

mits an  idea &#x3E;&#x3E; [E3], which is ( K , t . a, t . f3 ) .)
We will say that 0 : F - F’ is the functor in V defined by f .

b) Let B : E X E* -&#x3E; V be a functor such that B ( -, u ) is a category

in V for each obj ec t u of E, and S an end of B , with canonical projec-
tions p ( u ): S -&#x3E; B ( u , u ). If g : s -&#x3E; B( 2, 2 ) is a morphism in V , there

exists a morphism g: s -+ S such that p ( 2 ) . g = g iff:

- B ( 2, t . a). g = B(t . a , 2). g, B ( 2, t . B) . g = B (t . B. 2). g,
- B ( 2, K ) . g = B ( K , 3 ). g’ , where g’ is the unique morphism such that

and

(its existence follows from the fact that B ( -, 3 ) is a category in V ).

It is easily proved that there exists a cone X: S’" -+ .’. B , where
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and X(4) is defined by pullback as being the morphism such that

Then g is the factor of k through the cone p: S^ -&#x3E; :. B defining the end.

20 Let G and G’ be categories in V .

a) We consider:

- the longitudinal category m G’ = a ( G’ ) ( - ) ( 2 ) of quartets ot G’,

denoted by G’ (definition page 07);
- the canonical proj ection p ( 2 ) from the end

to

- the morphism

A A

defining Ð(G’(2), G(2)) as a cofree structure generated by G’ ( 2 ) rela-

tive to the functor - T G ( 2 ): V -&#x3E; V;
- the canonical projections w : G’ ( 2 ) -&#x3E; G’ ( 3 ) and w’ defining G’ ( 2 )

as a pullback of ( G’ ( K ) , G’ ( K ) ).

It may be shown that the composite morphism r( 2 ) :

satisfies the hypothesis of Part 1- a , so it defines a functor:

b) r defines E( G’, G ) as a cofree structure generated by G’ relative

to -T’G:F(V)-&#x3E; F(V). Indeed, let 8 : G"T’ G -&#x3E; G’ be a functor in V .

To define the unique functor in V:

such that

we are going to construct a morphism g : G"(2) - D (G’(2), G ( 2 ) ) satis-

fying the hypothesis of Part 1- b , applied to the functor B assigning
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to

Then there exists a morphism

such that

and a technical argument proves that g defines a functor 0’ in V , from

G" to E ( G’, G ) , satisfying the wanted property.
To construct g , we consider: .

- the morphism
- the morphisms and from

to

- the projections iu and iu’ of the pullback of

defining

- the unique morphism such that

it exists, since

(For usual categories, this morphism corresponds to the map from the pro-

duct category C" X C to Q ( C" XC) assigning to ( k", k ) the quartet

- the composite morphism
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Then g is the unique morphism g:G"(2)-&#x3E; D(G’(2), G(2)) such that

COROLLARY. 1 f V admits pullbacks, kernels o f pairs and a cartesian clo-

sed structure, then F( V) admits a cartesian closed structure. 0

R E M A RK S. 1° Proposition 30 (announced in [BE]) has been indicated by
the first of the authors in 1971, in a lecture at the Seminaire Ehresmann

(Paris). The proof given then was along the same arguments as above ex-

cept that ends were not explicitely used (the authors did not know them) but

constructed from kernels and pullbacks.

20 It may be asked whether Proposition 30 extends to more general

cone-bearing categories. This does not seem true. Indeed, we denote now

by 0- any projective cone-bearing category (E,T). As in Part 1 Propo-
sition 28, we prove that there exists an equivalence d from Va-, for any

category V , to the full subcategory f’ of (Mo)V* defined as follows:
the objects of S’ are those functors H such that the functor H(-)(u)

is representable, for any object u of 5i

(in the case where cr is the prototype of categories, ?’ is identical with

L, since 1 , 3 and 4 are constructed successively as projective limits).
But, even if Cr is cartesian, there is no way to prove that, G being

a o-structure in V , the functor from 2 to (mo)V* associated to

takes its values in 2-’ - However, if such is the case, we may extend the

construction of 9(G), and then the construction of E .



213

BIBLIOGRAPHY.

AB. A. BASTIANI, Théorie des ensembles, C. D. U. , Paris, 1970.

B . J. BENABOU, Structures algébriques dans les categories, Cahiers Topo. Géo.

diff. X-1, Paris (1968), 1 - 126.

BE. A. BASTIANI-C. EHRESMANN, Catégories de foncteurs structurés, Cahiers

Topo. Géo. diff. XI - 3 , P ari s (1969), 329 - 384.

Br. A. BURRONI, Esquisse des catégories à limites et des quasi-topologies, Es-
quisses Mathématiques 5, P aris, 1970.

Bu. E. BURRONI, Catégories discrètement structurées. Triples, Esquisses Mathé-

matiques 4 , P aris, 1970.

D . B. DAY, On closed categories of functors, Lecture Notes 137, Springer (1970).

D1. B. DAY, A reflection theorem for closed categories, Jour. P. and Ap. Alg. ,
2-1 (1972), 1-11.

DK. B. DAY-G.M. KELLY, Enriched functor categories, Lecture Notes 106, Sprin-

ger (1969), 178-191.

Du. E. J. DUBUC, Enriched Semantics-Structure (Meta)adjointness, Rev. Un. Mate.

Argentina 25 (1970), 5 - 26.

E . C. EHRESMANN, Sur l’existence de structures libres et de foncteurs adjoints,

Cahiers Topo. Géo. diff. IX-1-2, Paris (1967), 33-180.

E1. C. EHRESMANN, Algèbre, 1ère Partie, C. D. U. , Paris, 1968.

E2. C. EHRESMANN, Catégories structurées généralisées, Cahiers Topo. Géo.

diff. X - 1 (1968), 139 - 168.

E3. C. EHRESMANN, Introduction to the theory of structured categories, Techni-

cal Report 10, University of Kansas, Lawrence (1966).

E4. C. EHRESMANN, Sur les structures algébriques, C. R. A. S. 264 (1967), Paris.

E5. C. EHRESMANN, Esquisses et types des structures algébriques, Bule. Inst.

Politec. Ia015Fi, XIV (1968), 1- 14. (This paper has been developed in a lecture

at the Symposium on Categorical Algebra, Rome, March 1969).

E6 . C. EHRESMANN, Catégories structurées, An. Ec. Norm. Sup. 80, Paris (1963).

EH. B. ECKMANN-P. HILTON, Group-like structures in general categories, Math.

Ann. 145 (1962), 227.

EK. S. EILENBERG - G. M. KELLY, Closed Categories, Proc. Conf. Cat. Algebra
of La Jolla, Springer (1966), 421 - 562.

F. F. FOLTZ, Complétion des V-catégories, Cahiers Topo. Géo. diff. XIII (to ap-
pear 1972).

F1. F. FOLTZ, Sur la catégorie des foncteurs dom-inés, Cahiers Topo. Geo. diff.
XI-2, Paris (1969), 101-130.



214

F2. F. FOLTZ, Sur la domination des catégories, II et III, Cahiers Topo. Géo. diff.
XII-4, Paris (1971), 375-443.

FK. P.J. FREYD- G. M. KELLY, Categories of continuous functors, Jour. P. and

Ap. Algebra 2 - 2 (1972), 169 - 191.

FL. F. FOLTZ-Ch. LAIR, Fermetures standard des catégories algébriques, Ca-

hiers Topo. Géo. diff. XIII-3, Paris (1972) (to appear).

G . J. W. GRAY, The categorical comprehension scheme, Lecture Notes 99, Sprin-

ger (1969), 242 - 312. 

G1. J. W. GRAY, 2-catégories coreprésentables (lectures given at Paris 1970; mi-

meographed Notes by P. LEROUX); summary in Lecture Notes 195, Springer.

Go. A. GROTHENDIECK, Techniques de descente, Séminaire Bourbaki 195, 212

(1960), Paris.

GU. P. GABRIEL - F. ULMER, Lokal präsentierbare Kategorien, Lecture Notes 221

Springer (1971).

GZ. P. GABRIEL - M. ZISMAN, Calculus of fractions and homotopy theory, Springer.

J . G. JACOB, Catégories marquées et faisceaux, Thesis (mimeographed), Paris,

1969.

K. G. M. KELLY, Adjunction for enriched categories, Lecture Notes 106, Sprin-

ger (1969), 166- 177.

L . Ch. LAIR, Produits tensoriels d’esquisses (to appear).

L1. Ch. LAIR, Foncteurs d’omission de structures algébriques, Cahiers Topo. Géo.

diff. XII - 2, Paris (1971), 147 - 186.

L2. Ch. LAIR, Construction d’esquisses. Transformations naturelles généralisées,

Esquisses Mathématiques 2, Paris, 1970.

Lb. J. LAMBEK, Completions of categories, Lecture Notes 24, Springer (1966).

ML. S. MAC LANE, Categories for the uorking mathematician, Springer, 1972.

W . M. WISCHNEWSKY, Partielle Algebren in Initialkategorien, Math. Zeit. 127

(1972), 83-91.

A. BASTIANI,

Département t d e Mathématiques

Faculte des Sciences

33 rue Saint-Leu, 80. AMIENS.

C. EHRESMANN

Département de Mathématiques
Universite P aris VII, Tour 55

2 Place Jussieu, PARIS 5e.


