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CAHIERS DE TOPOLOGIE Vol. XIII- 2
ET GEOMETRIE DIFFERENTIELLE

CATEGORIES OF SKETCHED STRUCTURES
by Andrée BASTIANI and Charles EHRESMANN

INTRODUCTION.

In the last decade algebraic structures have been defined on the ob-

~

jects of a category V:

1° A multiplication on an object e of V is a morphism k from a pro-
duct eXe to e; monoids on e, groups on e, ... are obtained if further
axioms are imposed on k£ by way of commuting diagrams ([Go], [EH]).

(The product may also be replaced by a «tensor producty», but this point
of view will not be considered here.)

2° The theory of fibre spaces and local structures led to p-structured
categories (such as topological categories, differentiable categories, or-
dered categories, double categories) [EG] relative to a faithful functor p
from V to the category of mappings (*), and more generally to categories

in V (or category-objects in V).

Algebraic theories of Lawvere [Lw] (see also [B] ) give an axio-
matic way to define universal algebras; but they do not cover structures
defined by partial laws, such as categories. However, all these structures
may be defined by «sketches». Other examples of sketched structures are:
categories equipped with a partial or a total choice of limits [Br], «dis-
cretely structured» categories [Bu], adjoint functors [L2], and also«less

algebraic » structures, such as topologies [B:].

More precisely, let o be a cone-bearing category, i.e. a category
(or even a neocategory) 2, equipped with a set of cones. A O -structure in

V is [E3] a functor from = to V, applying the distinguished cones on

(*) A category will be considered as the category of its morphisms and not, as usu-

ally, as the category of its objects.
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II A. BASTIANI- C. EHRESMANN

limit-cones; a O -morphism in V is a natural transformation between O-
structures in V. We denote by V7 the category of o -morphisms in V.

There are many cone-bearing categories 0 such that V7 is equi-
valent to VUI; among them, we associate «universally» to o0 :

- a limit-bearing category o (i.e. the distinguished cones are limit-
cones),

- a presketch & (i.e. a functor is at most the base of one distingui-
shed cone),

- a prototype 77 (i.e. a presketch which is a limit-bearing category),
and, if § is a set of categories containing the indexing-category of each
distinguished cone of o,

- a loose §-type 7' (i.e. a limit-bearing category in which each func-
tor indexed by an element of § is the base of at least one distinguished
cone); for a universal algebra, 7' «is» its algebraic theory;

- a§-type T (i.e. a loose g-type which is a presketch).

Moreover:

- E, &, 7 and T are defined up to an isomorphism,

- 7' is defined up to an equivalence,

- if o is a sketch (i.e. if it is injectively immersed in 77), then 77 and
o are isomorphic, while 7 and 7' are equivalent.

The existence of 7 and T was proved in [E4] and [ES] under
the stronger assumption that O were a presketch; this was necessary, the
proof using the existence theorem for free structures whose hypotheses are
not satisfied in the case of genersl cone-bearing categories. But subse- -
quent works, in particular [Bu] and the (yet unpublished) paper of Lair on
tensor products of sketches [L], showed that cone-bearing categories are
often more convenient, and so they convinced us of the importance of im-
mersing them in «universal» loose types.

We achieve this here by giving an explicite construction (by trans-
finite induction) of E, 7, T and T'. These constructions are suggested
by the explicite construction of the free §-projective completion of a cate-
gory in [E]. When applied to a prototype, the constructions of 7 and 7'

generalize theorems of [E] on completions of categories.
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CATEGORIES OF SKETCHED STRUCTURES 111

These results are proved in Part I in the case where the distingui-
shed cones are projective, in Part II when there are both projective and
inductive distinguished cones. They may also be expressed as adjonctions
between the category §" of morphisms between cone-bearing categories,
and some of its full subcategories. In fact, 8" is the category of 1-mor-
phisms of a representable and corepresentable 2-category, and these ad-

jonctions extend into 2-adjonctions.
Part III is devoted to the problem:

’ If o is a projective limit-bearing category on 2 and if V is under-
P) {

lying a symmetric monoidal closed category 0, does V7 admit a

symmetric monoidal closed structure ?

We solve this problem in the case where O is «cartesian»,.i.e. where the
category M7 of o -morphisms in the category M of maps is cartesian'closed
(Proposition 20 is a characterisation of such a 0). More precisely, if o is
cartesian and if V admits «enough» limits, then V7 is underlying a sym-
metric monoidal closed category as soon as either the tensor product of
O commutes with the projective limits considered on O, or the insertion
functor from V7 to V2 admits a left adjoint.

To prove this, we consider the symmetric monoidal closed category
@E defined by Day (Example 5-3 [D]) and we show that V7 is closed for
the closure functor (or Hom internal functor) of @2. The result is then de-
duced from a Proposition giving conditions under which a subcategory of
a symmetric monoidal closed category admits such a structure (these con-
ditions seem apparently slightly weaker than those we have just seen in a
recent paper by Day [D1]). Notice that we use only a partial result of [D] ;
his general result is used in [FL] to get solutions of (P) under another

kind of conditions (see Remark 2, page 82).

As an application, we deduce a symmetric monoidal closed struc-
ture on the category F(V) of functors in V (when o is the prototype of
categories), as was announced in [BE]. we finally show that the closure
functor E on F(V) may also be constructed by a direct method (whose

idea is to define the analogue of the «double category of quartets» gene-
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v A. BASTIANI-C. EHRESMANN

ralizing the method used in a particular case in [BE]), which requires that
V has only pullbacks and kernels (and not even finite sums, which have

to be used in the first construction).

Sketched structures may be generalized in different ways: one of
them (proposed two years ago by the first of the authors in a lecture) is to
replace the cone-bearing categories by cone-bearing double categories ( 2-
theories of [Dul] and [G1] are examples of them). Another way consists
in substituting «cylinders» to the cones, as is done in a just appeared pa-
per by Freyd and Kelly [FK].

We use throughout the terminology of [E1], but we have tried to
take lighter notations, nearer to those used in most papers on categorical
Algebra. We stay in the frame of the Zermelo-Fraenkel set theory, with the

supplementary axiom of universes: Any set belongs to a universe.
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CATEGORIES OF SKETCHED STRUCTURES 1

I. PROJECTIVE LIMIT-BEARING CATEGORIES

1. Neocategories and neofunctors.

Firstly, we recall the definition of a neocategory (or «graphe mul-
tiplicatif» [E1] ). Graphs and also categories appear as «extreme» examples
of neocategories.

A neocategory X is a couple formed by a set, denoted by 2 , and
a «partial law of composition» K on X satisfying the following axioms:

I° « is a mapping from a subset of Xx2 (denoted by Z#2 and cal-
led the set of composable couples) into 2; instead of «(y,x), we write
y.x (or yox ,or yx,...) and we call y.x the composite of (y, x).

2° There exists a graph (2 ,5,a ) (i.e. @ and [ are retractions
from X onto a subset of 2, denoted by 2,), such that:

a) For each element x of X, the composites x.a(x) and B(x).x

are defined, and we have:
x.0(x)=x=5(x).x;
b) If the composite y.x is defined, then:

a(y)=pLB(x), a(y.x)=oa(x), S(y.x)=p(y).

From the condition 2, it follows that the graph (3,/5,a ) is uni-
quely defined; moreover the set 2, of its vertices (called objects of 3) is
the set of unit elements (i.e. identities) of =. We say that a(x) is the
source of x, and that [SB(x) is the target of x. The elements of > are cal-

led morphisms of 2. We write
x€Z or x:e —e' in 2

instead of: x is a morphism of >, with source e and target e'. If e and

14

e’ are two objects of 2, the set of morphisms f: e — e’ in 2 will be de-

noted by e'.2.e orby 2(e’, e) (and not 3(e, e’) as usually).

EXAMPLES. 1° A graph (Z,/5,a ) may be identified with the neocategory
> admitting 2 as its set of morphisms and in which the only composites are

x.a(x) and B(x).x, for every element x of 5 .
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2 A. BASTIANI - C. EHRESMANN

20 A category is a neocategory in which all the couples (y, x) where
a(y)= (x) are composable (so that Z* = is the pullback of (a,f)),

the law of composition being furthermore associative.

Let 2 and ' be two neocategories. A neofunctor ¢ from X to-

ward 2’ is a wiple (2',¢ ,2 ), where ¢ is a mapping from 2 into 3’
such that ¢(e)€ 2 for each e € Z, and that:

If y.x is defined in =, then ¢(y).¢(x) is defined in X', and

¢(y) ¢ (x)=¢(y.x).
We say also that ¢: £~ 3' is a neofunctor; we write ¢ (x) instead of
¢ (x) and ¢, denotes the restriction ¢o: 2y 23! of .

If ¢:3-3" and ¢':2' —3" are two neofunctors, we denote

by ¢' *¢, or by ¢'¢, the neofunctor from = to =" assigning
¢' (Pplx)) to x in 2.

Neofunctors between graphs reduce to morphisms between graphs
(in the usual meaning [E1]) and neofunctors between categories are ordi-

nary functors.

Let 2 and Z' be neocategories. If ¢ and |/ are two neofunctors
from 2 to 3', a natural transformation T from ¢ to ) is defined as a triple
(Y ,70,% ), where 7, is a mapping associating to each object e of = a
morphism 7o (e): ¢(e) 2y (e) of =' (also denoted by 7(e)), such
that the composites Y (x).7(e) and T(e').®(x) be defined and that

Y(x).T(e)="7(e'). ¢(x),

for each x:e — e’ in 2. We say also that 7: ¢ = is a natural trans-

formation (defined by 7, ).

EXAMPLES. 1° If u is an object of ', the constant mapping assigning
u to each morphism x in X defines a neofunctor z": 2 = 2' . If z:u —u'
is a morphism in ', we denote by z" the natural transformation (said cons-
tant on z) from «” to #'" such that z(e) = z for each e€ 3, .

2° A natural transformation from a constant neofunctor, i.e. a natural

transformation Y :u" =Y , is called a projective cone in 3', indexed by
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3, with base Y : = < 2' and vertex u. Similarly, a natural transformation
¥': ¢ = u"is called an inductive cone.

30 Let 7: ¢ * Y be a natural transformation with ¢: > —-2', If
¢': 2" = 3" is a neofunctor, the mapping ¢ '7, defines a natural transfor
mation denoted by ¢'7: ¢'¢ = ¢'; if T is a projective (resp. inductive)
cone, ¢'T is also one. If ¢": 2" = 2 is a neofunctor, the mapping 7, ¢/

defines the natural transformation 7¢": ¢¢" =y "
Let > be a neocategory and 2’ a category. If
T:¢=yY and T:y ~Y’
are natural transformations, the mapping 7o : =, —2' such that
To(e)=T"'(e).T(e) foreach e€3,

defines a natural transformation 7": ¢ = ', denoted by 7' 7. (This
is not true if =’ is only a neocategory.) With this law of composition,
the set of natural transformations between neofunctors from > to 2’ be-

comes a category, denoted by JI(Z',Z) or by ' Z,

EXAMPLES. 1° Let z :u' —u be a morphism of 2'. If y:u"~{ isa
projective cone in 3", with vertex u, we denote by 7z the projective
cone ymz :u" = . If v': ¢ = u'" is an inductive cone, we define z 7y’
as the inductive cone z'm 7y’ .

20 Supposé that 2 is the category 2, with only two objets 0 and I,
and one morphism @ =(0,1) from O to I. A functor ¢:2 = Z' may be
identified with the morphism ¢(a) of the category >': a natural transfor-
mation 7: ¢ > @' may be identified with the quartet (commutative squa-
re) (¢'(a), 7(1),7(0),¢(a)). Then the category =’ 2 reduces to the lon-
gitudinal category of quartets of Z' (often called category of pairs), deno-
ted by mZ'. By assigning (y',x’,x,y) to the quartet (x',y',y,x),
we define an isomorphism from 32’ onto a category Bs , called the
lateral category of quartets of ='. The pair (mZ',HZ') is a double ca-
tegory [EG], written 02’ .

A projective cone y: u" = ¢ in the category 2’ is called a pro-

jective limit-cone ( «limite projective naturalisée» in [ E]) if, for any pro-
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A

jective cone y': u'* — ¢ in = admitting the same base than 7, there exists
one and only one z:u' —u in X' such that yz = ¥'; in that case, z will
be called the factor of 7y' through <y, and denoted by lim,y ¥' . Dually,
we define the notion of an inductive limit-cone,

If § is a set of categories, we say that thecategory 2 admits §-projec-
tive (resp. $-inductive) limits if each functor ¢: K =3, where K€, ad-

mits a projective (resp. an inductive) limit.

REMARK. Since we will essentially be concetned with projective cones
or projective limits, we call them briefly cones or limits; but the dual no-

tions will always be called explicitly inductive cone or inductive limit.

2, Cone-bearing neocategories.

By definition, a cone-bearing neocategory o is a pair (Z,["), whe-
re 2 is a neocategory and I a set of (projective) cones in 2, said the
distinguished cones of o, indexed by categories. The set of the indexing-
categories of all the distinguished cones is called the set of indexing-ca-
tegories of O,

If o' is another cone-bearing neocategory (Z'.I''), a morphism
from o to o' is defined as a triple Y =(0',},0), where y: S — Z'is
a neofunctor such that:

Yy el forany yel .
We say also that J} : 0 =o' is a morphism defined by Y ; we write:
b(x)=yY(x) if x€=, Yy=yy if yel
or, more generally, if ¥ is a cone in 2. Notice that the set of indexing-
categories of O must then be included in that of o' .
If ' =(o”,y’',0') is also a morphism from 0’ to the cone-bea

ring neocategory 0", then '\ defines a morphism, denoted by
\/J' . lﬁ .o o O,rl .
If Y is an isomorphism and if its inverse defines also a morphism from o'

to O, we say that \/ is an isomorphism.

. . ' . . .
Two cone-bearing neocategories O and oO' are said equivalent if

142



CATEGORIES OF SKETCHED STRUCTURES 5

there exist morphisms
Y=(o'",y,0) and ' =(o,y',0")
such that Y ' and Y'Y be equivalent to identities (which implies the

equivalence of the underlying neocategories).

REMARK. Cone-bearing neocategories are sketches in the sense of [E3]
(but the notions of a sketch considered in [E4] and [ES] are more strict,
and here the word sketch will have the same meaning as in [ESD. They are
used in [Bu]under the name «esquisse multiforme». Lair needs them in
[L] to define tensor products of sketches. Morphisms between cone-bea-

ring neocategories are called homomorphisms between sketches in [E3].

DEFINITION. A (projective) cone-bearing neocategory (Z,I") is called a
limit-bearing category if 2 is a category and if each distinguished cone

v el is a (projective) limit-cone.

EXAMPLES. 1° Let = be a category and § a set of categories. Let [ be
the set of all limit-cones in = with indexing-categories in §. Then (Z, I')
is a limit-bearing category, called the full §-limit bearing category on Z.

20 Let 0 be a limit-bearing category (2,I") and K a category. Con-
sider the category of natural transformations ZK; for each object i of K,
denote by 71;: 5K~ the functor associating 7(7 ) to the natural trans-

formation 7. Let | be the set of cones Y in K such that:
m,y€el’ forany i€K,.

Then (3K T) is a limit-bearing category [E3], denoted by oK . In par-
ticular, if K is the category 2 and if 52 s identified with the longitudi-
nal category 02 of quartets of 2 (see example 2-1), we get the longitu-
dinal limit-bearing category of quartets of o, denoted by mmo . The cano-
nical isomorphism from S to HS defines an isomorphism from Mo to

the lateral limit-bearing category of quartets of O, written Ho.

Let U be a universe [AB]; an element of U is called a U-set (or
a small set). We denote by:
- ¥, (resp. F,) the set of neocategories (resp. of categories) 5 whose

sets of morphisms are U -sets.
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- & the set of cone-bearing neocategories (Z,I"), where I' and £
are U-sets as well as K, for each indexing-category K of o= (Z,I").
- P, the set of limit-bearing categories belonging to & .
- M the category of all mappings between U-sets (following our conven-
tion to name a category according to its morphisms).
- ' the category of all neofunctors ¢: > = 3', where S and X' be-
long to F; (this category is denoted by JI' in [E1]).
- bG: F' > M the faithful functor which assigns the map
¢:2 -3 to ¢:Z~%
and by pf;:. :F' =M the not-faithful functor associating
Fo:Zg 230 to ¢: -3
- F the full subcategory of F' formed by the functors and by bg: F-n

the faithful functor restriction of b -

The morphisms ¢:(Z,[") =(Z',T"’) between cone-bearing neo-
categories (resp. between limit-bearing categories) belonging to S form a
category &" (resp. P'). Assigning ¢: Z =3’ to ¢, we define a faithful
functor

qgn "= F" (resp. qP: - P -F).
Let pgn and ps be the composite functors:
pgn=0F da5n: " =M, pPr = pgag. : P -
The following elementary proposition will be used later on.

PROPOSITION 1. &" admits ¥, -projective limits and ¥, -inductive limits;
q§n commutes with projective and inductive limits; pgn commutes with pro-
jective limits and filtered inductive limits; 9" is closed in §&" for projec-

tive limits. (See also [E4] and [L1].)

A. The proof is straightforward. Let F : K 8" be a functor, where K

is a U-set, and write
F(i)=(Z;,T";) forany i€K, .

lo Let 2 be a projective limit of the functor g§wF ;5 then 2 is a pro-

jective limit of pgwF; denote by 77;: > Zi the canonical projection and

14%



CATEGORIES OF SKETCHED STRUCTURES 7

by [ the set of cones 7 in £ such that
;7 €l'; forany i€K, .

Then (Z,[") is a projective limit of F. If moreover F takes its values
in ', we have also (Z,I") € P, .

2° g§wF admits [E1] an inductive limit ', with canonical injections

Y Zi - 3' Let I'' be the set of all cones
V;Y;, where i€K, and y;€l;.

Then (Z',I"') is an inductive limit o' of F.If K is filtered, 2’ is [E1]

an inductive limit of pgeF. V

Let 0 be a cone-bearing neocategory (>,I") and § its set of in-

dexing-categories.

DEFINITION. If o' is a limit-bearing category (2',["'), we define a -
structure in o' as a neofunctor Y : = = Z' defining a morphism ¢ : 0 — o’
fwe also say [Es] that Y is a realization of 0 in o'). If ' is a catego-
ry and if o' is the full §-limit-bearing category on X’ (example 1), a o-

. 1 . .
structure in O’ is called a o -structure in ' .

The set S(U',U)o of O -structures in the limit-bearing category
o' =(Z',T''") is the set of ob}ects of a full subcategory of 5'Z denoted
by 8(o',0), and called the category of morphisms between o sstructures
in o', or category of o -morphisms in o' .

If 2’ is a category, a O -structure in =’ is just a neofunctor ' from
S to Z' such that Y7 is a limit-cone, for any 7y €[". We will denote by
8(Z',0), or by 'Y, the full subcategory of X' Z Ghose objects are the
o -structures in >'. Remark that 2’7 admits §(0’',0) as a full subcate-
gory, for any limit-bearing category o' on X' .
PROPOSITION 2. Let 0 be a cone-bearing neocategory, o' a limit-bea-
ring category and Bo' the lateral limit-bearing category of quartets of o'
(example 2). Then there exists a canonical bijection from the set of mor-

phisms of §(o',0) to the set §(Bo', o ), of o «structures in Ho'.

A. To a natural transformation 7:y = ', where Y : 3 = Z', there
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corresponds the neofunctor T : S — HZ' which assigns the quartet
(V'(z),7(e'), T(e),Y(2z)) to z:e —e' in 2.

The map'f associating T to 7 is a bijection from X' Z to the set of neo-
functors from > to HZ'. (If we identify T with a functor from 2 to X' 2,

this bijection [ is deduced from the canonical isomorphism:
(352 (' )%L (B3 )
The natural transformation 7 is a morphism between O -structures iff(*)

. . ? . .o .
T is a o-structure in Ho'. Therefore f induces a bijection

f:8(c",0) = §Bo',0) . Vv

3. Limit-bearing category generated by a cone-bearing neocategory.

The study of the category 8(0',0) of morphisms between O -struc-
tures in the limit-bearing category o' will be much easier when the cone-
bearing neocategory O is itself a limit-bearing category. Hence the ques-
tion: Does there exist a limit-bearing category o such that §(o',0) and
S(o’',0) are isomorphic ? The following proposition not only answers affir-
matively this question, but it gives an explicit construction of a smallest

o of this kind.

PROPOSITION 3. Let o be a cone-bearing neocategory (2,1 ). There
exists a limit-bearing category o = (2, T) and a morphism § : 0 = O sa-
tisfying the following conditions:

1° T ={8y | yell

20 If U is a universe such that o € & , then oe?,.

3° o is characterized, up to an isomorphism, by the universal property:
If o' is a limit-bearing category and ) : © = ' a morphism, then there
exists one and only one morphism @' o = o' such that \/7' -5 = ‘,_b

A. By transfinite induction, we shall construct a «tower» of cone-bea-
ring neocategories O¢ such that 0 be 0 and that O ;47 be deduced from

Og by adding to o ¢ «formal factors» through a distinguished cone 7 for

cones with the same base as <y. We will show that this tower ends for

(*) iff means if and only if.

146



CATEGORIES OF SKETCHED STRUCTURES 9

some sufficiently big ordinal u , and that o, is the limit-bearing cate-

_ I
gory O .

Io Let us decribe the step from Of to Opg.up. Let O be any cone-
bearing neocategory (Z§ ,Ff).

a) If y 61_'5 and if 7' is a cone in 25 with the same baseas 7y
we consider the pair (7, ') (called the «formal factor» of ' through
¥). Let {1 be the set of all these pairs; let U be the sum («disjoint union»)

of 2, and (), with injections
v:_Z_se - U and v':Q - U.

We define a graph (U, B, a) in the following way:

- If x:u—u'in Zf , then

a(v(x))=v(u), [(v(x))=v(u").
- I (y,y)eQ, where y:u "= ¢ and y':u'"" = ¢, then
a(v'(y,y) =v(u'), B(v'(y,y")=v(u).

Let L be the free category generated by (U, 8, a); it is [E1] the «cate-

gory of paths» on (U,B,a) and U is identified with paths of length I.

Consider the smallest equivalence relation 7 on L such that:
(vix'),v(x))~v(x".x), if x'.x is defined in 25 ,

(v(y(i)),v'(y, Yy D~ou(y'(i)), if (¥,y')€Q and i€K,,

P
(F) v(z)Nv'(’y,7'),ifz€2§,if(')’,’y')eQ and if

v'(i) =7y(i).z for any i €K, ,

where K is the indexing-category of 7.

There exists a quasi-quotient category [E1]lof L by r, denoted
by if; since r identifies no objects, if is in fact the quotient category
of L by the smallest equivalence relation compatible with the law of com-
position of L and containing 7 . Let o: L "’35 be the canonical func-
tor corresponding to 7. The map p v defines a neofunctor 85 :25 —*Zf
by the first condition imposed on r. Denote by 1_'5 the set of all the cones
85')/, where ¥ € rg. Then (Z§ 7F§) is a cone-bearing neocategory 55

and 85 defines a morphism 35 P o, —*55 . Moreover, for each formal
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10 A. BASTIANI-C. EHRESMANN

factor (y,y')€{l, we have
(85’)/)z = 757' , where z=p(v'(7y,y"')).

b) Suppose that o' is a limit-bearing category (Z',I"') and that
is a neofunctor defining a morphism \ : o o' . Then there exists a uni-
que morphism

@l :Ef _'UI such that @"S_é:@.
Indeed, if (y,y')eQ, where 7 :u" — ¢, the cone Y7 is alimit-cone
with the same base as the cone Yy '; so there exists a unique y such
that (Yy)y =7y’ , namely the factor of )y’ through Y7y . By assigning
y to the formal factor (7y,7y'), we get a mapping f:(Q — X' The unique
map f': U 22" such that
ffv=yY and fv'=f

defines a neofunctor from (U, 5, @) (considered as a neocategory) to >
This neofunctor extends into a functor F': L —Z2'. Since o' is a limit-

bearing category, this F' is compatible with r, so that there exists one and

only ope functor
Yl 25 - 3" such that ' p =F'.

This functor defines the unique morphism

VAR og -0’ such that ' '35 =y.
¢) If U is a universe such that O €8s , then K, for each indexing-

category K- of o, and I“f are U-sets; it results that the set ['g of cones

in 25 indexed by K is also a U-set, as well as the set U FK ,whereg
Ke

is the set of indexing-categories of O, . From this we deduce succesively

that {0, U, L and 25 are U-sets, and that Ef belongs to & -

2° We are now ready to construct the tower. Let § be the set of indexing-
categories of 0. If K€Y, we denote by K the cardinal of K. (An ordinal
number { is considered as the set of ordinals & such that £ < {; the car-
dinal of a set E is identified with the initial ordinal equipotent to E). Let
A be the ordinal which is the upper bound of the ordinals K , where K€ ,

and let u be the least regular ordinal satisfying A< u .
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Accepting the «axiom of universes», there exists a universe U to
which belongs TUZ U U
= Kd

gory s" corresponding to U. As K is a U-set, K belongs to U and, § be-

K, i.e. such that O is an object of the cate-

ing equipotent to a subset of the U-set ", the ordinal A belongs also to
U, as well as u . (Here we use the fact that the upper bound of the ordi-
nals which belong to a universe U is an inaccessible ordinal [AB]).

For each ordinal £, let <& > be the category defining the canoni-
cal order on & its set of objects is £. (In particular, 2 = <2>). By trans-

finite induction, we define a functor w: <y +1> - §".

- First, w(0)=0.
- Let { be an ordinal, { < u ; suppose we have defined a functor
Wy <> - §" such that wl(O) =0,
and write
w§(§)=0'§ ‘—‘(Zf,r‘f) for any £< (.
We extend @y into a functor Wy, : < {+1> = 8" in the following way:
If { is a limit ordinal, « §+1(§) is the canonical inductive limit,
denoted by o, =( ZC’ rg) , of the functor &, (which exists, Proposition 1)
and @y ;( ,8): Oz — Oy is the canonical injection, for any E< . We
recall (Proposition 1 and [E1]) that Zg is the canonical inductive limit of
the functor bgnw ¢ from <{> to M and that each composite ;’. ; in Zg is
of the form w§+1(§,§)(y'.y), for some £< {, where y'.y is a compo-
site in 25 ,and y = w;_H(C’f)()'): y = a’g.H(grf)()")'
If { is the successor of & (that is: { =& +1), then w r41( ) will
be the cone-bearing neocategory (Zf,l_'f) associated to Og in Part 1,
and @y ( E+1,8): oy — 0y will be the morphism -8—5 constructed in
Part 1. The induction hypothesis og € Ss implies o€ & (Part 1).

- Finally, we put
w=w'u,+17 ;__‘(27?‘):0»-§=w(/*1'70)=(;’810)-
By construction, o is an object of &" .

3° a) By transfinite induction, we prove that > is a category. Indeed,

suppose that { is an ordinal, {< &, and that Zf is a category for any
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€ such that 02 &E< L. 1f {=&+1, then Z€=§§ is a category, by
construction. If { is a limit ordinal, Zg is the inductive limit of the func-
tor g§u& r; since < {> is a filtered category and since the 25 , for £<
and 0 # £, are categories, the neocategory Zg is a category. Hence ZM

is a category 2.

b) We are going to prove, by transfinite induction, that each cone ¥
of T is of the form S, for some 7y €I . Indeed, we have [y =T. Let
{ be an ordinal, { < u , and suppose that, for any £< {, we have:

Fp={w(&,00y | yel}.
- If { is alimit ordinal, Proposition 1 asserts that
Cy=A @0,y | veeTy, £<0}
and the induction hypothesis implies that
'y§=o;(§,0)'y, for some yel;
hence
@(L,E) v = (0,6 w(£,0y=w(l,0)y.
It follows that:
Fy={a@(L,00y | yel }.
- If {=£+1, byPart 1-a, we have:
Cy=Tp={ 37 | veels 1,
where
Seve=w(E+1,E)y=w(E+1,€) @ (£,00y =w(L,0)y,
since Y, =« (£,0) 7y, for some 7y €' . Therefore, in this case also,
Fy={a(g,00y | yel }.

c) The category T is determined independently of the universe U. For,

let 11 be another universe such that

(rusu v K el
€

Ked

" . .
and let S be the category of morphisms between cone-bearing neocatego-

ries corresponding to 1. If F:C »8" and F: C ~ S" are two functors ta-

420
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king the same values (i.e. F(z)= I:"(z) for any z € C), then they have
the same canonical inductive limit, according to the construction of this
limit as a quotient of a sum. So the inductive limit Op of & ¢ for a limit
ordinal {, does not depend on the choice of U. In particular, o is in-
dependent of U.

d) & satisfies the condition 3 of the Proposition. Indeed, let @ be
a morphism (0',1/,0) from o to alimit-bearing category o' =(2',I"").
Part c above shows that we may suppose O' € S: . Using the universal pro-
perty of the inductive limit 0y of @, and that of —5.6: o —é =04
(Part 1-b), we construct by transfinite induction a sequence of morphisms
@Z: oy o' , where (< u, such that ¢0 = _J, and

Yrra(l,&) =P, foray £<C.

Then J# is the unique morphism _\[)-': o-o satisfying l,_lf' 5= @

(Notice that, up to now, we have not used the fact that y is a given

regular ordinal.)

4° To complete the proof, we have yet to show that o is a limit-bea-
ring category, i.e. that each cone ;GI—" is a limit-cone. This will imply
that the tower ends with O (this means that O 1 is isomorphic to U)
Suppose that 'y is a distinguished cone of o ; then there exists some cone
v €Tl such that 7y = 8 (Part 3-b). Denote by ¢ the base of 7, by K
its indexing-category, by ¥, the cone w (€, O)'yel_'é, for each £< u.
Let ¥': u’" = ¢ be a cone in > with the same base as .

a) We are going to prove the existence of an ordinal £ < u and of a
cone 7' with the same base as the distinguished cone Y ¢ such that we

have _’)7' =w(p,E)y' . Then the «formal factor» (’)/5 ,7") determines a
morphism z of fg = Z§+1 satisfying the equalities:

(a)(§+1,§)'y§)z=w(§+1,§)7',
which gives, after transformation by w (u ,&€ +1):
(8¥)z=7", where z=w(u,E+1)(z).

Indeed, since > is the inductive limit of pgue ui<p> =M, for each

object i of K there exists an ordinal £,< u and a xiezf‘ such that
l
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14 A. BASTIANI-C. EHRESMANN

Y(i)=w(u,EN(x).
Let k:i —i' be a morphism in K. By construction of the inductive li-
mit o, the equality 7' (i') = §¢(k).7y'(i) means that there exists an
ordinal &, such that £, <& <u, £ <& <u and
(1 W (&, &N (xp) = (£,,0) (E(k)). (&, E)(x;)
M being a regular ordinal such that

K<p and & <p forany keK,

the upper bound £ of the fk, where k € K, verifies £< u . For this or-.
dinal £ and for each k:i =i’ in K, we get from (1):

(&N (xp) =@ (£,E,)0 (€4, E0) ()
=w(&£,5)(w(&,,00(P(R)).w (&, &) (%))
=w(&€,0)(P(k)).w(&,E)(x;).

This shows that the map
Yo: Ko @2 g such that ¥, (i) =w(&,£;)(x;)
defines a cone 7y’ in 25 with the same base as ¥, = « (£ ,0)y. Moreover
w(u,E)y' =7v", since, for each object i of K, we have:
w(p,E)yY' (i)=w(pu ,§i)(xi)=;'(i).
b) We have found a z such that
§;=;/', namely ;=w(,u,§+1)(z).

Suppose that z' is another morphism of s satisfying —’)-/‘z—' = :)7'; we show

that z = z'. Indeed, there exists an ordinal {< y and a morphism z' in

3y with «(p,l)(z')=2". We may suppose &£ < . For each i €K, , the

equality ;'(z') = ’;(i). ;', which may also be written
w(u, )Y (i) = (pn,0)y(i).w(pu,0)(2")
implies the existence of an ordinal Ci such that {< Ci < u and
w(L;,E)Y ()= @ (L;,007(i).w(L;, L) (=),
If {' is the upper bound of the {;, for i € Ko, we get as above {' < u and

@ (L)Y =(a(l,07a(l’, ) () =ypi,
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where 2' = w ({',{)(z'). From the equality
w(E+1,6)y ’—‘(w(f‘”,f)'}’f)z )

it follows, by applying « (', £ +1):

w (L6 =(w (L yp)e=yp £,
where £ =w({"',£ +1)(z). Hence Z' and Z are two morphisms such that
Yy z = Y Z', which implies

w(L'+1,0(2) = (L +1,0')(2),
by construction of %+, ; = 3,+ (Part 1). Finally, applying w (u,{'+1),

we get z=2z". \%
DEFINITION. With the hypotheses of Proposition 3, we call o the limit-

bearing category generated by O .

COROLLARY 1. The insertion functor 1: P' = §&" admits a (left) adjoint.
P admits §, -inductive limits, and there exist quasi-quotient limit-bearing

categories.

A. The first statement results from Proposition 3.

If F:C ~%' is a functor, where C is a U-set, then IF: C —» §" ad-
mits an inductive limit o (Proposition 1), and the limit-bearing category
o generated by O is an inductive limit of F.

Let o' be a cone-bearing neocategory (2',I"’) and o an equivalence
relation on 2'. There exists a quasi-quotient cone-bearing neocategory O
of o' by p (i.e. a quasi-quotient psu-structure[El]); namely, o= (=,I"),
where X is the neocategory quotient of >’ by the smallest compatible equi-

valence relation on 2’ containing o and where
F'={py' | v'el" }, if p:3' ==
is the neofunctor corresponding to ©. Hence the limit-bearing category o

generated by o is the quasi-quotient limit-bearing category of o' by p .

If o' €9, , then o isa quasi-quotient p@: -structure of o' by p. V

COROLLARY 2. Let 0 be a cone-bearing neocategory and o the limit-bea-

ring category generated by o . If o' is a limit-bearing category, then the
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categories S(o',0) and S(o',0) are isomorphic. In particular, ' and

3' 9 are isomorphic, for every category Z' .

A. Let Ho' be the lateral limit-bearing category of quartets of o'
8

(Example 2-2). We have constructed, in Proposition 2, bijections
g: o', 0) 2 8(Ho',0), and b: §_(cr',3) - §(Bo',0), .
By Proposition 3, there is a canonical bijection
d:§(Bo',0)% = 8(Bo',0) ,

assigning ' & to the o -structure ', where & = (0, 8,0) is the ca
nonical morphism. The bijection g ldb defines the isomorphism from the

category $(0',0) to 8§(0',0) assigning 78 to 7. V

REMARKS. 1° O is cuniversal» relative to all O -structures, and not only
to those which are «small enough». The universe U is used as a tool in
in the proof of Proposition 3, and it does not appear inthe conclusion (as
we have shown in Part 3-c). We could have omitted U by considering «the
category of morphisms between all cone-bearing neocategories» (i. e. by ad-

mitting a theory of sets and classes).

> In [L], Corollary 1 of Proposition 3 is deduced from the general
existence theorem for free structures of [E], the proof being identical with
the argument used in [ES]to prove the existence of the prototype of o'. Abo-
ve, we have not only shown the existence of E, but we have also given an
explicit construction of it, from which many properties of o may be deduced.
This construction is suggested by the explicit construction of a free §-pro-
jective completion of a category (Theorem 7 of [E]); the main difference,
apart from adding «no objects», lies in the fact that the hypotheses of The-
orem 7 of [E] (after adding «all formal cones») implied the injectivity of
the functor 55 : 25 - Zg_” , for any ordinal (which was difficult to prove
and required a detailed description of the morphisms of = £+1 S «reduced
paths»); so, the category Zg, for a limit ordinal {, was just the union of
the categories Zf , for £< [ . This is no more true here, and we have to
define ZC’ for a limit ordinal {, as the inductive limit of the functor

anCl);I<§> "’?'.

12%
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3° Proposition 3 may also be expressed as follows: Let o be a cone-
bearing neocategory. There exists a limit-bearing category o=E,T),
characterized up to an isomorphism by the property:

If U is a universe such that o€, then o isa free structure gene-
rated by o relative to the insertion functor from P' to §".
Intuitively, if o =(2,["), the set -_i_ belongs to the smallest universe
to which belongs X , while o solves the universal problem for any uni-

verse to which belongs 2 .

4. Loose types.

Let o be a cone-bearing neocategory and o' a limit-bearing catego-
ry. We have seen that there exist limit-bearing categories o such that the
category 8(o',0) is isomorphic with 5(0",;). In fact, we have cons-
tructed a O which is minimal. Now the question arises: If any functor is
the base of a distinguished cone in o', does there exist a o with the sa-
me property? We are going to solve this problem relative to a given set of

categories.
We denote by § a set of categories.

DEFINITION. If 0 is a cone-bearing neocategory (resp. a limit-bearing
category) whose set of indexing-categories §, is a subset of §, we also
say that o is a §-cone-bearing neocategory (resp. a §-limit-bearing cate-
gory).

In particular, o is a §_ -cone-bearing neocategory.

DEFINITION. Let o be a limit-bearing category (2,I") and § its set of
indexing-categories. We say that o is a loose type (or, more precisely,
a loose §-type) if each functor ¢: K = 3, where K €4, is the base of at

least one distinguished limit-cone y eI .
This condition implies that £ admits §-projective limits.

If U is a universe such that § is a U-set, we denote by oS"g (resp.
fP'g, resp. gg) the full subcategory of §" whose objects are the §-cone-

bearing neocategories (resp. the d-limit-bearing categories, resp. the loose
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18 A. BASTIANI-C. EHRESMANN

§-types) o belonging to So .

PROPOSITION 4. Let 0 be a -cone-bearing neocategory (=,I" ). There
exists a loose §-type o (unique up to an equivalence) and a morphism s =
(o, §,0) satisfying the following condition where o' is a loose §'-type for
aset § of categories containing §:

1° If J o -0 isa morphism, there exist morphisms J': o ~o'
such that ‘;Z' °5 = —LZ , and two such morphisms are equivalent.

20 If §' =(o', ', o) and ' = (o', ", o) are morphisms and if
T:Y'8 = Y"S is a natural transformation (resp. an equivalence), there

exists one and only one natural transformation (resp. equivalence)
Ty =" suchthat T8 =T.

Moreover, if U is a universe such that § is a U-set and o € &, then we

have Eeﬁ% .

A . We will again construct, by transfinite induction, a tower of cone-
bearing-neocategories which stops («up to an equivalence») at the first re-
gular ordinal u greater than all the ordinals K, where K €. The method
is similar to that used in Proposition 3, but, in the «non-limit step» from
Tg 0 Upyg, We will add also «formal cones» for each neofunctor indexed

by an element of .

1o Let us first describe this non-limit step. We suppose that O is a
cone-bearing neocategory (25 , 1_'5) .
a) Let us consider:
- the set (1 of pairs (7¥,7%') (or «formal factors»), where 7y El_'g and
v' is a cone in 25 with the same base as 7,
- the set M of neofunctors ¢: K —’Zé—, where K€d, which are not
the base of any distinguished cone 7 € Fg ,
- the set M’ of pairs (i,¢), where €M and where 7 is an object
of the indexing-category of ¢,
- the sum («disjoint union») U of _2_5 , €, M and M’, with injections:

v:_Z_é--*U, v':Q -U, w:M~-U, w:M -U.

We describe a graph (U, 8, a) in the following way:
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- if x:u 2 u' in 26, then
a(vix))=vlu), Bluv(x))=v(u'),
- if (y,y)eQ, with y:a" =P and y': 0"~ ¢,
(v, D= vlw), Blo(y,y' ) =vlu),

- w(¢) is a vertex, for each ¢ € M,
- if (i,) € M', we have:

a(w'(i,d))=w(P), B(w(i,$))=v(P(i)).
We denote by L the free category generated by (U, 3,a) and by r the
equivalence relation on L satisfying both the condition (P) of Part 1, Pro-
position 3 and the condition
, { (v(B(R))w (i, p))~w' (i, )
(P if ¢eM, gb:K-'Zf, k:i —i' in K.

There exists a quotient category —2_5 of L by the smallest equivalence re-
lation compatible on L and containing 7. Let po: L —'-2_5 be the canoni-
cal functor corresponding to r; the map p v defines a neofunctor 8§ from
Zé to z‘f . B
If ¢: K — 25 belongs to M, let ¥, be the cone in Zf with ver
tex p(w(¢p)) and base 8z ¢ such that
'y¢(i) =p(w'(i, p)) for any i€K,
(it will be called «the formal cone associated to ¢ »). Put:
Ce={8;v|vele}U{y, | pem}.
Then (-ig,ﬁf) is a cone-bearing (neo)category Ef and 85 defines a
morphism gf 10 5'_5 .
When U is a universe such that § is a U-set and O €&, the set
of neofunctors ¢: K —'25 , where K€, is a U-set, as well as the set of

cones in Z§ indexed by elements of §. It follows that' M, M’ and () are

U-sets. Hence Ef €8y .

b) Let §' be a set of categories containing § and o’ a loose §'-type

(=T, 1f J = (o', ¢, 0'5) is a morphism, there exists at least one mor-
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phism —Ll_l': 5‘-5 - o' such that @_' '—3—5 = \:ll-
If l—/l-' exists and if P €M, then Y’ will transfer the formal cone
Y into a distinguished cone v' of o' admitting ¢ as base; since there
may be several cones of this kind, ' will be defined «up to a choice»
of cones ’)" .
Hence, for each element ¢: K — 2.5 of M, we choose a distin-
guished cone 7y e, =P of I'' and we define mappings
- g:M~Z" by g(¢)=e¢,,
- g M =~ Z by g'(i ) =my(i),
- f:Q ~Z2" by f(v,¥') =y, where y is the unique morphism such
that (Yy)y =yvy'.
As in Part 1, Proposition 3, there exists a unique functor F': L — Z' «ex-

tending» Y, f, g, g, and a unique functor:
Y if - 2' such that Y'p = F".
Moreover the equivalence relation r is such that ' is a Ef-stmctm‘e
in o'. By construction, ' defines the unique morphism y': &_5 - o' sa-
tisfying the conditions:
g '-gg =y and _121-")/4, =17g for any deM.

) If o' is a loose type, if J' = (O",\/J',&_g) and " =(o-',\,b",55)
are morphisms and if 7: Y’ 8¢ -y 0z is a natural transformation, there
exists a unique natural transformation 7':y’ — " such that '7"85 =T

Indeed, let us consider the lateral limit-bearing category Ho' =
(g’ ,IA" ) of quartets of o' . We identify the objects of HZ' with the mor-
phisms of Z'. Since Z' is a loose type, Ho' is also one. Proposition 2
canonically associates to 7 a neofunctor T.'Zf - HX' defining a mor-
phism T: o~ Bo'.1f ¢:K ~ 2, belongs to M, the cones gb"yqs and
Vs Yy are two distinguished limit-cones with bases \/1'55925 and l/J"3§¢. Sin-
ce TPy’ g~ ! 0z ¢ is a natural transformation, there exists a uni-

que morphism % 4 in Z' such that:
(" ')’¢)x¢, = T¢|I'(¢"')’¢)-

By assigning to an object i of K the quartet
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77¢(1) = (\/1”')’(#(1.), 7'¢(i). x¢: SL" '}’¢(1)),
we define a cone ;7¢: x¢‘ =T in H=' which belongs to f’ (by the defi-
nition of Ho'). Part b asserts the existence of a unique morphism
T'=(Bo', T",5,) such that T'8, =T and Ty, = N4
for any peM.
Let 7': & = 0' be the natural transformation to which T' is associated;
the equality T' 85 =T implies
' _ o ] _n
’7'85—7; 98§—\/) Sf’ 98§—-¢'8§
and, for each ¢ €M, from T"}/¢ =Tg » we deduce
Tp(w(P))=xg, Oyy=d'vg, Oy, =y'7.
6 and O’ define morphisms from gg to o' . Hence, using Part b, we get
6=y' and 6' =y".
Since T' and x4 are determined in a unique way, 7' is the~unique natu-
ral transformation from Y’ to )" satisfying T'8= 7. Moreover, if T is
an equivalence, x4 is invertible for every ¢ €M, so that 7' is also an
equivalence.
2° a) Let A be the upper bound of the ordinals l=(, where K€, and
i the least regular ordinal greater than \. We can choose a universe U,

such that

(JUSUT'U U K)el;
pundy Keg....

then o €98;. As in Part 2, Proposition 3, we see that u is a U-set and
we define by transfinite induction a functor w: <y +1> - S" (whose va-

lues are independent of U) satisfying the following conditions, where
w(§)=aé =(Z§,I"§) for any £< p:
-w(0)=o0;
- for each limit ordinal {, with { < u, we take for Oy the canonical
inductive limit of the functor Wy <{> - §" restriction of , and for
@ (L,€) the injection from op to Oy, if £E< .

- If { =£+1, where £< u, then Oy is the cone-bearing (neo)cate-
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gory Oy associated to 0y in Part 1 and w(L,€) is the morphism 85 .
We write

{ E:U#, §=1(0,8,0)=w(p,0)
w(l,£) =(0y,wrg ,0z) when E<LS .

b) Let o' be a loose §' -type, where §' contains §, and Y: 0 =o'
a morphism. Using Part 1-b, we construct by transfinite induction mor-

phisms LZ;: oy o' for each {< u, such that
JO:‘;—&» J;’w(c,f):$§ if £<C.
In particular Z,u. is a morphism k—/l_': o =o' for which -K,Z' :§ = $
Now, let Y’ and /" be two O-structures in o' and 7: '8 — "8
a natural transformation. Suppose that { is an ordinal, { < &, and that,
for each £< (, there exists a natural transformation
e L/z'w#é_- —y'w,s suchthat Ty wg,=Tforany £< L.
- If { =£&+1, Part 1-c shows the existence and the unicity of a na-
tural transformation 7y : /' W, 5[/"60#! such that Ty@,, = 7z, and so
- If { is a limit ordinal and if T, : £, = BZ' is the neofunctor asso-
ciated to 7, for any £ < [, there exists a unique neofunctor
Ty:2y > HZ' such that Tywypg = Tg for any £ < g,
since Zg is the inductive limit of w,. Hence the natural transformation
corresponding to T, is the unique natural transformation
Ty t,b'a)#g - L/J”w,ug satisfying Tywy g = T; for any £< L.
- By transfinite induction, we so define a natural transformation Ty

which is the unique natural transformation

7y’ =" suchthar 78 =7,

3° We have yet to prove that o= (—2-,1: ) is a loose §-type.
a) We see that 2 is a category as in Part 3-a Proposition 3, Suppose
that ¥ is a distinguished cone of [ . By a method similar to that used in

Part 4-a, Proposition 3, we get an ordinal { < 4 and a cone Y € FC such

130



CATEGORIES OF SKETCHED STRUCTURES 23

that -')_/ =W, 7, and we still deduce similarly that ; is a limit-cone.

b) Let ¢’ K =2 be a functor, where K €. There exists a cone
v €' with base ¢'.

Indeed, for each k€ K, there exists an ordinal fk < g and a mor-
phism x, of ka such that @'(k) =w(pu, fk)(xk). If the composite
k'.k is defined in K, the equality ¢'(k').¢'(k)=¢"'(k'. k) implies
the existence of an ordinal fk',k greater than §k’ fk' and fk'.k such
that fk'.k < u and (1):

W (Epr o o) (Xpr ) @ (Gn 10 G ) (2 ) = 0 (S s G g )(xpe ).
We denote by £ the ordinal upper bound of the family of the fk vk where
(k', k) belongs to the set K* K of composable couples. Since K< M, the

cardinal of K*K is strictly less than the regular ordinal i, so that
E< . Put

D(k) =w(§,§k)(xk) for any k€K;
if the composite k’.k is defined, we get

P(k').P(k)=P(k'. k)

(by applying w (£, &, » ) to (1)); so, we have defined a functor

¢$: K~ Zf such that a)“é-qb =¢'.
By construction of Zf +1= 35 (Part 1), there exists a distinguished cone

02 5F§+1 with base @, fc;b. Hence @, £ 417, is a cone of [,
admitting @, §¢ = @' asits base. V

DEFINITION. If o =(2,T") is a loose type satisfying the conditions of
Proposition 4, we call o a loose §-type generated by o (or of o) and

S a loose §-projective completion of o .

COROLLARY 1. Let o be a$-cone-bearing neocategory and o a loose
§-type generated by o. If ¢’ is a loose §' -type, where §' contains 4, the

categories §( o' ,0) and §(o' ,0) are equivalent.

A. Let 8 =(o,8,0) be the canonical morphism. We have a func-
tor F:8(o’,0) = 8(0',0) assigning 7' 8 to the natural transformation

' b . ’ . . .
7' between O-structures in O . This functor defines an .equivalence. In-
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deed, for each O-structure Y in o', Proposition 4 asserts the existence
of o-structures ' in o' for which '8 =; choosing one of them, we
denote it by G(y). If T: ) = 6 is an element of 8(0',0), there exists

a unique natural transformation
G(T): G(Y ) »G(68) suchthat G(T)8 =T
(Proposition 4). From the unicity of G( T), it results that we define in this
way a functor G: S(o',0) —'.5(0" ,E) . The equalities
FG(T7)=G(T)8 =T, forany T,

mean that FG is an identity.

On the other hand, for each o-structure lﬁ' in o', we have
GF(Y')8 =F(y')=y's,
so that there exists a unique equivalence 7 (yY'): ' = GF(y') for which
Mn(y')8 is an identity. If 7': ' = 0’ is an element of &( o',T), we get
(6" )mT=GF(7')m n(y'?),

since

(n(0')mT) S =n(6')sm7s=7"8=F(7")
and

(GF(T'")m n(Y'))§ =GF(7")8mn(yY')é =

=GF(T1')8 = F(T1').
Hence we have defined an equivalence 7: IdS(a',b') - GF. V
COROLLARY 2. Let 0 be a §-cone-bearing neocategory (=,") and ='
a category admitting §-projective limits. Then the category X' is equiva-
lent to the full subcategory of X' Z whose objects are the functors from b3
to =' which commute with §-projective limits, by denoting a loose §-projec-
tive completion of o .
A. Let us denote by o =(Z,") aloose -type generated by o and

let o’ be the full §-limit-bearing category on ='; since o' is a loose type,
the categories

S'7=§(c',0) and 2'7 =§(o',0)

are equivalent, by Corollary 1. If ': S-o3isa functor, it commutes with
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d-projective limits iff each functor from K € to S is the base of a limit-
cone Y, where "y is a limit-cone. Hence Y’ is a o-structure in =’ iff
' commutes with d-projective limits. This means that ' is the full sub-
category of X' Z Ghose objects are functors commuting with §-projective

limits. V

COROLLARY 3. A loose §-projective completion b of a §-cone-bearing
neocategory O is characterized up to an equivalence by the conditions:
s admits §-projective limits.
2° There exists a O-structure § in > satisfying the universal pro-
perty: If ' is a category admitting §-projective limits and if \J is a o-
structure in X', there exists a functor \J', unique up to an equivalence,

such that \J' commutes with §-projective limits and ' § = J.

A. Condition 2 results from Proposition 4, applied to the full §-limit-

bearing category o' on =/. V

REMARKS. 1° The construction of the loose §-type o =(=,I"), gene
rated.by o =(X,I"), is yet suggested by the explicit construction of a
free §-projective completion of a category (Theorem 7 [E], in which ¥ is
a category and [ is void); the difference is that we do not require that
there exists only one cone of T with a given base (this problem will be
studied in Paragraph 5). Notice that the general Proposition 4 and Corol-
laries cannot be immediatly deduced from the general existence theorem of
free structures. Indeed, if o' is a loose g-type (Z',T'") and if A is a sub-
set of 2', there does not exist a «smallest» loose §-type extracted from
o' and containing A.

20 The loose §-type o is defined up to an equivalence, and not up to
an isomorphism (as the limit-bearing category generated by o); so, Propo-
sition 4 does not imply the existence of an adjoint for the insertion func-

tor from S?g to S"g . In fact, we have proved the following result:

Let £, (resp. S",g\,) be the quotient category of o (resp. of S"g) by
the equivalence (generated by): J and ' are equivalent iff there exists an
equivalence between the neofunctors defining them. This category has the

same objects as fg (resp. as S"g). From Proposition 4, it results:
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COROLLARY 4. Let o be a §-cone-bearing neocategory, there exists a
loose §-type o satisfying the following condition:
If U is a universe such that § is a U-set and o €&, then o isa

free structure generated by o relative to the insertion functor Sigf-»&'f‘

5. Presketches. Prototypes. Sketches.

These are special cone-bearing neocategories and limit-bearing
categories. We are going to show that a cone-bearing neocategory gene-
rates a presketch and a prototype 77. If O is mapped injectively into 7
(we then call o a sketch), the limit-bearing category generated by o is

itself a prototype, isomorphic with 77.

DEFINITION. A cone-bearing neocategory (2,I" ) is called a (projective)
presketch if there exists at most one distinguished cone ¥ €' with base
a given neofunctor ¢. A limit-bearing category which is a presketch is

called a prototype.

The cone-bearing neocategory (2,1 ) is a presketch iff [' is the
image of a mapping assigning to some neofunctors ¢: K =2 a cone in
> with base ¢. So, the notion of a presketch is equivalent to that used
in [ES]. In particular, as in [ES] a prototype «is» a category equipped with

a partial choice of projective limit-cones.

U being a universe, we denote by &' (resp. by P) the full subca-
tegory of &" whose objects are the presketches (resp. the prototypes) be-
longing to 8" . It results from [ES] that &' and P are closed in 8" for pro-

jective limits.

PROPOSITION 5. Let o be a cone-bearing neocategory (Z,1" ). There
exists a presketch o=(2,T ), determined up to an isomorphism by the
following condition:

If U is a universe such that o €&, then o isa free structure gene-

rated by O relative to the insertion functor from §' to §".

A. We shall construct o by transfinite induction, the idea being at

each step to «identify» distinguished cones with the same base.
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lo Let 0y be a cone-bearing neocategory (25 ,['¢). We consider

the smallest equivalence relation 7 on _Z_g such that:

(P,,){'y(z‘)'vy'(i) , for each i€Ko, if ¥ and ' are two cones of [,

with the same base, indexed by K.

There exists a canonical quasi-quotient neocategory if of Zf by 7 (it
is [E1l] the quotient neocategory of 25 by the smallest equivalence rela-
tion containing r and compatible with the law of composition and with the
maps source and target of 25 ). Let 85: Zf - _2-5 be the canonical neo-
functor and put:
Trp={8y|vels}, op=(3,Tp).
Then ;é' iia cone-bearing neocategory and 85 defines a morphism gf
from oy to Of . 3
If U is a universe, the quotient of a U-set is a U-set, so that 2,
is a U-set when gé- is a U-set; if I_'§ is also a ‘U-set, Fé- is a U-set.
If o' is a presketch (Z',I"") and if E =(o',y,0) is a morphism,
Y is compatible with 7, and the unique neofunctor
' fg - 3" suchthat '8, =y
defines the unique morphism
.\Z': gf - o' such that ;b-“-gé = J .

20 Let u be the smallest regular ordinal such that R < u for each
indexing-category of o . As in Proposition 3, by transfinite induction we
construct a functor @ : <y > — &" satisfying the following properties, where

Og =w (&) =(Z§,1'"§) for any £<

- w(0)=0;

- w({l), for any limit-ordinal { < u, is the canonical inductive limit
of the functor Wy : <> - 5", restriction of w , and w ({,&): Op ~ Oy is
the canonical injection;

- Oy, for an ordinal { =& +1 < p, is the cone-bearing neocategory Ef

associated to Oz in Part 1, and @ ({,£) is the morphism 5} of Part 1.

We denote by o= (i,ﬁ) the neocategory o, thus obtained, and
by & =(0,5,0) the morphism @ (u ,0). As in Part 3-b, Proposition
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3, we see that
Fe={w(&,0)y | v eI} forany €< p.

Let o' be a presketch and J: o — o' a morphism; the universal
properties of the inductive limit and of 85 (Part 1) permit to define by trans-
finite induction a unique sequence of morphisms kﬁf 10g 7 o', <,
such that Y, = and

$§‘w(§,5)=¢g for £<{< .
30 It remains to prove that o is a presketch. We suppose that ; and
’;' are two distinguished cones of " with the same base. Then there exist
cones y:u"—dand Y :u'"—=¢' of I' such that
vy=8y and 7y =8vy"
Let K be the indexing-category of 7y (and of 7'). For each morphism £
of K, the equality 8¢ (k)= 8¢ (k) implies the existence of an ordinal
&, such that & < u and
w(&,,0)(P(k)= w(‘fk'o)(d(k)).
If £ is the ordinal upper bound of the family of the &, for k € K, we have
E< pu (since p is regular and l? < @ ). By construction the cones
w(£,0)y and @ (&,0)y
are distinguished cones of 0y with the same base. Hence they are identi-
fied in Of 41 i.e. we get
W(E+1,0)y =w(€E+1,0)y" .
Applying w(u ,£+1), it follows v = —')/" .V

COROLLARY 1. The insertion functor from &' to 8" admits a left adjoint.

DEFINITION. A presketch o satisfying Proposition 5 is called a presketch

generated by o .

COROLLARY 2. Let o be a cone-bearing neocategory, o a presketch ge-
nerated by o and o' a prototype. Then the category &(o',0) is isomor-
phic with §(o',0).

A . The Proof is similar to that of Corollary 2, Proposition 3. V
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REMARK. In [F] Proposition 5 is proved more generally for V -categories,

where V is a monoidal closed category.

PROPOSITION 6. Let o be a cone-bearing neocategory (2,I" ). There
exists a prototype o defined up to an isomorphism by the condition:
If U is a universe such that o €8y, then O is a free structure gene-

rated by o relative to the insertion functor from P to s".

A. The prototype o will be constructed by transfinite induction, as
end of a «tower». The method is similar to that used in Proposition 3, the
only difference being that the non-limit step has to be slightly modified in
the following way:

Let us suppose that 0, 'is a cone-bearing neocategory (2 ,[";).
As in Part 1, Proposition 3, we consider the set { of the «formal factors»
('y,'y'), where 7y Epé— and ’y' is a cone in Zf with the same base as
¥, the same graph (U,[,a), on the sun U of £, and Q , and the free
category L generated by it. Let 7’ be the smallest equivalence relation on
L satisfying the condition (i’) formed by the condition (P) of Part 1, Pro-
position 3 and the condition
(vp‘"){v(’)’(i))"‘ v(y'(i)) for any object i of the indexing-category of y

when (7y,¥')€Q and ' eFf
(deduced from the condition (P") of Proposition 5), where v: gf = U still
denotes the canonical injection.

Then ié is the canonical quasi-quotient category of L by r' (we
recall [E1]that Zf is defined as follows: let L' be the quotient neocategory
of L by the smallest compatible equivalence relation containing ' and the
free category L” generated by the graph underlying L'; the category ié-
is the quotient category of L"” by the smallest compatible equivalence re-

lation such that
(x',x)~x".x if x'.x is defined in L' ).

If 2, isaU-set, 25 is also one.
Apart from this modification (i. e. r’ satisfies both (P) and (vP"),

not only (P)), the construction of o and of the canonical morphism S from

1387
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o to O is essentially the same as done in Proposition 3; the proof of Pro-
position 3 may also be copied to prove that each morphism Y from o to
a prototype is of the form \,Z' -5, Finally an argument similar to that of
Proposition 3 shows that the distinguished cones of o are limit-cones,
and we prove as in Part 3, Proposition 5, that two distinguished cones ad-

mitting the same base are identical. Hence O is a prototype. V
f

COROLLARY 1. The insertion functors from P to §" and from P to §
admit (left) adjoints. The categories S and P admit 4. -inductive limits.
If (£,1") is a cone-bearing neocategory, there exists a quasi-quotient pro-

totype of it, by an equivalence relation on 2 .
A . The proof is similar to that of Corollary 1, Proposition 3. V

DEFINITION. A prototype o satisfying Proposition 6 will be called a pro-
totype generated by o . If the canonical morphism S:0 ~ois injective,
we say that O is a sketch.

COROLLARY 2. If 0 is a cone-bearing neocategory and o oa prototype ge-
nerated by o, for every prototype o', the category d(o',0) is isomor-
phic with §(o' ,0).

A. The proof is similar to that of Corollary 2, Proposition 3. V
REMARK. The existence of an adjoint for the insertion functor from P to
&' is deduced in [ES] from the general existence theorem for free structures.,
This fact is generalized in [F] for V-categories, where V is a monoidal
closed category. Sketches are introduced in [E5]. Naturally each prototype
is also a sketch, and every sketch O generates a prototype of which o is

a subsketch.

PROPOSITION 7. Let o be a sketch, o a limit-bearing category genera-
ted by o and T a prototype generated by o. Then O and T are isomorphic.
A Let us denote by
§=(0,8,0) and 1 =(7,11,0)

the canonical morphisms. Since 77 is a fortiori a limit-bearing category, it

exists a unique morphism

438



CATEGORIES OF SKETCHED STRUCTURES 31

g =(7T,H',a‘-) such that 11’ -8 =11

(this is valid even is O is not a sketch). If o is also a prototype, then

there exists a unique morphism
$':7 =0 suchthar 8'-II =§,
and, from the equalities
3 .T'-8§=% and I1I'-8' -1 =11,
we deduce that 8’ is an isomorphism, whose inverse is TI'. Hence Propo-
sition 7 will be proved if we show that o= (f,]:) is a prototype, when
o 'is a sketch.

Indeed, let ’; and ;’ be two distinguished cones of T with the

’ -
same base ¢’. Since

={8y|yel}

(Proposition 3), there exist cones <y and 7y’ of ' such that v =287y and
;' = 87". The cones Iy and Iy’ are distinguished cones of the pro-
totype 7; as 1=11"' -5, we get

ﬁ'y =ﬁ"7 and ﬁy’ =11 ;’,
so that 11/ and 11y’ have the same base I1'¢’. Hence 11y =11" . The
injectivity of I implies 7y =7’ and, therefore, y=v5.V

We denote by & the full subcategory of §' whose objects are the

”
sketches o €38y

PROPOSITION 8. Let 0 be a cone-bearing neocategory (2,1" ) and let
I=(n,11,0) be the canonical morphism from o to a prototype T = (=, T)
generated by o. The presketch & image of o by Il is a sketch, charac-

terized up to an isomorphism by the condition:

If U is a universe such that o €8, then & is a free structure gene-

rated by O relative to the insertion functor from § to §" .

A. We denote by S the sub-neocategory of = defined by the set I1(Z)
and by m:2 =3 the insertion neofunctor. Let [I': S = ¥ be the neofunc-
tor restriction of Il and I’ the set of cones II’ ¥, where v €[ . Then,

& =(3,I') is a cone-bearing neocate ory, I1' defines a morphism 11’
g g
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from 0 to & and 7) defines a morphism 7: & = 77 . Moreover 7+11' = II .

2° We are going to prove that 77 is also a prototype generated by &,
the canonical morphism being 73 it will follow that & is a sketch 7) being
injective. Indeed, let o' bea prototype and -lZ": & - o' a morphism. By
definition of 77, there exists a unique morphism

J':m =o' suchthat ' -1 =y"-TI";

this equality may also be written ' +7-I1' =" -II' and, II’ being sur-

jective, it follows that W is also the unique morphism satisfying

g =y

o
o' b
a2
- II
"y a
O
v
gl
o' - -

J:
30 Let o' be a sketch (Z,I"’) and -\Z: o =o' a morphism. It re-
mains to exhibit a morphism
@"": & - o' such that @"“ﬁ' = &;
the surjecdvity of ' will imply the unicity of such a morphism. Indeed,
the canonical morphism 11" = (o’,1I",0") from o' to a prototype (=',T°")
generated by o' is injective, o' being a sketch. As 7 is a prototype ge-

nerated by o, there exists a unique morphism tZ' =(o" ,W',7) such that
I"g=y' -I=y" n-0.
As $'77 maps o I'(2) into II1"(X') and as II” is injective, there is
a unique neofunctor
"% =3 such thar TI"yY" =y’ 7;

it satisfies Y"II' =, since II" is injective and
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MyY"" =y'nll’ =Y'II =1I"y.
If ¥ el™, we have ¥ =II'7y for some 7y €['; from the equality
gy = g Tty =Ty
we deduce I1"y"5 €', the neofunctor 1"\ defining a morphism. Now,

1" is injective and I’ is formed by the cones 11”7’ , where ¥’ €["’. Hen-
ce, l/l",'i_:‘ eI—\l .
So, Y" defines the unique morphism

J": & =o' such that Y"-II' =y¢. V

COROLLARY 1. The insertion functors from § to S and §" admit left ad-

joints; & admits F, -inductive limits. V

DEFINITION. A sketch & satisfying the condition of Proposition 8 is cal-
led a sketch generated by o .

COROLLARY 2. Let o be a cone-bearing neocategory, & a sketch gene-
rated by o and o' a prototype. The categories §(o',0) and 8(o',5)

are isomorpbic.

A. The proofs of these corollaries are similar to that of Corollaries

1 and 2, Proposition 3. V

6. Types,

A loose type which is a presketch will be called a type. We are go-
ing to show that each §-cone-bearing neocategory o generates a §-type T
which is defined up to an isomorphism (and not only up to an equivalence,

as the loose §-type o generated by O). Moreover 7 is equivalent to O,

when O is a sketch.
We still denote by § a given set of categories.

DEFINITION. A J-cone-bearing neocategory which is a presketch (resp. a
sketch, or a prototype) will be called a §-presketch (resp. a §-sketch or a
d-prototype). A loose §-type which is a presketch is called a -type.

A §-type o =(Z,T") may be identified with a category S admit-
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ting d-projective limits, equipped with a choice of a limit-cone with base
¢ for each functor ¢: K =2, where Ked (i.e. with a .‘l-type as defined
in[Es]). If § is a U-set, denote by S’g, Sg, ?g and 3:4 the full sub-ca-
tegories of S"g whose objects are respectively the -presketches, the §-

sketches, the §-prototypes and the J-types belonging to So .

PROPOSITION 9. Let O be a§-cone-bearing neocategory. There exists a
d-type o characterized up to an isomorphism by the condition:
If U is a universe such that § is a U-set and o €8y, then o isa

free structure generated by o relative to the insertion functor ?gC-*S'g .

A. The construction of O is obtained by modifying the construction
of the loose §-type generated by o (Proposition 4) in a way similar to that
used to deduce in Proposition G the construction of the prototype from Pro-
position 3. In fact, we have only to modify the transition from Oy to O 4,
by also identifying two distinguished cones with the same base. More pre-
cisely:

lo If 0y is a cone-bearing neocategory (2, ,I";), we define as in
Part 1, Proposition 4, the graph (U, 8, a) and the free category L it ge-
nerates. But now we denote by if the canonical quasi-quotient category
of L by the equivalence relation satisfying not only conditions (P) and (P')
as in Proposition 4, but also the condition (vP") of Proposition 6. After
this modification,

Tp, 0p and 3 =(0g, 8 ,0,)
are defined formally as in Part 1, Proposition 4.

Now, let §' be a set of categories containing §, let o' be a §' -type
and = (o', 1, o) be a morphism. For each functor ¢: K ~2,, where
K ed, there exists one and only one cone Mg € I'" with base Y ¢. Hence,
by the method of Part 1-b, Proposition 4, we get one and only one morphism

e 5:5 -~ o' such that ¢’ '55 =y
(while in Proposition 4 the morphism @' was only defined up to anequiva-

lence, the choice of Mg being not unique).

2 By transfinite induction, exactly as in Proposition 4:
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a) we construct a functor w: <pu+1> ~ 8", where M is yet the least
regular ordinal such that K < W, for each K €d;

b) putting oc=w(pu) and 8 =w(u,0), we prove that O is aloose
§-type;

c) using the last statement of Part 1, we show that, if @: o ~o' is
a morphism from O to a 9'-type, where §' contains §, there exists a uni-

que morphism
$’: o -o' satisfying l—[/—' S = $ .
Finally, we see that o is also a presketch (and therefore a §-type),

by an argument similar to that used in Part 3, Proposition 5. V

g

COROLLARY 1. Let § be a U-set; the insertion functors from 3‘4 to &,
to S"g. to Sg, to’ ?g and to Qg admit left adjoints. 3:5] admits ¥ o-induc-
tive limits. There exists a quasi-quotient §-type of a §-cone-bearing neo-

category (2,I" ) by an equivalence relation on X .

A . The proof is similar to that of Corollary 1, Proposition 3. V
DEFINITION. A §-type o satisfying the condition of Proposition 8 is cal-
led a §-type generated by o .

COROLLARY 2. Let o be a g-cone-bearing neocategory and o a g-type
generated by o. If o' is §' -type, where §' contains §, the categories
S(o',0) and §(o',0) are isomorphic.

A. The proof is similar to that of Corollary 2, Proposition 3. V

REMARKS. In [ES] Proposition 9 is deduced from the existence theorem
for free structures. The explicit construction of o given here generalizes
that of Theorem 7 [E] (where I" is supposed void). Proposition 9 may be

extended for V -categories (see [F]).

PROPOSITION 10. Let O be a §-presketch (Z,1),
§=(0,8,0) and G =(7,0,0)

the canonical morphisms from o to a loose §-type o=(2,T") and to a -

type T generated by o . Then the following conditions are equivalent:
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1° o is a sketch;

2° § is injective;

3° @ is injective.

If they are satisfied, T and o are equivalent.

A. 1° Notice that, to prove the injectivity of &, it is sufficient to
exhibit an injective O -structure Y in a loose §-type o'; indeed, there
exists then a neofunctor ' defining a morphism from o to o' which sa-
tisfies '8 =1; this equality implies the injectivity of & when Y is
injective. In particular, if 6 is injective, & is also injective, for O is
a O-structure in the (loose) J-type 7. Similarly, 6 will be injective as
soon as there exists an injective O-structure in a §-type.

We denote by 77 a prototype (‘Z,f—') generated by o and by II

the canonical morphism from o to 7.

a) If O is injective, then O is a sketch. Indeed, since T is also a
prototype, there exists a unique morphism
II': 7 > 7 such that II' "Il = 6.

O being injective, Il is injective, i. e. O is a sketch.

b) Supposing o is a sketch, we now prove the injectivity of 8. Let
U be a universe to which belong K, for any Ked, and u'."z.u, for any
pair (u',u) of objects of Az The category M of maps between U-sets
admits then $-projective limits, so that the category =' = 3]12* of natural
transformations, where AZ* is the dual of AZ, admits g-projective limits.
Hence the full §-limitbearing category o’ on X' is a loose §-type. If we
consider the Yoneda immersion Y from s to 2', it is injective and it com-
mutes with projective limits; so Y defines a morphism Y:m—o'. A for
tiori, Y*Il:0 =0’ isa morphism from O to a loose §-type and, II being
injective by definition of a sketch, Y-II is injective. From the initial re-

mark, we deduce that & is also injective.

2° We have yet to show that, if & is injective, & is injective and T

is equivalent to 0. For this, we will use the following result:

a) Let o' be a loose §-type (=',T"') and \y an injective o-structure
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in o'. Then there exists a subset " of "' such that (2", T") is a g.
type 0" and that \) defines also a morphism y: o - o”.
Indeed, let @' : K = 3’ be a functor, where K €§. Since Y is in-

jective, there is at most one neofunctor
U
¢:K =2 suchthat Y =7

and, O being a presketch, there exists at most one distinguished cone
v €' with ¢ as its base; hence there is at most one cone °y €[ such
that @' is the base of Yy €["'. If such a cone 7y exists, we denote the
cone Yy by Y4 's otherwise, we choose one cone v' el with ¢’ asits

base, and we denote it by ¥, . The set I'" of cones
Yg! » Where @' K == and Ked,

is a subset of ', and (Z',I"") is a §-type 0”; by construction, | de-
fines a morphism from o to 0.

b) We suppose now that & is injective. Part a applied to S:0 0o
asserts the existence of a g-type o' = (E,F') such that [’ is a subset
of ' and that & defines a morphism 8': 0 — o'. By definition of the J-
type generated by o, there exists a unique morphism " =(c",8",7T) sa
tisfying 8" +6 = §'. This implies the injectivity of 6.

The identity of = defines a morphism 7: o' -0 and we have:
’T-]'-S—, = 8. There exists a morphism o' = (T, 9',;) such that 0’ +§ = 6.
From the equalities
o TN I (N B0 L
it follows (Proposition 4, condition 2) that the functor 8”8’ whichdefines
the morphism 78" -0 :0 20 is equivalent to the identity of 2.On the

other hand, the equalities

-é'l';;. 8” .-é' -

i
>l
Il

@l

g
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imply that the functor @' 8" defining the morphism 6' ';7"—5”2 T =T isan
identity. Hence, 0’ defines an equivalence from 0 to 7. V

COROLLARY. Let o be a §-prototype (2, " ). The canonical morphism

A:o =T from o to al-type T=(Z, r) generated by o is injective.

Moreover, 2 is a loose §-projective completion ofo. V

REMARK. The injectivity of 6 was shown in Theorem 6 of [E] .
Il. MIXED LIMIT-BEARING CATEGORIES

7. Mixed sketches and mixed types.

Up to now, we have always considered neocategories equipped with
projective cones. Dually, we could deduce similar results for neocatego-
ries 2 equipped with a set of inductive cones (since this is equivalent
with equipping the dual of 2 with projective cones). In this paragraph, we
will generalize all the preceding results to the case where the neocategory

is equipped with both projective cones and inductive cones.
We denote by § and g two sets of categories.

DEFINITIONS. 1° A mixed cone-bearing neocategory (resp. category) is
a triple (2,I",V), where 2 is a neocategory (resp. a category), [ a set
of projective cones in = indexed by categories and V a set of inductive
cones in 2 indexed by categories. We say more precisely that (£,I",V)
is a (9, 9)-cone-bearing neocategory if the indexing-category of each 7y
of I belongs to § and that of each x €V belongs to §.

20 If moreover 2 is a category, if [ is a set of projective limit-cones
and V a set of inductive limit-cones, then (2 ,I",V) is called a mixed
limit-bearing category (or, more precisely, a (4, 9)-limit-bearing category).

20 A (g,ﬂ)-limit-bearing category (2,7, V) is called a (mixed) loose
(4,9)-type if each functor p: K = =, where K e (resp. where K€ 9) is

the base of at least one cone ¥ €[ (resp. of at least one cone « € V).

4 A (9,9)-cone-bearing neocategory (=,I".V) is called a (mixed)
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(4,9) -presketch if two different cones of I (resp. of V) have different
bases. A mixed presketch which is a mixed limit-bearing category (resp.

a loose (4, §)-type) is called a mixed prototype (resp. a (9, 9)-type).

5° A morphism between mixed cone-bearing neocategories is a triple

(o', y,0), where
c=(2,[',V) and o' =(=',I"",V"

. . . " .
are mixed cone-bearing neocategories and Y : = = 2' is a neofunctor such
that

Yyel' forany y e, YxkeV' forany keV.

6° Let o be a mixed cone-bearing neocategory and o’ = (2 TNV
a mixed cone-bearing category. A neofunctor Y defining a morphism @ from
o to o' (still denoted by @: o = 0o') is called a o-structure in o' . We
denote by 8(o',0) the full subcategory of =’ 2 formed by the natural trans-

. . [}
formations between O-structures in O .

EXAMPLES. 1° Let 2’ be a category. The full (g,ﬂ)-lz’mit-bearing cate-
gory on Z' is the triple (Z',["',V") = o', where I'' is the set of all the
projective limitcones in =’ indexed by a category Ked and V' the set
of all the inductive limit-cones in 2’ indexed by a K€ §. If o is a mixed
cone-bearing neocategory, a O-structure Y in O is called a O-structure
in ', and 8(0',0) is then denoted by 8(=',0), or by ='7 .

20 Let K be a category and 0 =(2,I",V) a mixed cone-bearing ca-

K the mixed cone-bearing category (KT ,V)y,

tegory. We denote by o
where [ is defined as in Example 2-2 and V is defined dually from V.
When O is a mixed limit-bearing category, such is oX. If K is the cate-

gory 2, as in Example 2- 2, we deduce from o2

the longitudinal mixed co-
ne-bearing category OO of quartets of o and the lateral mixed cone-bea-
ring category Bo of quartets of o (they are mixed limit-bearing categories

when such is 0).

PROPOSITION 11. Let o be a mixed cone-bearing neocategory and o' a
mixed cone-bearing category. There is a canonical bijection from the set

of morphisms of the category S8(o',0) onto S(Ho',0), .

A7
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A. The proof is similar to that of Proposition 2. V

Let U be a universe. We denote by:

- Omy the set of mixed cone-bearing neocategories (2,I" ,V) such
that =, ', V are U-sets, as well as K, for any indexing category K of
acone.y of [ or V.

- Sm" the category of morphisms between elements of SmJ .

L 8m" = F' the functor associating ¥ to (o' ,,0).

- P, Sm', Pm the full subcategories of Sm" whose objects are those
o €8m% which are respectively mixed limit-bearing categories, mixed pre-
sketches and mixed prototypes. .

- 5"55, gﬂfj and 3:93, if Q and 3 are U-sets, the full subcategories
of &m" whose objects are those O € &m? which are respectively (4,9 )-
cone-bearing neocategories, loose (g,f])-types and (g,ﬂ ) -types.

- §,£ﬂ and gg,é] the quotient categories of S,,S]f] and ggﬂ by the equi-

valence relation generated by:
(o' ,y,0)~ (o' W', o) iff there exists an equivalence m: ) — .

The category 8" may be identified with the full subcategory of Sm",
whose objects are those (2, ,V)€e&nY such that V is void; similarly
P', & and P may be identified with subcategories of Pm', Sm' and Pm.
The categories 5‘39 and ffg will be identified with 5343 and .‘}93 correspon-
ding to the case where the set § is void.

We also obtain the analogous categories of morphisms between in-

ductive cone-bearing neocategories as subcategories of Sm".

PROPOSITION 12. Sm" admits Fo-projective limits and & -inductive li-
mits; q§, w commutes with projective limits and with inductive limits. The

categories Pm', Sm', Pm are closed for projective limits in Sm", as well

as ?gﬂ, when § and § are U-sets.

A. The proof is similar to that of Proposition 1. The distinguished pro-
jective cones on the limit are defined as in Proposition 1, while the distin-

guished inductive cones are defined dually. V

PROPOSITION 13. Let O be a mixed cone-bearing neocategory. There exist:
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a mixed limit-bearing category O,
a mixed presketch ',
a mixed prototype I,
characterized up to an isomorphism by the condition:
If U is a universe such that o belongs to dm', then o, 7w and 7
are free structures generated by O relative to the insertion functors toward
Sm" from respectively Pm', Sm' and Pm.

A. Let u be the least regular ordinal greater than K , for any cate-

gory K indexing either a cone of [ or a cone of V . We construct o (resp.
', resp. 77) by transfinite induction, as the end of a tower of mixed cone-
bearing neocategories Of » for £< u, as in Proposition 3 (resp. 5, resp.
G), the only difference being in the non-limit step which we now describe.
We suppose for this that Oy is any mixed cone-bearing neocatego-
y (25 ’rf ’vé)‘
1° In the construction of O, we associate to O the mixed cone-bea-
£ing neocategory ;‘f =(§§ ,I:f ,vf) defined as follows. We denote by:
- Q the set of pairs (7y,7y") (or «formal factors»), where 7y € Ff and
9" is a projective cone in 25 with the same base as 7.
- 0 the set of pairs ( k', k) (or «formal cofactors»s), where k € V§
and «' is an inductive cone in 2’ with the same base as «.

- U the sum of éf , Q and o) , with injections:
viZ, U, v:Q -U, 5:0 ~U.
- (U, B,a) the graph such that:
vix):vlu) »v(u') if x:u—~u' isin 2, .

vy, ¥y ):ulu') = vlu) if (v, )eQ andif Y and ¥’ have u
(¢) and ' as vertices.
(k' k) vlu) »v(u') if (', k)eQ and if « and ' have u

and u' as vertices.

- L the free category generated by (U, 8,a) and r the smallest equi-

valence relation on L satisfying the condition (Pm) obtained by adding

Condition (P), Part 1, Proposition 3, and

1%9
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(k' k), v(k(i)))~v(k'(i)), if i€Ko,
Pi) k', k)~u(z), if zezf and-z. k(i) = k'(i) for any i € K, ,
where (k',Kk) € O and K is the indexing-category of K.
- if the quasi-quotient category of L by r and p: L —'ig the ca-
nonical functor.
The map p'v defines a neofunctor 55: 25 - if. The triple 55 =
(ié ,FE ’§§) y where
is a mixed cone-bearing neocategory and Sg defines a morphism

—

Uf'

. ’ . . .
2° In the construction of 77 , we associate to Oy the following mixed

8510'5

cone-bearing neocategory gf: Let 7 be the smallest equivalence relation
on __2_5 satisfying the condition (P"m) obtained by adding to the condition

(P") of Proposition 5 the condition:

(P"3) {K(i)"’K'(i), for any i € Ko, if k and «' are two cones of V/f

with the same base, indexed by K.

We denote by 25 the quasi-quotient category of Zf by r andwe define the
canonical neofunctor 8¢:2; — 3¢ and the sets r§ and Vg formally as in
Part 1. Then 0y = (2§ ,I_'f ,Vf) and 85:05 — 0g is defined by 8¢ .

3° In order to get 7, we construct 55 as in Part 1, replacing only
the condition (Pm) by the condition (Pm) deduced from the conditions (Pm)
and (P"m) (as (P) was deduced from (P) and (P") in Proposition 6).

4° To prove that o (resp. 7', resp. 77) has the properties indicated
in Proposition 13, we use the same arguments as in Proposition 3 (resp. 5,
resp. G) for the distinguished projective cones, and dual arguments for the
distinguished inductive cones. (This is possible, since the parts of the
constructions involving inductive cones are just deduced by duality from

those involving projective cones.) V

DEFINITION. With the hypotheses of Proposition 13, we call o (resp. 7',
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resp. 77) a mixed limit-bearing category (resp. a mixed presketch, resp. a
mixed prototype) generated by 0. We say that o is a mixed sketch if the ca-

nonical morphism from o to 77 is injective.

We denote by &m the full subcategory of m' whose objects are

the mixed sketches o ESm!, .

PROPOSITION 14. Let o be a mixed cone-bearing neocategory. There
exists a mixed sketch & defined up to an isomorphism by the condition:
If U is a universe such that o € 8m", then & is a free structure ge-

nerated by o relative to the insertion functor from Sm to Sm" .

A. Let (7,11 ,0) be the canonical morphism from O to a prototype
generated by o and & the mixed presketch image of o by II. Then a proof
similar to that of Proposition 8 shows that & is a sketch satisfying the

condition of Proposition 14. V

PROPOSITION 15. Let o be a (9, 9)-cone-bearing neocategory. There exist
- a loose (4,9)-type o, defined up to an equivalence,
- a(4,9)-type T, defined up to an isomorphism,
satisfying the condition:
Let U be a universe such that § and § are U-sets and o € Sm". Then

O and T are free structures generated by O relative to the insertion func-

tors respectively form g‘(!é‘ to S’ﬁg and from ?QS to 5"95.

A. The construction of o (resp. of 7) is done by transfinite induction
by a method similar to that used in Proposition 4 (resp. 9), the only modi-
fication occuring in the non-limit step, which we now describe.

Let 0y bea (4, 9) -cone-bearing neocategory. We consider the sets
- Zf ' ), M and M’, defined as in Part 1, Proposition 4,
- O M and M’ defined dually as follows:

i 0 s the set of pairs of cones ( ', k), where « evf and ' is
an inductive cone in Zf with the same base as «,
M is the set of neofunctors ¢: K — Zé_- , where K€ ﬂ, which are not
the base of any inductive cone K € V§ ,

M’ is the set of pairs (¢, 1), where ¢€M and 7€ K,
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We denote by U the sum of these seven sets, by

A,

' ’ Y -~
v, v, w, w, v, w, w

the canonical injections into U. We get a graph (U, 8, @) by imposing
condition (G) of Proposition 13 and
w' (i, ):w(p) ~vl(Pp(i)) if (i,P)eM’,
@ (Ppri):ol(pl(i)) ~d(P) if (P,i)eM’.
Let L be the free category generated by this graph and r the smallest equi-
valence relation on L satisfying the condition (Pm) of Part 1 (resp. (i’m),
of Part 3), Proposition 13, the condition (P') of Proposition 4 and
. {(ﬁ/'(qb, i), 0( PR~ (P, i'), if (i)eM, p:K =5, ,
(P') s
k:i"—i in K.
There exists a quasi-quotient category if of L by r and, if o is
the canonical functor from L to Sf, then O v defines a neofunctor 85,
from 25 to if .
Let ¢: K — 25 be a functor. If ¢ € M, we define a projective cone

Vo P(w(d))” -'35615, the «formal projective cone associated to ¢», by
')’¢(i) =p(w'(i,P)), forany i€Ko.
If ¢€M, we define an inductive cone Ky :85¢ - po(@(¢))" , the «formal

inductive cone associated to ¢», by:
K¢(i) = ,0(12/'(¢‘1 i)), for any ieK,.
We denote by
- Ff the set of cones 8,7 where eré, and Y, where PeM,
- vf the set of cones 85 K where K €V§ , and K where e M,
- &—5 the mixed cone-bearing category (_2_5 ,Ff ,Vg ),
- Sprop = 55 the morphism defined by 5 .
1f ¢ =(o",|,lz,c7§) is a morphism from Oy toa loose (g,ﬂ)-type
o' , we can choose one (resp. to a (g,ﬂ)-type o' , there exists one unique)
distinguished projective cone 7 in o' with Y ¢ as its base, for each
¢ €M, and one distinguished inductive cone :r)¢,, with Y @' as its base,

' _ . .. . .
for each @' € M. As in Part 1 Proposition 4, we see there is a unique mor
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phism ' 5:5 - o' such that
' -, 8¢ = =y, Pog= ng if ¢eM,
B kg =M if ' EM.
The construction of O (resp. of 7) is done just as in Proposition
4 (resp. 9), but with this modified definition of ;f . The proof of Proposi-

tion 15 is completed similarly. V

DEFINITION. With the hypotheses of Proposition 15, we call o aloose
(Q,S)-type generated by o and T a (Sl,ﬂ)-zype generated by o . The ca-

tegory underlying o is called a loose (4,9) -completion of o.
The preceding Propositions admit the following corollaries:

COROLLARY 1. In the diagram

Pm'
Q/,/ ‘\\ A 5

%&»&\ /2“2‘/

the insertion functors admit left adjoints, all the categories admit §o -induc-
tive limits and the functors toward W admit quasi-quotient structures.

COROLLARY 2.The corollaries of Propositions 3, 4, 5, 6, 8 and 9 are still
valid when (projective) cone-bearing neocategories are replaced by mixed

cone-bearing neocategories.

Let o be a(9,9)-cone-bearing neocategory. We will denote by:
o amixed limit-bearing category,
77 a mixed prototype,
7' aloose (,9) -type,
7 a(9,9)-type,
generated by 0. From Corollary 2, we deduce:
COROLLARY 3. I° If o' is a(4,9)-type, the categories
§(o',0), 8(o',m), 8(o',0) and §(0', )

are isomorphic, and they are equivalent to (o' ,T').
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2° If 2' is a category admitting §-projective limits and §-inductive
limits, the categories 2'% and ='7 are isomorphic, and they are equiva-

’
lent to the category =' T,

PROPOSITION 16. Let o be a (§,9)-cone-bearing neocategory. The fol-
louing conditions are equivalent:
1° o is a mixed sketch.
2° The canonical morphism S:0 -»7'is injective.
3° The canonical morphism Q:0 = Tis injective.
If they are satified, then
{ 71 is isomorphic with o,

T is equivalent to T'.

A. The proof is just similar to that of Propositions 7 and 10, except
that Part 1-b of Proposition 10 must be modified as follows.
We suppose that o is a mixed sketch (2,I",V); we want to exhi-
bit an injective O-structure in a loose (9,9)-type. As in Proposition 10,
we consider the canonical morphism I=(n,11,0) from o to a prototype
T = (‘Z ,f_' ,v) generated by o, a universe U such that K, for any cate-
gory K belonging to § or §, and u'. AZ.u, for any pair (u', u) of objects
of Az, are ‘U-sets, and the Yoneda immersion Y from b3 to mz*. But Y
does not commute with inductive limits. So we take the full subcategory 2"
of X' = :)T(E* whose objects are functors F: $*am commuting with ﬂ-pro-
jective limits. It is known (see, for example, [J]) that 2" admits ¥o -pro-
jective and inductive limits. (In fact, 2" is closed for projective limits in
5! and the insertion functor from 2" to 2’ admits a left adjoint). Moreover,

there exists [Lb] a restriction

A

v o3 of ¥:E -3,

which commutes with projective limits and with §-inductive limits. It fol-
lows that the full (g,ﬂ)-limit-bearing category on 2" is a loose (g,f])-type
0", and that Y' defines an injective morphism Y': 7 — 0" . Hence Y'II

is an injective O-structure in the loose (4, 9)-type o". V

REMARK. If O is a mixed limit-bearing category, the «type part» of Propo-
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sition 15 and the injectivity of O are stated in Theorem 15 [E]. The ex-
plicit constructions of the generated loose (g,ﬂ)-type and (g,ﬂ)-type T
are yet suggested by that of Theorem 8 [E] (the construction of the type
7 has also be done for V-categories [F]). Proposition 16 generalizes

Theorem 14 of [E] (which corresponds to the case ['= @ =V ),

. . ?
DEFINITION. Let o be a mixed (g,ﬂ)-cone-bearmg neocategory. If O
. . o . . . ’
is a mixed limit-bearing category (2, V", we say that O is O -regu-
lar if each o -structure in 2’ is equivalent to a O -structure in o'. If O is

o' -regular for each (§,J)-type o', we say that o is regular.

. e o . . . '
This definition means that the insertion functor from &(o',0) to

’ . . .
2" 7 defines an equivalence between these two categories.

COROLLARY. Let 0 be a (9,9)-sketch and o' a mixed prototype (resp.
a (4,9)-type) (Z',T'',V'). Then o is O'-regular iff a prototype (resp.
a(4,9)-type) o generated by o is o'-regular.

A. We denote by (8’, 8 ,0) the canonical morphism, by F the func-
tor from 2 % to ='° assigning 6’8 to &'. By Proposition 16, o is also
a limit-bearing category (resp. a loose (4, 9)-type) generated by o . So, ac-
cording to the proof of Corollary 2, Proposition 15 via Corollary 2, Propo-
sition 3 (resp. via Corollary 1, Proposition 4), there exists a functor G from
5'% to 3'% such that G is an inverse of F (resp. such that FG is an
identity and G F is equivalent to an identity).

1° U o is o'-regular and if u is a o -structure in 2, there exists
an equivalence 7' from the & -structure G(p)in 2' toa O -structure '
in o',and 7' 8:G(u)8 — 'S is an equivalence from 4 to the o-struc-
ture '8 in o', since G(u )8 =FG(p) = p.So o is o' -regular.

20 We suppose that O is o' -regular. Let v be a o -structure in '
there exists an equivalence £ from v & to a o-structure Y in o', and
G(£) is an equivalence from G( v 8) to G(y). By definition of 5’, there
exists a O -structure Y’ in o’ satisfying F(Y')=y'8=y. As ' is
equivalent to GF(y')=G(y) and v to G(v8)=GF(v), the func-

t . A '
tors v and ' are equivalent. Hence, o is o' -regular. V

REMARK. Most usual sketches are regular. More generally, we say that
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o is loosely o' -regular if the categories 2'% and 8(o0',0) are equiva-
lent. From Corollary 2, Proposition 15, we deduce at once that o is loose-
ly o' -regular, where o' is a mixed prototype (resp. a loose (g,ﬂ)-type,
resp. a (g,ﬂ)-type) iff so is a prototype (resp. a loose (4, 9)-type, resp.
a (g,ﬂ)-type) generated by 0. In several papers, regular meansloosely
regular. In particular in [L], each mixed cone-bearing neocategory is uni-

versally immersed into a loosely regular one.

8. Corresponding 2 -categories of bimorphisms.

In this paragraph, we give a reformulation of the preceding results
in terms of 2-categories. The categories Pmty P ... appear as the catego-
ries of l-morphisms of representable and corepresentable 2-categoriesand

the adjoint functors constructed above extend into 2-adjoints.

2-categories will be considered as those special double categories
(or category-objects in ) (C', C™) for which the objects of the category
C’ are also objects of the category c* (they are often considered as F-
categories, relative to the closed cartesian category ).

Let C be a 2-category (C', C*). The categories C' and C" have
the same set of morphisms, denoted by C, and whose elements are called
bimorphisms (or 2-cells) of C. The category C' will be called the catego-
ry of bimorphisms of € (or «strong category» [G]), and written €, while
CJ', also denoted by C* , is called the transverse category ( ‘'or «weak» ca-
tegory) of C. We say that an object of C* is a vertex of €, and that an ob-
ject of C isa 1-morphism (or 1-cell) of C. The set of 1-morphisms de-
fines a subcategory of C°, denoted by |C|. If b is an element of C, it
is both a morphism b: f —f" in C" and a morphism in C°, with source the

source e of the l-morphism [/ (or [’) in |€ l and with target the target e’

of f in IG |; to «visualize» the two laws, we will write:
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h:eze in C
or, more precisely:
h:f—f:eze in C.

The 2-category C is said representable (resp. corepresentable)
[G1] if the insertion functor I from |C| to the category of bimorphisms
C’ admits a coadjoint (resp. a left adjoint) O . A cofree (resp. free) struc-
ture generated by a vertex e of C is called a representation (resp. acore-
presentation) of e. Hence D e is a representation of e iff there exists a
bimorphism Je : De =3 e such that, for each bimorphism 5 : ¢’ e, there

is a unique 1-morphism
h':e' = Oe satisfying Oe.h’ =h.

If C is a representable 2-category, the triple on I@ I associated
to the pair (I, O) of adjoint functors admits the category of bimorphisms

of C as its Kleisli category.

We still denote by JU the 2-category of natural transformations asso-
ciated to the universe U (we call a 2-category by its bimorphisms, and
not by its vertices, as usual). Its category of 1-morphisms |T(| is the ca-
tegory J of functors associated to U. Its transverse category is the sum
of the categories 3! 8, where = and ' are categories whose sets of mor-
phisms belong to U. The law of its category of bimorphisms is the lateral

composition of natural transformations: If
Ti¢p->¢'Z 32 and Tiv oV 2 33
are natural transformations, their lateral composite, denoted by 7' *7 or by
7 T is the natural transformation:
' mrvTivp v P T 33,
JUis representable and corepresentable, a representation of the ca-

tegory = being the lateral category HE of quartets of = and a corepresen-

tation of = being the product category Z x 2 (see [G1]).

Using N, we are going to define a representable and corepresentable

2-category, whose category of 1-morphisms is the category of morphisms
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between mixed cone-bearing categories.
DEFINITION. A bimorphism between mixed cone-bearing categories is de-
fined as a triple 7=(y"', 7,), where
I ! T ’ !
¢=(O’ 7¢’1U) and L/’ "(U 7‘)0 ,O')
are morphisms between mixed cone-bearing categories and 7: Y ~ ' is
a natural transformation between the underlying functors.
- . . . " T .
We also say that 7 is a bimorphism from ¥ to Y  defined by T,
denoted by one of the following formulas:
T2y 2y', 72030, Y ~2yY'io g0,
Let 0 and o' be two mixed cone-bearing categories. We define the
longitudinal category S(o’,0) of bimorphisms between 0 and o' as the

set of bimorphisms Ti0 30’ equipped with the longitudinal composition:

The longitudinal composite of (7" ,F) exists iff
T=y',7,¥) and T =(g", 7", ¥"),
and it is then equal to the bimorphism, denoted by 7' mT,
oy 2y"io 30,
defined by the natural transformation 7' o T.
The category &(0',0) is trivially isomorphic with 8(o’,0).
If 7:0 20" and 7" 0’ = 0" are bimorphisms, where
T=',7,¢¥) and T =(v', 7", V),
the natural transformation 7" 7 defines a bimorphism

:vy =V "0 20"

we call @ the lateral composite of (7",7) and we denote it by T,

We consider still the set Sm" of mixed cone-bearing neocategories
associated to the universe U and the corresponding category of morphisms
Sm". We denote by:

- Fm" the subset of Sm! formed by those o whose underlying neoca-

tegory is a category,

158



CATEGORIES OF SKETCHED STRUCTURES 51

- Fm" the full subcategory of Sm" of morphisms between mixed cone-
bearing categories belonging to Fm§ ,

- NFm" the 2-category of bimorphisms associated to U: its category
of bimorphisms is formed by the bimorphisms T o = 0’ such that o and
o' belong to gm: , the law of composition being the lateral composition;
the law of its transverse category is the longitudinal composition (cate-
gory sum of the categories S_( o',0)). In particular, the category of 1-
morphisms is Fm".

- m' and NFm the 2-categories of bimorphisms between mixed pre-
sketches and sketches on a category, i.e. the full sub-2-category of NFm"

whose sets of vertices are respectively
S:m:) =3:m808m:, and gzmo =§mgmgmo .
- NPm , Pm, 7153‘15 and 7'(3‘45, where § and f] are U-sets of catego-

ries, the 2-categories of bimorphisms between mixed limit-bearing cate-
gories, prototypes, loose (Q,f])-types and (g,ﬂ)-types, i. e. the full sub-
2-categories of JiFm" whose sets of vertices are respectively ?m'o, Pmon

All these 2-categories are canonically equipped with a faithful 2-

functor toward .

PROPOSITION 17. The 2-category JiFm" is representable and corepre-

sentable.
A. Let o be a mixed cone-bearing category (=,I",V ).

1o o admits as a representation the lateral mixed cone-bearing cate-
gory Bo of quartets of O, for any universe U such that o€ Fmd .
Indeed, let @ and b be the functors from HZ to = defined by the
mappings source and target of the longitudinal category o2 . By defini-
tion (Example2-7), Bo is the category HZ equipped with the sets
- T of projective cones  such that ay€" and byel,
- V of inductive cones < such that ax €V and bkeV .

In particular, @ and b define morphisms

a: Ho »o and b:Ho ~0o.
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To the identical morphism of Ho, Proposition 11 associates a bimorphism
do=(b,j,a):Bo 30
(where j is the natural transformation from @ to b assigning the morphism

x of 2 to the object x of HX).

Let o' be a mixed cone-bearing category (=',I"',V') and
T=(', 7)o’ 30
a bimorphism. The unique functor T: 2’ — HZ such that jT = 7 defines

a morphism from o' to Ho (Proposition 11), which is the unique morphism

T:0' »Ho suchthat Qo+ T =7.
Hence J1Fm" is representable, Ho being a representation of O .

2° We denote by:

- 5 the category 2x 2,

- v and V' the functors from = to ) associating respectively (x,0)
and {( x, 1) to the morphism x of =,

- I the set of cones vy and v'7y, where yel,

-V the set of cones v« and V', where keV .
Then ( s f" V) is a cone-bearmg category O’ and v and V' define mor-
phisms V and ¥ from O to O . By assigning (e,(1,0)) to an object
e of >, we get a natural transformation 6: v - v', and therefore a bimor
phism 5:(;',9,;): o :&.

o s a corepresentation of O in JFm" for any universe U such

that o € ?m{,' . Indeed, let
T =(¢'a7‘1$) HE% :O-l
be a bimorphism, where o' is a mixed cone-bearing category (2,0, V.

As $isa corepresentation of 2 in JU, there exists a unique functor
T':35 +3' suchthat T'6=7".

This functor defines a morphism T .o =o' , since
T'vy=yy and T'V'y=y"y,

for any distinguished cone ¥ in O . Then T' is the unique morphism sa-
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ox2

The cone-bearing category o considered here above will be deno-
ted by o X 2°.

REMARK. 0X2 is not defined as the product of two cone-bearing catego-
ries. However, if § and J are given sets of categories, we can define a
prototype 2 by equipping 2 with the set of all «constant» projective cones
in 2 indexed by a category K 69, and with the set of all constant induc-
tive cones indexed by a category of 9. Then, for each (4,9 )-cone-bearing

category O, the product 0 x2 in Fm" is identical with oX2.

PROPOSITION 18. Let X denote anyone of the symbols
o, F', Fm, Pt P, 89, 5,

where § and § are U-sets of categories.

1° If X #Fm', then X is representable, a representation of a ver-
tex o being Ho.

20 If X # ggﬂ and X # 3:95’ then NX is corepresentable, a corepre-
sentation of o being 0 X2.

30 7'(3:43 is corepresentable, a corepresentation of o being a (4,9)-
type generated by o X2 .

A.1° A full sub-2-category JX of the representable (resp. corepre-
sentable) 2-category JIFm" to which belongs a representation (resp. a co-
representation) of each vertex o of JIX is representable (resp. corepre-

sentable). So assertions 1 and 2 result from the following facts.

a) If o is a mixed limit-bearing category, so is Ho . Since a constant
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functor toward 2 admits its unique value both as a projective limit and
as an inductive limit, 0 X2 is also a limit-bearing category. Hence NP m
is representable and corepresentable.

b) If o is a mixed presketch (resp. prototype), o X2 is also one, so
that JIiFm' and NMPm are corepresentable.

¢) Let o be a mixed prototype (=,I" ,V ). Then the mixed limit-bea-
ring category Ho is also a presketch, i.e. a prototype. Indeed, let Y be
a distinguished projective cone in Ho, with base T and vertex x . Objects
of HZ are identified with morphisms of > and we denote yet by a and b
the functors from HZ to = determined by the mappings source and target
of mMZ. By construction, @ and b7 belong to [, so that a7y and b7y
are the only cones of I with bases aT and bT (for o is apresketch).
Moreover, b7y being a projective limit-cone, x is the unique morphism of

2 such that
(b';)xzen:na;, whete O:aT —bT

is the natural transformation canonically associated to the functor T to-
ward HZ. Hence '; is the unique distinguished projective cone in Bo,
with base T . Similarly, there is at most one distinguished inductive cone
of Ho with a given base. This proves that Ho is a mixed prototype. A
fortiori, J1Pm is representable.

d) If o is a (g,ﬂ)-type (resp. a loose (Q,ﬂ)-type), so is Ho, which
implies that ?l?gs and fﬂ£gf] are representable.

e) Let 0 be a mixed sketch (Z,[",V ), where 2 is a category; let

II be the canonical morphism (m,Il,,0) from o to a prototype 77 gene-
rated by o .

Bo is a mixed sketch. Indeed, let 11’ be the canonical morphism

from Ho to a mixed prototype it generates. From Part c, it follows that

B7 is a prototype. The functor BII (assigning
(I(y ), (=), I(y), II(x)) to (y'.x".x,y))

defines a morphism BII: Ho — B7. So there exists a unique morphism

TI" such that BT =T1" -TI’. Since Il is injective, BII is alsoinjective
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—
X
N
]

and the preceding equality implies the injectivity of I’ . Therefore, Ho
is a mixed sketch, and NFm is representable.

Similarly, 0X2 is a mixed sketch, because the functor [I X2 de-
fines an injective morphism TIX2 from 0X2 to the prototype 7X2 (Part

b). So J1Fm is corepresentable.

20 Let o be a (§,9)-type. Then 0 X2 is not a (9, 9) -type, but it
generates a (4, 9) -type o. By transitivity of free structures, o is a free

structure generated by O relative to the composite insertion functor
3'43 C— > Fm" - (JUFm").

A fortiori O is a corepresentation of O in the full sub-2-category T(?gg

of WFm" . V

Q|

o X2

COROLLARY. NNFm' is not representable.

A . Let o be a mixed presketch (2,",V ), where 2 is a category.
1o Ho may not be a presketch. Indeed, we still denote by @ and b
the functors from HX to = determined by the mappings source and target
of MZ. Let T:K »HZ be a functor and 7: K 3 5 the corresponding
natural transformation. If
y:e*”=aT and y':e'" = bT

are cones of I, for any morphism x:e ~e’ in 2 such that y'x = 7y,
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there exists a cone :;x ;%" =T in BZ such that
ay,=y ad by, =7,
and this cone is distinguished in HBo. As 7' is not necessarily a limit-

cone, there may exist another
y€Z suchthat ~'y=7my,

and so another distinguished cone :;y in Ho with base T. Then Ho is

not a presketch.

20 Let us suppose there exists a representation 0 of 0 in JIFm' and

denote by _75 =(0,7n ,3) the canonical bimorphism. Let
30 =(b,j,a):Bo 2o

be the canonical bimorphism defining Ho as a representation of o in the

2-category Jim" (Proposition 17). There exists a unique morphism
¢ =(Bo,y,0) suchthat do-=7.

We are going to show that @ is an isomorphism, which is impossible in
the case where Ho is not a presketch.

a) Y is an isomorphism. Indeed, let 7: 3'2 2 be any natural trans-
formation. It defines a bimorphism 7: o' =3 o, where o' is the mixed pre-
sketch on 2’ without any distinguished cone. There exists a unique mor-
phism T =(0, T,0') such that 7T = 7: this means that T is the uni-
que functor satisfying T = 7. Hence 7) defines the underlying category
of o as a representation of = in Jl. As j defines HS as arepresenta-

tion of = in JU, the functor Y such that ji/ = 7) is an isomorphism.

T

b) The inverse t/i'l of Y defines a morphism from Ho to o. Indeed,
let v be a distinguished cone of Ho . We get a mixed presketch & by
equipping BZ with -’)./ as its only distinguished cone; j defines a morphism

7: 0 — 0. So there exists a unique morphism
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J' = (C},\p',&) satisfying neg’ =7;
in other words, Y ' is a functor such that l/!";; is a distinguished cone
of o and MY’ =j. It follows jyy' =7, which implies that Y’ is an
identity functor. \ being an isomorphism, we have ' =¢J'1. Hence,

(BU,¢'I ,c;') is a morphism, inverse of QJ“ \Y,

REMARK. The 2-category n@ﬂj is not corepresentable, but it is weakly
corepresentable [G1], a vertex o admitting as a weak corepresentation
a loose (4, ﬂ)-type o generated by 0 X2. More precisely, let 6 be the
canonical bimorphism defining 0 X2 as a corepresentatlon of o in JIFm"
(Proposition 17, Part 2) and §:0X2 =0 the canonical morphism. If o'
is a loose (9,5)-type, T'.o30 a bimorphism, there exists a morphism

T, defined up to an equivalence, such that T'+(5:6)=17".

If § and J are U-sets of categories, we denote by W?m"gg the
full sub-2-category of JiFm" whose vertices are those (g,ﬂ)-cone-bea-

ring categories belonging to S

PROPOSITION 19. In the follourng diagram of 2-functors,

m’m\ nsfm NFIC o 1F a9

N

where the 2-functors toward n assign to a bimorphism (c',08,0 ) the

a4

natural transformation @, all the 2 -functors admit 2-adjoints.

A. All the 2-functors of the diagram are 2-functors between represen-
table 2-categories, which commute with the representations by Proposition
18. Moreover their restrictions to the categories of 1-morphisms admit left
adjoints. Indeed, this results from Corollary 1, Proposition 15, for the in-
sertion 2-functors. Now let p9: JOX =JU be one of the 2-functors toward
JU. Assigning to a category = the trivial mixed prototype > on & (without

any distinguished cone) and to a natural transformation 7: 2~ 3 2’ the bi-
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morphism T3 :.'f' defined by 7, we get a 2-functor ]fx: - Tm:; its res-
triction l]fx | F —X is an adjoint of the restriction |pfx |: X-F of Py - So

Proposition 19 follows from the lemma:

20 LEMMA. Let H be a representable 2-category and p:H —~C a
2-functor satisfying the following conditions:

- Foreach vertex v of H, let dv: ov = v be a bimorphism which
defines OV as a representation of v, then p(dv) defines p(nv) as
a representation of p(v) in C.

- The functor |p| l}(l - | @C| restriction of p admits an adjoint q.
Then g extends into a 2-adjoint of p.

a) The functor p': {° =€’ underlying p admits an adjoint Q  ex-
tending g. More precisely, for each vertex o of (C, the canonical mor-
phism & _:0 = p(q(0)) corresponding to the pair of adjoint functors
( |p I g) defines also g(0) as a free structure generated by o relative
to p . Indeed, let 0 be a vertex of C and v = q(0o). If v' is a vertex
of { and 7: o 2 p(v') a bimorphism in €, there exists a unique l-mor-
phism T:0 = p(0Ov') such that p(3v') T =T, since p(Ov' ) de-

fines p(ov') as a representation of p(v'). To T is associated a uni-

que 1-morphism

T': v = ov' such that p(T')'80= T.

From the equalities
p(3v' =T )-8, =p( ') p(T") 8 =p(W') T=r,
it follows that 9’ * T* is the unique bimorphism
[

T':v 3 v' such that p(7')- 8, =T,

Hence, V is a free structure generated by O relative to p .
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b) The map Q underlying the adjoint functor Q' of p' also defines

a 2-functor Q: C ~ H, so that Q is a 2-adjoint [G] of p. Indeed, we
denote by:

£
- C(0o',0)" the subcategory of the transverse category C of C for-
med by the bimorphisms &: o 3 0.

-GN N, N po and \': 0 - 0" are 1-morphisms of C, the

functor from C(o’,0) to C(p', p) assigning the composite A’ *G+ X to
f:0 30’

Let o and o' be vertices of (; we write
v=g(o) and V' =gq(c').
As p is a 2-functor, there exists a functor
by, v v) = Clp(v'), p(v))

defined by a restriction of p. The map g assigning p(T')'So_ to the

bimorphism 7':v =3 V' defines the functor
§,=Clp(v', 8,00, : H(v'. v) = C(p(v'), o).

Part a proves that g_ is a bijection; it follows that g is an isomorphism.

——

v p(v') o '

0'(0)

v p(v) 8, I
The functor
g, 1€(8,,,0):C(o’,0) ~H(v', v)
associates 0 (0) to 6: 0 30", since Q () is the unique bimorphism
O':v 3 v' such that p(8'):5, =8 ,°6.
"

The category C  being a sum of the categories C(o', o), we deduce

. -+
that Q defines a functor from C to H , and also a 2-functor Q. V

REMARK. Proposition 19 gives a more axiomatic proof of Corollary 2,
Propositions 3 or 15.
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11l. MONOIDAL CLOSED CATEGORIES OF SKETCHED MORPHISMS

Let o be a projective limit-bearing category and 0 a symmetric
monoidal closed category [EK]. Under some conditions on O, the catego-
ty V7 of 0 -morphisms in the underlying category V of O admits a symme-
tric monoidal closed structure. This is applied to the category of functors

(or «category of category objects») in V.
10. Cartesian closed structures on M.

After some notations, we give conditions on O , insuring that me

admits a cartesian closed structure.

If :p 2 p': L 2K is a natural transformation, for any y: e — e’
in L, we denote by G(y) the morphism G(e’).p(y)=p'(y). G(e).

Let P: K'XK = C be a functor (of «two variables»). If p: L —K
is a functor, we denote by P(s,p-) the functor from L to C assigning
P(s,p(y)) to yeL, for each object s of K; we denote by P{x,p-) (or
by P(x,p), if this does not lead to any confusion) the natural transforma-
tion from P(s,p-) to P(s',p-) such that P(x,p-)(y)=P(x,p(y)),
for any y€L, if x: s = s’ is a morphism in K'.

If p=1Idy, wewrite P(x,-) instead of P(x,p-). If p is the dual
q* of a functor g, we write also P(x, q-) instead of P(x, g*-).

Similar notations are used relative to the other «variable», and for
functors of «more than two variables».

Let K be a category. The functor Homy : KXK* =M will often
be denoted by K(-,-), so that the set of morphisms x: e — e’ in K is
written K(e', e) (and not K(e, e') as usual).

We say that K admits a cartesian closed structure if there exists
a cartesian closed category K, whose underlying category is K. This
means that K admits finite products and that, for each object e of K,
the partial product functor - Xe: K = K (corresponding to a choice of fi-
nite products on K) admits a right adjoint. Then we call closure functor
on K a functor D: KXK* = K such that D(-, e) is a right adjoint of

-Xe, for any objec't e of K (such a functor is the internal Hom -functor
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for a closed category [EK] underlying a cartesian closed structure on
K). The product functor X and D are defined up to an equivalence, so

that K is determined up to an isomorphism of cartesian closed categories.

From now on, we denote by:

- O a projective limit-bearing category (X,["),

- § the set of indexing categories of o,

- 0¥ the «dual of o», which is the inductive limit-bearing category
(=*,T'*), whose distinguished inductive cones correspond by duality to
projective cones y €[,

- U a universe, to which belong = and I, for each €4,

- M the category of maps between U -sets.

The functor 2(-,%): 3 =) commuting with projective limits,
it is a o-structure in J for each object u of 3. Hence the Yoneda im-
mersion ¥ from =¥ to MZ  takes its values in the category M7 of o-
morphisms (i. e. of morphisms between O -structures) in J. We denote by
Y the functor from 3" to MY, restriction of Y.

This functor Y is in fact a 0 -structure in M7, called the Yone-
da o -structure. ( Indeed, this will result from Prol;osition 3-1[Lb],
if W°(F, Y-) is a o-structure in M for each object F of ;'m", i.e. for

each o -structure F; this holds since, by Yoneda Lemma, we get
Me(F, Y-)=M(F,-)Y* =MZ(F,-)Y*= F).

Let V be a category. The category V? of o -morphisms in V is
a full subcategory of VE, closed for equivalences (i.e. a functor equiva-
lent to a O -structure in V is also one). If V admits projective limits in-
dexed by a category K, the category V7 admits also projective limits in-
dexed by K, and the insertion functor from V< to VE commutes with these
limits [E4] (since in VZ these limits are computed evaluationwise and
projective limit functors commute with projective limits of any kind). In
other words, V7 is closed in vE for projective limits indexed by K.

Since M admits ‘¥, -projective limits, where F, is the set of all
the categories whose sets of morphisms are ‘U-sets, M admics also ?0 -

projective limits. In particular, M7 admits finite products. From the ca-
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nonical product functor on J, we deduce the product functors X and X
on MZ and on M°. For each o -structure F in M, we denote by - XF the
canonical partial product functor from M? to M, which assigns to a o-

structure F' in M the o-structure F'XF in M such that
(F'XF)(x)=F'"(x)XF(x)

for each morphism x: # —u' in 2. It is a restriction of - XF:ME~ mE.
In particular, for any object u of 3, we have the partial product
functor -X Y(u): M7 =M.

PROPOSITION 20. MO admits a cartesian closed structure iff the functor
-XY(u) commutes with §-inductive limits, for each object u of =. In
this case:
1° M° admits a closure functor M assigning to the pair (F', F)of
o-structures in W the functor MO(F', FxY-)=M(F",-)(Fx-)*Y*
2° For each o -structure F in N, the functor M(F,Y-):Z =M% is
a o -structure in M°, and M(F’, F) =W°(M(F’, Y-), F).

A. If M7 admits a cartesian closed structure, the partial product
functor - X Y(u) admits a right adjoint, so that it commutes with induc-
tive limits, for any object u of Z.

We suppose now that - X Y(u) commutes with §-inductive limits,
for each object u of .

mz admits a cartesian closed structure whose closure functor M
associates ME(O',-)(€X Y-)* to each pair ( 8',6) of morphisms of
mz(see for example [GZ], Chapter 2-1). To show that JI? admits a car-
tesian closed structure, it is sufficient to prove that M(F', F) is a O0-
structure when F and F' are O -structures, for this implies the existence
of a functor M : m”x()r(")* - MY restriction of l&l, and M is a closure

functor on M 7. The proof will go in three steps.

1o Let F be a o-structure in Jl and z an object of 2. Then, the

functor M(F, Y(u)) is a o-structure in . Indeed, by definition,
M(F, Y(u))=M¥F, Y(u)X¥-): S =M.
As F and Y(u)XY(u'), for each object u' of 2, are objects of the full
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subcaregory M7 of mz, we also have
M(F, v(u))=N°(F, Y(u)XY-),

so that this functor is the dual of the composite functor G:

s*¥_Y | oy Y(u)X- yo WU(F,-ﬁm*

where
. *

- Y 1s a O -structure,

- the functor Y(u)X- commutes with §-inductive limits, since it is
equivalent to the functor - X Y(u) (the product functor being symmetrical)
which commutes with §-inductive limits according to the hypothesis,

- M°(F, - )* commutes with inductive limits

. * . * . C .
Hence G is a 0 -structure in ) and its dual M( F, Y(z)) is a O -struc-

ture in N .

20 Let F be a o-structure in J{. From Part 1, it follows that the func-
tor M(F, -) Y*:s ~ MZ takes its values in M. 30 it admits as a restric-
tion a functor L: 3 = 7. This functor L is a o-structure in JI?. Indeed
let us denote by 77, for each object u of > the «projection functor» from
M7 to M, which assigns &(u) to the o-morphism 6. Projective limits
being computed evaluationwise in MY (since the insertion functor from me
w0 mz commutes with projective limits), L is a o -structure in J7iff 7, L

is a o-structure in M for each object u of 3. As
m L(x)=M(F, Y(x))(u)=TM(F, Y(x)XY(u))
for each x€ 2, we get
m,L =M(F,(Y-)XY(u)).

The product being symmetrical, the functor (Y-)X Y(u) is equivalent to
Y(u)X(Y-); a fortiori 7TuL is equivalent to Me(F, Y(u)XY-), which
is identical to the o -structure M( F, Y(u)). So 7, L is a 0-structure in

U for each #, and L is a o -structure in M denoted by M(F, Y-).

30 Let F and F' be o -structures in M. Then ;W(F', F) is a o-struc-

ture in M. Indeed, we have

M(F',F)=M2(F, FxV-).
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As M is a closure functor on WZ, the functor M%( F',FX-) is equivalent
to WZ(M(F', -),F)= mz(-, F)M( F',-). It follows that the functor
M(F',F) =W F, FXY-)=M2(F, FX-)¥*
is equivalent to the functor
MEMCF,-), F)V* = ME(M(F, V=), F) = WO(F(F", ¥-), F).
This last functor is a O -structure in J, since it is the composite of the
o-structure M(F', Y-) in M7 with the functor M(-, F) which commutes

with projective limits. Hence M( F', F) is a o -structure in J, and there

. - * .. y
exists a functor M : MOX(M7)" = MY restriction of M. V

DEFINITION. With the hypothesis of Proposition 20, for each O -structure
F in M we call M(F, Y-) (= I—M—(F, -) Y*) the o -structure in M associa-
ted to F.

COROLLARY. If the insertion functor I from M to mz commutes with

§-inductive limits, then M~ admits a cartesian closed structure.

A. Let u be an object of . The partial product functor - X Y(u )
from 3]12 to mz commutes with §-inductive limits, since it admits a right
adjoint M(-, Y(u)). It follows that the functor

P=(-%XY(u))1: M ~MZ
also commutes with §-inductive limits. As P takes its values in the full
subcategory M7 of 3]'(2, there exists a functor P' from M7 to MY res-
triction of P, and P' commutes with §-inductive limits. P’ being the par-
tial product functor - X Y(z) on M7, the hypothesis of Proposition 20 is

satisfied. So the Corollary results from this Proposition. V

REMARK. The insertion functor I from M° to MZ always admits a left
adjoint and M° admits 3"0 -inductive limits ([]] or [Br]), If I commutes
with ¥, -inductive limits, it admits a right adjoint (Theorem 2-1 [GZ]).
So the Corollary may then be deduced from the following result:

If V is a category admitting a cartesian closed structure and if V’
is a full subcategory of V such that the insertion functor from V' to V

admits both a left adjoint and a right adjoint, then V' admits a cartesian
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closed structure.

This last result proves also that, if 0' is a mixed limit-bearing
category (2,17, V) and if the insertion functor from M’ 10 M2 admits
both a left adjoint and a right adjoint, then Mo' admits a cartesian clo-

. . . - . .
sed structure. However this condition on ¢ is very restrictive,

10. Monoidal closed categories.

A) The monoidal closed category OE.

Let 2 be a category. We recall here the definition and some pro-
perties of the symmetric monoidal closed category @Z constructed by Day
[D], where U is a symmetric monoidal closed category.

We denote by .. 2 the subdivision category of Z:

- its objects are the morphisms of X,
- for each morphism x:u — u' of 3 which does not belong to 2, ,

there are in .. 2 two morphisms
xlu: # — x and u'|x: u - x,

- there are no other morphisms in -2, and the only composites are

those of a morphism with its source and its target.

(Intuitively, x is replaced by «an abstract triangle» with vertex x).Na-
turally, .2 depends on the graph underlying the category 2 and not on

the law of composition of X.

Let V b*e a category. We define as follows a functor .. from the
category VZXZ to the category V" Z,
If xSx3* >V isa functor, . (A): ..2 — V isthe functor assi-

gning AM(u,u) to u €2, and

N x,u) to xlu, Mu',x) to u'|x, Mu',u) to x,

for each morphism x:u — u' in 2.
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N ox,u) Mu,u)

Nu',u) x

x,u

Nu', x) U'Ix u'
Nu',u")

S If 6: A= N:3xS* 3V is a natural transformation, .~( &) is the
natural transformation from .~ (A) to ~(A') assigning G(u',u) to the
morphism x: u — %' in 2.

If the functor ..(A) admits a projective limit s, then s is called
an end of \: SXS* = V.

We say that V admits >-ends if V admits .. 2Z-projective limits,
i.e. if each functor A: Zx =% = V admits an end. In that case, if a choi-
ce of .. 2-projective limits is done in V and if L: V*Z -V is the cor-
responding canonical projective limit functor, we denote by [& the mor-

. DXN* .
phism L(.(6)), foreach O €V . We write also

Sy 0(x', %) instead of [6
(the usual notation, which does not seem explicite enough, is fue(u,u)).

EXAMPLE. M admits S-ends, when = €%, . Let Y and /' be two func-
tors from = to %'€%, and consider the functor

QU E SxsF -,
which assigns =/ (Y'(x'),Y(x)) to the pair (x', x) of morphisms of .
The canonical end of this functor is the set >’ Z)( Y', ) of natural trans-

formations from Y to '.

From now on, we denote by U a symmetric monoidal closed cate-
gory (V, 7,i,a,b,c,m, D). In this notation:
- V is the underlying category,
- 7: VXV —V is the «tensor product functor» and we write

g7/ instead of 7(g,f),

- 1 is the «unit» (up to an equivalence) of 7,

- the equivalences defining i as a unit of 7 are

17%
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a:1dy, =-7i and b:ldy, —~ir-,
- the equivalence defining the «associativity» of 7 is
ci-7r(-7-) 2 (-7-)7-: VXVXV IV,
- the equivalence defining the «symmetry» of 7 is
m:(-7-) > (-7-) : VXV 3V,
where p is the symmetry functor from VXV to VXV, assigning
(g.f) to (f, gleVvXxV,

- D: VXV* 5V is the closure functor, so that D(-, s) is a right ad-

joint of - s, for each object s of V.

We suppose that V(s,i) belongs to the universe U for each ob-
ject s of V, and that V admits sums indexed by 1-sets. Then the func-
tor V(-,i): V =) admits a left adjoint, which we denote by ¢ . If E
is a U-set, ¢g(E) is a sum IE“ in V ( of the family

(s,),cp Where s, =i foreach z€E).

In fact, ¢ defines [K] a monoidal closed functor from the cano-

nical cartesian closed category over l to C, so that the functors
g(-x-) and 7(g-,q-):MxMW -V
are canonically equivalent.

Let 3 be a category such that V admits S-ends. Then Day ([D],

example 5-3) has defined a symmetric monoidal closed category
OZ=(v%+,iva, b, émD)
as follows:
- If G and G' are functors from = to V, the functor G'7G: X —~ V

is the functor 7 [G’',G] which assigns G'(x)7G(x) to x€ 3. If
6:GF:23V and 6':G' = F'
are natural transformations, the natural transformation
0'+6: G'7G “F'#F :2 3V

assigns O'(u) 7+ 6(u) to the object u of =.
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- i is the constant functor from 2 to V, whose value is the unit i,

- the natural equivalences & and b assign the natural transformations
aG and bG to the functor G: = =V,

- the natural equivalence ¢ assigns

clG",G',G]l:Z 3V to (G",G',G),

where G", G' and G are functors from = to V,

- the equivalence 7 assigns m [G',G] :Z 2V to the pair (G',G)
of functors from = to V,

- if G' and G are functors from > to V, then D(G’, G) is an end of

the functor from = X=* to Vz assigning the natural transformation
*
D(G'(x'),-)((G(x)7-)qg=(x,-)) :Z 3V
to the pair (x', x) of morphisms of 2. We will write:
D(G',G)= [, D(G'(x'), G(x)rqZ(x,-)).

In fact, Day proves a stronger result: @2 is a symmetric monoidal
closed category over 0, which means that the functors and natural trans-
formations in the construction above underly O-functors or O-natural trans-

formations. From this, we will use only that, G and G’ being functors from

2 to V, the functors

fx-xD(n G(x))D(G,-)(x') and fx-xD( G'(x'),-)(G7=)(x)*
from (V5 to V are equivalent. (This may be proved directly, using Fubini
Theorem on ends [ML] and the O-Yoneda Lemma [K] .)

B) Subcategories of a symmetric monoidal closed category.
We suppose here that O is a symmetric monoidal closed category
O=(v,ri,ab,c,m D),

and V' a full subcategory of V which is closed for D, i.e. such that it
exists a functor D': V' X V'* = V' restriction of D . Then, under some
conditions, V' underlies a symmetric monoidal closed category having
D’ as its closure functor. This will be applied in the next Section to
the subcategory V7 of vE

If V'’ is also closed for 7, i.e. if it exists a functor
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7' V'XV'" 2 V' restriction of 7,
and if 7 is an object of V', then the natural equivalences a, b, ¢ and m
admit restrictions a’, b', ¢’ and m' such that
(V', 7', 4i,a",b",¢c'",m',D")

is a symmetric monoidal closed subcategory of 0. More generally:
PROPOSITION 21. We suppose that V' is a full subcategory of V, such
that:

1° there exists a functor D': V!X V'™ = V' restriction of D,

2° the insertion functor 1 from V'to V admits aleft adjoint .
Then wnere exists a symmetric monoidal closed category '

(V', 7', J(i),a",b",c",m", D), where ['r'[=](['7]).

A. We denote by &: Idy, = 1] the natural transformation defining J
as an adjoint of I, by 7’ the object (i) of V' and by ' the composite
functor J r(I-,1-):

V'xXvy’' Ixi; VXV LS V—L—»V'

which assigns J(f' 7f) to the pair (', ) of morphisms of V'.

10 Let s’ be an object of V'. The functor -7's’': V' = V' admits
D'(-,s"') as a right adjoint. Indeed, as D( -, s’) is a right adjoint of - 7 s',
the functor D( -, s')Il is a right adjoint of J(-7s'). As V' is a full sub-
category of V in which D(-, s')I takes its values, the restriction

D'(-,s"): V' =V'" of D(-,s")I
is also a right adjoint of the functor from V' to V' restriction of J(-7s'),
i. e. of the functor -7's’.

If 7' is a tensor-product functor on V' whose unit is i', Proposi-

tion 21 will result from Theorem II-5-8 of [EK].

20 We will establish some facts to be used atterwards.

a) Let s’ and s” be objects of V'’ and e of V. Then the maps
V(s",8(e)rs') and V(s”,s'76(e))

are bijections. Indeed, we denote by:

- p(s",s'):D(s",s")rs’" = s” the morphism defining D(s",s')
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as a cofree structure generated by s” relative to the functor - 7s',
- P(s",s'",e):V(D(s",s"),e) >V (s",ers’) the bijection assign-
ing p(s",s').(grs') to g:re > D(s",s").
Since V' is closed for D, the object D(s",s") belongs to V',

and, from the adjonction between I and |, we deduce that
V(D(s",s"),8(e)): V(D(s",s"),J(e)) 2 V(D(s",s"),e)
is a bijection. The composite bijection
P(s",s",e) V(D(s",s"), S(e))P(s",s',](e))'I
assigns [*.(8(e)7s') to [':]J(e)rs’ =s"; so it is the map

V(s",8(e)rs"): V(s",J(e)rs') 2 V(s", ers').

e
2 S(e)
I(e)
g'
s')

The map V(s",s'738(e)) is also a bijection, the equality

s"r8(e)=m(]J(e),s').(S(e)rs'). m(s", e)l.
implying that V(s”,s"78(e)) is the composite bijection
V(s",m(s', e)l)V(s", 8(e)rs')V(s", m(J(e) s')).
b) ¢ is the natural transformation
Jr(IX8): Ja(l-,-) = 7'(-,]-): V!XV 3V".
v 1% T V X mﬂ VXY
ledV

It is an equivalence, i.e. J(s'7J(s)) is a free structure generated by
s’ 7s relative to I. Indeed. let s be an object of V and s’ of V'; we write
$=](s); then ¢(s’,s)=](s'78(s)) is the unique f such that

f-8(s'7s)=08(s"75).(s"76(s)).
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s'é 8(s'78) s'78 s'r8(s) s'7s

J(s'rs)

From Part a, it follows that V(J(s'7s),s'r8(s)) is a bijection, so that

there exists a unique morphism
g:s't§ = J(s'rs) satisfying g.(s'78(s))=08(s"rs).

There also exists a unique morphism g’ such that g'. 8(s'75) = g. From

the equalities
g . f 8(s'7ts)=g".8(s"78).(s'78(s)) =g.(s'v8(s))=38(s"rs),
we get g'.f = J(s'Ts) and, from the equalities
[.8.8(s"73).(s"78(s))=f.8(s"7s)=08(s"r3).(s"r8(s)),
we deduce successively
f. g . 8(s"78)=086(s"75),
since V(s'r*'S, s'7 8(s)) is a bijection and . g'= J(s"75).

This proves that ¢(s’, s) admits g’as an inverse, and ¢ is an e-

quivalence.
c) Similarly,
@ =Jr(SEXI): VXV 3V’
is an equivalence.

30 We are going to show that 7' is a tensor-product functor whose unit
is i"=](7).
a)If s is an object of V', wedenote by a'(s) the morphism

S(sti").(sT8(i))a(s):s ~>si'.

We so define a natural transformation a’: Idv. = - 7'7' such that Ia' is

the natural transformatior.

(8(-7i")m(-78(i))maji.
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The morphism a('s) being invertible and 8(s7i').(s78(i)) de-
fining s7'i' as a free structure generated by s ri (Part 2-b), the mor-
phism a'(s) defines s7'i' as a free structure generated by the object s
of the full subcategory V' relative to the insertion functor I. Hence a'(s)
is invertible. So a’ is an equivalence.

We define similarly the equivalence &':Idy,, = i'7' -, which as-
signs 8(i'7s).(8(i)7s).b(s) to the object s of V'.

b) w:VXV 2VXV and p':V'XV' = V'XV’being the «symmetry
functors», we have w(I-,I-)=(IXI)u'. The equivalence m: 7 = 7 p
defining the symmetry of 7 gives rise to the equivalence

m' =Jm(I-,1-): o = Jru(l-,1-),

which assigns the invertible morphism J(m(s’,s)) to the pair (s',s) of
objects of V'. As

Jrp(l-yi-)=Ja(I-,1-)p" =7 u',
the equivalence m’ ‘is a symmetry of 7'.

c) We consider the functors
T:V'XV'XV'" 2 V'XV and T':V'XV'XV' = VXV’

assigning to (x",x',x) respectively (x",x"7x) and (x" 7x', x). With
the notations of Part 2, let ¢’ be the natural transformation

ST m]c(IXIXI)m(PT)L:ea(c7-) =2 (-7"-)7"-,

V'XV

e .

TI

VIXvIxv?

Vxy?
which assigns
c'(s",s",s)=¢"(s"rs’, s).Je(s",s',s).P(s", strs)l

to (s",s',s), where s”, s’ and s are objects of V'.
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(s"7s')Ts _c(s",s',s) s"T(s'Ts)

s"T8(s's)

S(s"Ts')Ts \
S(s"r(s" P )
S((s"Ts")Ts) S((s"T's')Ts) V

8(s"T(s'rs))

c'(s",s',s)

¢

P (s"Ts",s) P(s", s'Ts)

Je(s",s"s)

’

. '] . . -
Since ¢, Jc and @' are equivalences, c' is also an equivalence.

To prove that
(V’: T'y i'r a': b'l C'; m,r D')
is a symmetric monoidal closed category, we have yet to show that the three
coherence axioms are satisfied.
d) The coherence axiom on units asserts that, if s and s’ are ob-
jects of V', then
c'(s',i',s).(s'T'b'(s)) =a’'(s')+'s.
Indeed, we have the following diagram, where
@ is a quartet, ¢ being a natural transformation,
@ is a quartet, by definition of ¢’,
® is commutative, since we have
a'(s')=8(s"ri").(s'"78(i)).a(s"),
® is commutative, as a consequence of the equality
a'(s')r's=J](a'(s")rs),

® is commutative, by definition of &',
® is commutative, by definition of 7' (similarly to @),
@ is commutative, the first coherence axiom being satisfied in the mono-

idal category (V, 7,i,a,b,c).
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s'Tb(s) @

c(s',i,s)

® |s'r(s(i)rs) \

2\ @ (s'T8(i))Ts
S, —
" J c(s',i',s)
~ 8 .
S(s"Ts) S'Té(ifrs) 8(s'Ti')Ts) (s'Ts)

® sy @
5(s'T(i' 7 s)) !
Y 8((s"r’i')‘f5‘)‘

—

(s, i s)

s'TbY(s) ® ad(s')rs

s'r's
From this diagram we deduce
c'(s',i',s).(s'"t'b'(s)). 8(s'vs)=(a'(s')r's).é(s"rs),
which implies, 8(s’'7s) defining s'7's as a free structure generated by
s’ rs relative to I,
c'(s',i',s).(s'"7'b'(s)) =a'(s’)r’s.
e) We consider the second coherence axiom (on associativity), called

axiom MC3 [EK], which says that, if s, s’, s” and s™ are objects of V',

the following diagram commutes.

sl" T'(S"T'(S' T'S))

? ”m n ?_r
c'(s™ s" s'r's ) s"c'(s”,s’,s)

c'(s™r's", s, 9 c'(s™ s"r's', s)

(s™r's")r's")r's
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This may be proved directly from the axiom MC3 satisfied by 7 and from
the definition of c’. But we can also use Proposition II-2-1 [EK], since
D' and 7' are in the «basic situation» of Chapter II-4 [EK]. So 7' .satis-
fies the axiom MC3 iff D' satisfies the axiom CC3 of [EK] (associativity
coherence axiom for closed categories). As D is a closure functor on V, it
satisfies CC3 and, V' being a full subcategory of V, the restriction D’
of D also verifies CC3 (which is independent of 7 and 7). Hence 7' is a

tensor-product functor on V'.

f) The coherence axiom on symmetry asserts that, if s, s’ and s” are

objects of V', the following diagram commutes:

m'(s'7's,s")

-

c'(s” s s) c'(s’, s, s")

(s"7's')+"'s
s'r'(sT's")

m'(s’,s")r's s'T"m'(s,s")

C'(S', S”, S)

This diagram is the exterior border of the following diagram, where:

@, ® and @ commute, by definition of c¢',

@ commutes, m being a natural transformation,

®, ® and ® commute, since m’' = Jm(I-,1-),

® and ® commute, as 7' = J(I-,1-),

® commutes, (V, 7,i,a,b,c,m) being a symmetric monoidal category,

the mapping

V((s"7s')r's, §(s"7(s7's")).(s"t8(sTs")))

is a bijection (Part 2-b).
From all these properties, we deduce that the exterior border of this diagram
commutes. Hence all the coherence axioms are satisfied, so that

(V'l T" i" a'! b,l C'I m" D’)

is a symmetric monoidal closed category.

483



76 A. BASTIANI- C. EHRESMANN

m'(s'Ts, s%)

S(s"T(s'7T”s))
®

m(s'T s, s")

<

C'(S.a s’ s)
C'(S" S S.)

@

m(s'rs, s¥)

(s s, s")
c(s" s" s)

c'(s', s% s)

COROLLARY. With the hypotheses of Section A on 0, let o' be a mixed
limit-bearing category (=,1",V) such that:
1° the insertion functor from v to vZ admits a left adjoint,

r -
20 V9 is closed for the closure functor D of the symmetric monoidal

closed category Oz

Then V' is underlying a symmetric monoidal closed category whose closu-

re functor is a restriction of D.

A . This results from Proposition 21 applied to O and Vo'. V

PROPOSITION 22. Let V' be a full subcategory of V such that:

1° ;€ V' and T admits a restriction r': V' XV' = V',
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2° the insertion functor 1 from V' to V admits a right adjoint I'.

Then there exists a symmetric monoidal closed category
(V',+",i,a,b',c",m',D"), where D'=0I'D(I-,I-).

A. The first condition implies that V' defines a symmetric monoidal
subcategory (V', 7',i,a',b",c",m') of (V,7,i,a,b,c,m).

Proposition 22 will result from Theorem II-5-8 [EK] if we prove

that, for each object s’ of V', the functor - 7's': V' = V' admits D'( -, s")

as a right adjoint. Indeed, I'D( -, s") is a right adjoint of (-7s")].As V'

is a full subcategory of V, it follows that the functor D'(-,s’): V' = V',

restriction of I'D(-, s"), is a right adjoint of the functor - 7's’, restriction

of (-7s')I. V

COROLLARY 1. With the hypotheses of Section A on O, let o' be a mixed
limit-bearing category (Z,1",V ) such that:

1° the insertion functor from Vo' to VE admits a right adjoint,

2° v is closed for the tensor product 7 of 0z , and i" is a o'-struc-
ture in V.
Then VO is underlying a symmetric monoidal closed category whose tensor

product is a restriction of 7.

COROLLARY 2. Let 0 be a{-limit-bearing category (2, ) and V a ca-
tegory admitting §-projective limits, sums indexed by U-sets and = -ends.
If V admits a cartesian closed structure, and if the insertion functor from
Ve to VZ admits a right adjoint, then V° admits a cartesian closed struc-

ture (deduced from that of VZ).

A. VC being closed for finite products in VZ, this results from Co-

rollary 1, applied to a symmetric cartesian closed category Ooverv. V

11. Symmetric monoidal closed category 0.

If o is «cartesian», V? is closed for the closure functor of @Z
(section 10-A), so that the preceding corollaries give symmetric monoidal

closed structures on V7.
As in the sections 10 and 11, we still denote by o a projective

limit-bearing category (2,[") whose set of morphisms is a U-set, by § its
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set of indexing-categories, by Y the Yoneda 0™*-structure in M.

DEFINITION. We say that 0 is cartesian if the functor - X Y(z): Mo - M°

commutes with §-inductive limits, for each object z of <.

Proposition 20 says that O is cartesian iff I° admits a cartesian
closed structure.

In all this Section, we will denote by V a category satisfying the

following condition

V(s',s) is a U-set, for any pair (s, s) of objects of V.
V admits =-ends.
@ V admits sums indexed by U-sets (this property may be replaced by
a weaker one, as is shown in Remark 2, after Proposition 23).

Finally, O denotes a symmetric monoidal closed category
(V, T, i; a, bx C:m:D)y

g: M=V an adjoint of V(-,7) and @2 the corresponding symmetric mo-

noidal closed category constructed by Day (Section 10-A):

a

O¥=(vZ #i%4,6,¢m D).
PROPOSITION 23. We suppose O is cartesian. Then: there exists a functor
D': VOX(VI)* = Vo restriction of D; for each O -structure G in V, the
functor 13'(6, qY-) assigning 5(6, qY(x)) to x€Z is a o -structure in
VY. Finally, if G and G' are O -structures in V, we bhave
D'(G',G) =~ [, D(-,G(x))D'(G", q¥Y(x')).

A. 10 Let u be an object of = and G a O -structure in V. For each
object s of V, let G_ be the functor V(D(G,qY(u)), s). We are going
to prove that the functors G are O -structures in . This will imply [Lb]
that 5(6, qY(u)) is a o -structure in V, so that the functor D'(G, qY-)
from 2 to V7 exists. Indeed, as V(-,s) commutes with projective limits and

D(G,qY(u))= [, D(G(x'), qY(u)(x)7qS(x,-)),
the functor G\s is an end of the functor F: SxZ* =M% assigning
V(- s)D(G(x'),-)(qY(u)(x)7q=(x,-))" to (x',%).
The functors V(D(G-,-),s) and V(D(G-,s),-), from =X V* wo M
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are equivalent, 0 being a symmetric monoidal closed category, as wellas

the functors
(g-)v(q-) and gq(-X-):MxM -V,
So F is equivalent to the functor F' assigning
V(D(G(x'),s), q-)(Y(u)(x)XZ(x,-)* to (5", x)
where x and x' are morphisms of 2. Since ¢ is adjoint to V(-,i) and, by
definition of a symmetric monoidal closed category, V(D-,7) is equiva-
lent to V(-,-), the functor F' is equivalent to the functor F” from > xZ*
to 3112 assigning to (x’, x):
MviGix').s), - )(Y(w)xY(-))(x)*: T2 M.
It follows that G _ is also an end of F".

As G is a Oo-structure in V and V(-,s) commutes with projective
limits, the functor G = V( G-, s) is a O -structure in M. We consider the
o-structure M( G, Y-) in M associated to G (Proposition 20); we have

M(G,Y(u))=WM(G, Y(u)xY-)~ [F",
by definition of the set of natural transformations between two functors as an

end. So Gs is equivalent to the O -structure M( é. Y(u)) in M. A fortiori,

G is a O -structure in M, for any object s of V.

2° Let G be a O -structure in V. Then 5'(6, qY-) is a O -structure
G in VO, equivalent to G: X — V7, where G(x'):S=V is defined by
a(x')(y) =G(y)(x), for y€ S . The proof is similar to Part 2, Prop. 20.

30 If G and G’ are O -structures in V, then b(G', G ) is a O-structure
in V. Indeed, D(G’, G) is an end of the functor H: SXS*=y% | assigning

D(G'(x'),o)(G(x)'rq-)*Z(x,-)*=D(G'(x'),-)(G"?qY('))(x)*
to (x’, x). The functors
JrxD(+.G(x))D(G",-)(x') and [, D(G'(x'),-)(G#)(x)*

being equivalent (section 10-A), 5(6'. G) is also an end of the functor
H' from =X =* to V2 assigning

D(-,G(x))D'(G’, qY(x')) to (x'. x).
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If « and ' are objects of 2, the functor H'(u',u) is a o -struc-

ture in V, for it is the composite functor

N ’ ' -
s D(G.gv(ut)) - D(-,G(x)

where b( G', qY(u')) is a O-structure in V (Part 1) and D(-, G(u)) com-
mutes with projective limits. Hence, H' takes its values in V7. As V7 is
closed for 2 -ends in Vz (the category V admitting =- ends), it follows that

the end 5(6', G) of H' is a O -structure in V.

. . 2 *
This proves the existence of a functor D’: VIX( V7)™ = V7, res-

triction of D. V

COROLLARY 1. If O is cartesian and if the insertion functor I from V7 to
V2 admits a left adjoint |, it exists a symmetric monoidal closed category
O =(ve, #,&,8,8,é, 7, D),

where D' is a restriction of D and T'a restriction of | 7.

A. By Proposition 23, V7 is closed for D. So this corollary results

from the corollary of Proposition 21. V

COROLLARY 2. Under the following conditions, V° defines a symmetric mo-
noidal closed subcategory 07 of 0 z,

1° o is cartesian,

2° 7 commutes withg-projective limits,

3° i"is a o -structure in V (for example, if all the indexing-categories

of o are connected or if i is a final object of V).

A. Proposition 23 asserts that V7 is closed for D.
If G and G’ are O -structures in V, the functor
G'7G=7[6G6",G6]:Z -V
is a o-structure in V, since [G’, G] is a O -structure in VXV and 7 is
commuting with §-projective limits. Hence V7 is also closed for 7. Since

i” belongs to V7 (condition 3), V¢ defines a symmetric monoidal closed

subcategory of 0. v

COROLLARY 3. We suppose O is cartesian and V is a category admitting
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a cartesian closed structure. If V satisfies condition (L), then V° admits

a cartesian closed structure.

A. Let O be any symmetric cartesian closed category whose underly-
ing category is V (it is defined up to an isomorphism). Its tensor-product
functor 7 is in fact a product functor, so that it commutes with g-projective
limits. As i is then a final object of V, the constant functor i~ commutes
with projective limits; a fortiori, it is a O -structure in V. Hence Corolla-
ry 2 asserts that V7 defines a symmetric monoidal closed subcategory OF

Z o . PR .
of 0. Since OE is cartesian, 7 being a product functor, so is 0°. Vv

EXAMPLE. Let V be a category admitting %, -projective limits and ¥, -in-

ductive limits; so it satisfies (L). If V satisfies also the condition:

) { There exists an U-ordinal & such that'§-projective limits commu-

te with inductive limits indexed by <£>,in V,

the insertion functor from V7 to Vz admits a left adjoint [F1]. Then, by
Corollary 1, V7 underlies a symmetric monoidal closed category as soon as
O is cartesian. The condition (L') is verified, for instance, when V is lo-
cally &-presentable [GU], or when V is a fibred category over a catego-
ry satisfying (L') (see [W]).

REMARKS. 1° The third property of Condition (I.) may be replaced every-

where by the less restrictive condition:

{ V admits sums indexed by the sets Z(u’,u), where u and u’ are ob-

jects of 2.

Indeed, in this case, let ' be the full subcategory of M whose objects
are the U-sets E such that there exists in V a sum IE-“ (of E exemplars
of i), where 7 is still the unit of the symmetric monoidal closed category
0. Choosing such a sum ¢"(E) for each object E of M', we get a functor
q':M' =V, which is a «partial adjoint» of V(-,7). The sets Z(u’, u) are
objects of ' . If E and E' are objects of ', then ¢'(E’') 74 (E) is a sum
of E'XE exemplars of i, since -7¢'( E), being a left adjoint, commutes

. v . o« .
with sums. Hence M' is closed for finite products, and the functors

q'(-X-): MxM -v and (q'-,q9"-)
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are equivalent. The proofs of Proposition 23 and of its Corollaries using on-
ly the values of g on sets E'XE, where E and E' are of the form =(u', u),

they are also valid if we replace ¢ by g'.

2° We have not used the general result of Day [D], but a very special
case of it (Example 5-3 of [D]). In fact, Day associates to any «premonoi-
dal symmetric structure» P: S*XS*XS —V a symmetric monoidal closed
category PZ whose underlying category is vE. In a forthcoming paper [FL]
Foltz and Lair prove that V7 is also closed for the closure functor of pZ
when P defines a double o -costructure in V, i.e. when there exists a o*-

structure p in ( V)" such that
p(y)(x')(x)=P(y,x',x), when x, x' and y belongto Z .

So, in this case and if the igpsertion functor from V< to Vz admits a left ad-
joint, V7 is underlying a symmetric monoidal closed category P?. Notice
that Proposition 23 and its corollaries cannot be deduced from this result
of [FL]. Indeed, the category 02 used here is the category pZ associated

to the premonoidal structure P such that
P(y,x",x)=(qY(y)7qY(x"))(x),
and P does not define a double 0 -costructure, even if O is cartesian.

Application.
We denote by:
- & a sketch (definition p. 30) (i,r_' ), where g is a U-set, § its set
of indexing-categories and o a prototype (2,[" ) generated by &,
- o' al-type (V,I''), where V is a category satisfying Condition (L),
- 8(o',&) the category of & -morphisms (i.e. of morphisms between &-
structures) in O ,

- ¥ oY, &) the category of & -morphisms in the canonical d-type o =
(m 7rm) on m.

PROPOSITION 24. We suppose that & is o' -regular and oy -regular (defi-
nition p. 47 ) and that S(O'm,b') admits a cartesian closed structure. Then:
1° §(o',8) is underlying a symmetric monoidal closed category if V

underlies a symmetric monoidal /‘closea’ category O and if one of the following
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conditions is satisfied:

a) There exists an ordinal & in U such that the g-projective limits in V
commute with the inductive limits indexed by <& >.

b) T commutes with §-projective limits and i" is a o -structure in V.

2° 8(o', &) admits a cartesian closed structure if V admits one.

A

A. 1° o is cartesian. Indeed, & being OY-regular, the categories me
and S(Ojn,o') are equivalent. By Proposition 7 (page 30), the prototype O
generated by & is also a limit-bearing category generated by &, so that e
is isomorphic to me. Hence, M7 is equivalent to S(OW,O‘) and, 5(0'5“:0')
admitting a cartesian closed structure, M7 also admits one. It follows (Pro-

position 20) that o is cartesian.

2° The categories S(U',b') and 5(0',0’) are isomorphic (Corollary
2, Proposition 6). As & is o' -regular, the Corollary of Proposition 16 as-
serts that the prototype O generated by & is also o' -regular. This implies
that the category V7 is equivalent to S(O" ,0), and a fortiori to 5(0' , ).
Hence 8(0',&) underlies a symmetric monoidal closed category iff V7 is
underlying one; so the proposition results from the corollaries of Proposi-

tion 23 and from the Example. V
12. Application to categories of structured functors.

Applying the preceding results to the «sketch of categories», we de-
duce, from a monoidal closed structure on V, a similar one on the category

of functors in V (or category of categories in V).

An integer n is considered as being the set {0,1,...,n-1} (i.e.
as a finite ordinal); we denote by n the category <n> defining the usual
order on 7.

Let A be the simplicial category: its objects are the integers, its
morphisms are the monotone maps between integers equipped with their usual
order. We denote by 2 the dual of the full subcategory of A whose objects
are 1, 2, 3 and 4. A set of generators of 2 is formed by the morphisms
drawn in the following diagtam and by three other morphisms from 3 to 4.

The denomination of the morphisms will result from the following properties:
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In 2, we have the two pullbacks

[} V' 3 1'/—
1 3 2 4
a T
3

and ¢ is a kernel of the pair (2, ¢. a).
We denote by:
- I the subdivision category of 2 and I’ the category with two objects

and two morphisms with the same source and the same target:

1
I (1,0)< I 1<:>0
0

- v and 7' the projective cones indexed by I defining respectively

the pullbacks ((a, v), (B, 7' )) and ((v, '), (V', U)), so that
y(0)=v, y(1)=v', ¥'(0)=v", ¥'(1)=v.

- 9" the projective cone indexed by I’ and defining ¢ as a kernel of
(2,c.a), so that »'(0) =¢.

- T theset {7,y } and T the set {7,y ,7"}.

- § the singleton {1} and § the set {1,1'}.

- o and T the pairs (2,1 ) and (=,T).

- Oy the canonical g_-type ox, l—'m) on the category .
PROPOSITION 25. O and O are regular prototypes, which are cartesian.

The category S(Um,;) is isomorphic to the category F of functors and
N is equivalent to F.

A.1° 0 isa prototype, ¥, ' and " being limit-cones. Let U be

the subcategory of = generated by the set of morphisms drawn in the dia-
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gram above and 0§ the presketch obtained by equipping U with the cones
(restrictions to U of) 7y, v’ and ". Then 0 is the sketch of categories
considered in [E2], and 5(0‘)'“ , 0'3-') is isomorphic to ¥.

Each morphism y in = and not in U having the vertex 4 of ' as
its target, it is the factor of v'y through 7' ; so the construction of the
prototype generated by 0§ (Proposition 6) stops at the first step and gives
o. Corollary 2, Proposition 6, asserts that S(O'm O’) is isomorphic to
S(Um ,O0F). So there exists an isomorphism from S(O‘)R ,O’) to F; it as-
signs to the o -structure F in Oy the category whose set of morphisms is
F(2), the law of composition being F( «), the maps source and target
F(a) and F(j3).

As oF is a regular sketch (Propositions 4 and 5 of [E2]), its_gro-
totype o is also regular (Corollary, Proposition 16). In particular, Mo is

equivalent'to ¥.

20 For each category V, the categories V7 and V7 are identical. In-
deed, a ;-structure in V is also a o-structure in V. Now let F be a o-
structure in V. Since ¢ is a right inverse of a in 2, the morphism F( ()
is a right inverse of F( a); this implies that F( ¢ ) is a kernel of the pair
(F(2), F(¢).F(a)) in V. Hence F is a o-structure in V.

It follows thae M= M is equivalent to F. Since F admits a car-

tesian closed structure, MC also, i.e. o and O are cartesian (p. 78). \Y

REMARKS. 1° A o -structure F in OY corresponds to a category on F(2)
whose law of composition is F( k), equipped with an injection F( ¢) de-
fining F(1) as a set of objects. So, S(O’jﬂ ,0) is isomorphic to the ca-
tegory of functors between categories with a given set of objects.

20 In [E2] the sketch of categories was in fact defined as a «pointed
sketch», i.e. the ¢ had to be mapped on a canonical injection. This.con-
dition is expressed here by asking F( () to be a «canonical» kernel, so

that we havé no need of pointed sketches.

DEFINITION. O is called the prototype of categories with objects and o
the prototype of categories. If V is a category, we define a category in V

. . . . . .
as a O -structure in V, a functor in V as a o -morphism in V. If 0 isa
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g:type, the O -structures and O -morphisms in o' are called categories in

‘ . !
o' and functors in o .

The categories in V are called generalized structured categories.
in [E2], category-objects in V in most papers. We denote by:

- F(V) the category V7 of functors in V: in particular F (M) =M.

- F(c") the category §(0',0) of functors in a J-type 0.
PROPOSITION 26. We suppose that V is a category which admits pullbacks,
kemels and sums of pairs. ‘

1° If V admits a cartesian closed structure, F(V) admits also one.

2° Let O=(V,7.i,a,b,c,m,D) be a symmetric monoidal closed
category.

a) If v commutes with pullbacks, ¥ (V) defines a symmetric monoidal clo-
sed subcategory F(0) of 0z (Section 10). .

b) If the insertion functor from F (V) to vZ admits a left adjoint |, there
exists a symmetric monoidal closed category F(0) whose underlying ca-
tegory is F(V) and whose tensor product assigns [ r[G',G] to the pair
(G',G) of functors in V.

A. o is cartesian (Proposition 25) and the only category I belonging
to § is connected. So Proposition 26 will result from the Corollaries of Pro-
position 23, if we prove that V satisfies the condition (L) of page 78 (mo-
dified according to Remark 1, page 81).

We may choose a universe U to which belong the sets V(s',s),
where s and s’ are objects of V (since we suppose the axiom of universes
satisfied). As 2(u', u), where z and u' are equal to 1,2,3 or4,isa
non void finite set, V admits sums indexed by (', u). Finally, the sub-
division category .2 of 2 is a finite connected category, so that the exis-

tence of 2-ends in V follows from the

LEMMA. If V is a category admitting pullbacks and kernels of pairs, it ad-
mits projective limits indexed by any category generated by a sub-neocate-

gory which is finite and connected.

A. This (probably well-known) result is proved by induction on the num-

ber n of proper morphisms (i. e. different from an object) of the finite con-
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nected generating sub-neocategory. The assertion is evident if n = 1 . We
suppose it valid for » =i and we take a functor F: C =V, where C ad-
mits a generating sub-neocategory B which is finite, connected, and has
i+ 1 proper morphisms. We can find a sub-neocategory B’ of B which is
connected and has i proper morphisms. We denote by:

- y:e —u the unique proper morphism of B not in B’,

- C' the sub-category of C generated by B’,

- F': C" =V the functor, restriction of F.

By the induction hypothesis, there exists a limit-cone 8': s'" = F’.

a) If # is not an object of B’, then s’ is also a projective limit of F.

b) If u is an object of B’ and e is not in B’, there exists a pullback

and we get a limit-cone 8: s” = F by defining
B(e)=v, 6 (u')=06'(u').v" if u'€B}.

c) If u and e are objects of B’, let w be a kernel of the pair (0'(u),

F(y).0'(e)). Assigning O(u') = O'(u'). w to u' € B, we define a limit-
cone O :s*= F. This proves the Lemma by induction. V
COROLLARY. Let o' be a g_-type (V,I'!), where V is a category admit-
ting sums of pairs. The properties 1 and 2 of Proposition 26 are also valid
if we replace (V) by F(o') (resp. by §(o',0) ).

A. This is deduced from Proposition 24 applied to o (resp. to o) by

an argument similar to the proof of Proposition 26. V

EXAMPLE. Let p be a saturated homomorphism functor [E1l], i.e. p is
a faithful functor from V to the category M of maps and, if s is an object

of V and f a bijection with source p(s), there exists one and only one
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invertible morphism [ of V with source s satisfying p(f') =f. Let o'
be a T-type (V,T'') such that p-y is a canonical limit-cone in M for any
cone ';’ of ''. A category in o' is called a p-structured category and
F (o) is identified with the category F(p) of p -structured functors [E2].
The Corollary gives conditions for a symmetric monoidal (resp. a carte-
sian) closed structure O on V to determine asimilar structure on F(p).
This statement generalizes Proposition 10 [BE] , relative to the case whe-
re p is equivalent to the base functor V(-,i) of O (this condition is ve-
ry restrictive, since p is supposed faithful). It implies for instance, if p
is the faithful functor pg::? — ), that the category ff(pff) of double func-
tors admits a cartesian closed structure, since F admits one (this does
not result from [BE], the base functor F(-,1) of § being equivalent to

the not faithful functor [J'g-' which assigns to a functor @ its restriction ¢,).
13. Another construction of a closure functoron (V).

We are going to give a direct construction of a closure functor of
F(0); this construction proves that such a functor may be defined even if
V admits pullbacks and kernels of pairs, but not sums of pairs.

A) Closure functor on F ().

Let F: = =M be an object of F(M). In M, we have the pullbacks
F(2)

E(B) w’ F(p) F(v')
E me
F(a w F(a F(v)
F(2)
where the first one is the canonical one, i.e. E is the set of pairs
(y,x)e F(2)XF(2) such that F(a)(y)=F(B)(x).
So there exists a unique bijection f: E — F(3) satisfying
F(v).f=w and F(V').f=w'.

The map F(«).[ is the law of composition of a category C whose set of
morphisms is F(2). We say that C is the category determined by F , and

we denote it by 7( F).
We get an equivalence 7: Fmy -F by assigning to a morphism
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0:F = F' of F(M) the functor n(): n(F) ~ n( F') defined by the
map G(2).

We consider the category F(F(M)) of functors in F(M) and, for

each object u of =, the «evaluation functors»
Plu): F(FM)) ~F (M) and P(u): F(M) =M,
which assign 6(u) to 0. 1If u’ is also an object of =, we write
P(u',u)=P(u')P(u): F(FM)) - M.
FF M) ——Fm*

There exists an equivalence _7; from F(F(M)) to the category

3:([)3:) of double functors, described as follows:

- Let G be an object of F(F(M)). Then G(2) =P (2)(G):Z =M de-
termines a category K™ and the functor .

P(2)G=G(-)(2): Z~M assigning G(x)(2) tox€X

determines a category K', since G(2) and G(-)(2) are objects of 5‘(?11).
The categories K'and K~ have G(2)(2) =P(2,2)(G) as their sets of
morphisms, and their laws of composition are, respectively, G( x)(2)and
G(2)(«k). The pair (K',K) is a double category, called the double ca-
tegory determined by G. We denote it by 7_’)'(6)-

- If 6:G ~G' is a morphism of F(F(M)), the map

P(2,2)(0)=6(2)(2):G(2)(2) ~G'(2)(2)
defines the double functor —7;(-5) from 7(G) to n(G').
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G(1) G(AN(1) G(2) G(3)
G(k)(1)
G(-)(1)
ENT- ) VR
G(1)(a) G(2)(a)
G(k)(2)
G(-)(2) ol
G(2)(2)
G(1)(k) G(2)(K) 16(3)(x)
G(B)(3)
G(-
(-)(3) G(K)(3)

PROPOSITION 27. There exists a functor :F(M) -F(FMy) satis-
fying the [following conditions:.

1° If C is the category determined by an object F of F (M), the dou-
ble category' determined by O( F) is isomorphic to the double category o/
quartets of C.

2° If u and u' are objects of 2, the functor P(u',u)9d is equiva-
lent to P(u,u’)9, and P(u,1)9 is equivalent to P(u).

3° F(M) admits a closure functor M such that

M(F',F)(x)=FM)(I(F)(x),F)
for a pair (F',F) of objects of F(M) and a morphism x of s.
A. We denote by Y the Yoneda o*-structure in F(M). For an ob-
ject n of 2, the category C, determined by the object Y(n) of FON) is

isomorphic to the category n; in particular:

CI o] C2 ¢.,8.—-21—ol..a C3 (.ﬂ.K K ta.K

'
v 14

L. IB.VI
The image of Y is isomorphic to the full subcategory of F whose objects
are the categories 1, 2, 3 and 4. (It follows that a category K is isomor-

phic to the category determined by the object F(K, nY-) of F(M).)

1° Let M be the closure functor on ‘f(?ﬂ) constructed in Proposition

20. For an object F of F (M), this proposition shows that M(F,Y-) is.
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the o -structure in M7 (i.e. the category in Fmy) assigning the natural

transformation

FM(F,Y(x)XY-) to x€Z.

Denoting M(F,Y-) by O(F), Proposition 20 also proves that M satis-
fies the third condition.

To the functor M(-, Y-):F(M)yx= —'?(fm) is canonically asso-
ciated the functor M': F(M) = F(M)Z such that M'(6) =M(6,Y-) for
any O in F(M). This functor takes its values in the full subcategory
F(F(M)) of F(M)Z, since M'(F) = d(F) for each object F of F(M).
Hence M' admits as a restriction a functor 0 : F(M) - F(F(M)).

20 As Y(1) is a final object of F(M), for each object z of 2 the

functor

P(u,1)3=F(M)(-, Y(1)XY(u))
is equivalent to F(M)(-, Y(u)), and therefore (by Yoneda Lemma) to P(u).
Let z and u' be objects of =. We have:

P(u',u)d =F(M)(-, Y(u)xY(u")).
If we consider the « symmetry equivalence»

m(u',u): Y(u')XY(u) = Y(u)XY(u')
(such that the isomorphism

nim(u',u)): T o xC, ~ C, XC
assigns (y.x) to (x,y)), we get the equivalence
FM)C- 7m(u'u)): P(u',u)d = P(u,u')0.

3 Let F be an object of F(J). We denote by C the category deter

mined by F.
a) K" being the category determined by 9(F )(-)(2), there exists an iso-

morphism @( F) from K to the longitudinal category 00 C of quartets of
C. Indeed, the functor

O(F)(-)(2)=F(M)(F,Y-xY(2))

is equivalent to the functor F(C, 7 Y-XC,). So we get an isomorphism
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@(F): K - mC assigning the quartet
(N2)(2,0.8),NM2)(c.8,2),M2)(t.0,2),NM2)(2,1.a))

to the natural transformation A: Y(2)XY(2) — F, element of K.

>\(2)(2,¢.,B)7 (2,£.ﬁ)
AN2)(. B, 2) l (¢c.52) (2,2)l(v.a,2)
1 )
AN2)(2, (2,.a)

b) @(F) definesa double functor from the double category (3 (F))=
(K',K") determined by 9(F) to the double category (O C,HC) of

quartets. Indeed, K ¥ is the category determined by
O(F)(2)=FM)(F,Y(2)XY-).

From the symmetry of the product on F(M) we deduce that the functors

-XY(2) and Y(2)x- from F(M) to F(M) are equivalent and that there

exists an equivalence 77:Y-XY(2) = Y(2)X- where 7(u) is the equi-

valence 77(u,2) considered in Part 2, for any object u of =. So, if 7*

is the equivalence dual of 77, we have the equivalence
I =FM)(F,-)m*:3(F)(2) =3(F)(-)(2),
(Y-xY(2))*
FM) —S(F,-) W** b
(Y(2)xY-)*
and I1(2) assigns Amm7(2,2) to A: Y(2)XY(2) = F.Theisomorphism

T =7n(Il): K* = K* associates to \ the natural transformation T{ \) such

that, if x and y are morphisms of 2,
T(N(2)(y, x)=NM2)x,y).

If T' denotes the canonical isomorphism from tmC to HC, it follows that
the isomorphism T'¢(F)T :
Hc m C K’ K

T T HNF) T

is defined by the same map ¢ ( F) as the isomorphism ¢(F). V
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COROLLARY. The functor P(2,2)9 is equivalent to the functor P', from
F(M) to M assigning to 6: F = F' the canonical pullback P'( ), de-

fined by the following diagram, whose bases are canonical pullbacks in J:

-Z P'(F*)
F(K) ¥o(2) ' z P (o)
F(K)/— — P'(F)
9(1M(K) 6(2) 2’
F'(x)

A. Let F be an object of (M) and ¢ (F) the bijection considered
in the preceding proof, from K = P(2,2)9(F) to the set O C of quartets
of the category C determined by F. There exists a bijeci:ion ¢ '(F) from
g C to the canonical pullback P'(F) of (F(«k),F(«)), assigning

((y',x),(x',y)) to the quartet (x',y',y,x).
If we associate to F the composite bijection

Y(F)=¢'(F)$(F): K =P'(F),

we get an equivalence Y : P(2,2)0 »P'. V
B) Closure functors on Fcv).
PROPOSITION 28. Let V be a category admitting pullbacks. There exists
a functor 9 Fcv) - F(F(V)) such that, if G is a category in V , then
J(G)(2) is equivalent to (G )(-)(2) and, for s€V, and x €3,

(A) V(- s)3(G)(x) = d(V(G-,s))(x).

A. We denote by £ the full subcategory of ?(fm)v*whose objects
are the functors H such that the functor P(2)H =H(-)(2): V¥> N is
representable.

1° There exists an equivalence d: F( V)~ £. Indeed we have a func-
tor d': V¥*xF (V) =M% such that

d'(f,0)=V(-, )0, for feV, BeF(V).
As V(-,s) commutes with pullbacks, d'(s,G)=V(G-,s) is an object
of ?(m) for each object (s, G); hence there exists a functor d”, from

V*XF(V) to F (M), restriction of d’. The functor an: Fv) -Fn) v*
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canonically associated to d” is injective, and it takes its values in e
(since P(u)d"(G) is the representable functor V(G(u),-) for any ob-
ject u of 2). So it admits as a restriction a functor 4 from F(v) wo £,
if 0€F(V), then d(6): V¥ 2 F (M) is the natural transformation such
that d(6)(f)=V(-,f) 6, for any f€ V. It is known (see [Go] and [E3))
that 4 is an equivalence; d’1: 8 - F(Vv) will denote an equivalence.
2° We denote by:
- Q" v*xFcv) - ff(?ﬂ)z the composite functor

V*Xﬂ:(V)——d; 9<m)3—»?(3(m))¢»?(m>2
which assigns 9(V(-,f) 6) to (f,0).
- Q' the functor from EXF(V) to F(M)V™ associated to Q.
If x:u ~u’ isin V and 0: G = G' in F(V), we have
Q'(u, G)(f) =3(V(G-,{))(u) =P(u)d(V(G-,{)),
for any morphism f of V, and the natural transformation
Q'(x,0): Q(u,G) = Q(u'.G")
is such that, for any [ in V, we have
Q'(x,0)(f)=3(V(-.[) 8)(x)e F(M).

Let G be a category in V. We are going to show that the functor

Q'(-, G) takes its values in £. This will imply that Q' takes also itsva-
lues in the category L.

a) Q'(-,G) is a category in ?(m)"*. Indeed, for each object s of
V, the functor Q'(-,G)(s): = = F(M) is the object d(V(G-,s)) ot
F(F(M)). It follows that the cone Q'(-, G)7y , whose components in F(N)
are the limit-cones Q'(-, G)(s)‘f’ , is a limit-cone in ‘}(m)"*, if ’3’ is
equal to 7y orto y'. Hence, Q'(-, G) is a category in .‘;‘-‘(W)V*.

b) We denote by R the functor from 2 to mv* assigning

P(2)Q'(%,G): V* 2N toany x€Z.

The functor Q'(-, G) will take its values in £ if we prove that R( ) is

representable for each object # of 2. Indeed, for any f in V, we have
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R(u)(f)=P(2)Q(u,G)(f)=P(2)P(u)d(V(G-,{))=
=P(2,u)o(V(G-.{)).

- The functor P(2,1)9 being equivalent to P(2) (Proposition 27),

the functor R{ 1) is equivalent to the functor assigning
P(2)(V(G-,f))=V(G(2),[) o |,
so that it is representable by G(2).

- The functor P(2,2) 9 being equivalent to the functor P’ considered
in the corollary of Proposition 27, the functor R(2) is equivalent to the
functor R’ assigning P'(V(G-,f)) to fe V. By definition of P’ and pull-
backs being computed evaluationwise in .‘T(‘m)"*, the functor R’ is a pull-
back in MV™ of (V(G(k),-), V(G(k),-)). Such a pullback is equiva-
lent to V(S,-), where § is a pullback of (G( k), G(k)) in V. So R(2)
is represeritable by S.

- 0'(3,G) is apullback of (Q'(a,G), Q'(B,G)) (Part a) and P(2)
commutes with pullbacks, so that R(3) is a pullback of (R(a),R(3))
in MV™. We have just seen that R(a ) and R( B) are natural transforma-
tions between representable functors; hence R( 3) is representable.

- Q'(4,G) being a pullback of (Q'(v',G), Q'(v,G)), we deduce
similarly that R(4) is representable, as a pullback of ( R( v'),R(v)).

30 Q' taking its values in £, there exists a functor Q: SxF (V) - £
restriction of Q'. We denote by J' the functor from F(V) to F( V)E ca-

nonically associated to the composite functor dlg:

SxF(v) 9, e _d' gy,

a) O' takes its values in F(F(V)). Indeed, if G is a category in
V, we have 3'(G) = d'10(-,G). As & is closed for pullbacks in ff(m)"*
the functor Q(-,G): > — &€, restriction of the category Q'(-, G) in the

category ff(?ll)"*, is also a category in £. The equivalence d’! commu-
ting with pullbacks, J'(G) is a category in F(V). It follows that there
exists a functor 0: F(V) = F(F(V)), restriction of 0'. If G is a cate-

gory in V, if f is a morphism of V and if x € 2, we get

V(- )3(G)(x)=d((G)(x))(f} = Q(x,G)f)=3d(V(G-,f))x).
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A fortiori F) satisfies the condition (A) (we take f = s).

b) Let G be a category in V. It remains to show that 9(G)(2) is
equivalent to the functor (GI-)(2):Z -V assigning (G)x)2)
to x€2. Indeed, if F is an object of F(M) and C the category 7)(F)
determined by F, there exists an equivalence

T(F) from (P(2)9)(F)=3(F)(2) to P(2)d(F)

such that n(T(F)) is the canonical isomorphism from HC to oo C . This

defines an equivalence T from the functor P(2)3 to the functor

P(2):93:F(M) -FN) assigning P(2)9(6) w 6.

3(W)M?(?(M))<3_§(m) w _P(2) F(N
3(6)

A\:

We have the equivalence

Td(G):(P(2)9)d(G) = (P(2)-3)d(G),

P(2)9
?(W)@m) 5 vH
P(2)d

from A to A'. Since
A(f) =P(2)3d(G)(f)=3d(V(G-,{))(2) =
=V(-,f)3(G)(2) =d(d(G)2))(]),
for any / in V, it follows A = d( 9(G)(2)). On the other hand,
A'(f)(x) =P(2)3(d(G)[))(x)=P(2)(V(G-, [))(x)=
=(V(G-, f))(x)(2)=V(-, f)IG)x)2),

for any x € 2; so

A'(f) =V(-,£)O(G)(-)(2) =d(D(G(-)(2))(f)
for each [ in V; this implies A’ :d(—g(G)(-)(Z)). Hence, Td( G) be-
longs to & and d"1(Td(G): 3(G)(2)~3(G)(-)(2) is an equivalenceV

DEFINITION. With the notations of Proposition 28, we call 5(6) the dou-
ble category in V of quartets of G, while 9(G)(2) (resp. 9(G)(-)(2))

is called the lateral (resp. the longitudinal) category of quartets of G, and
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denoted by HG (resp. by m G).
The preceding proof shows that the categories determined by
V(-,s)HG and V(-,s)mG

are isomorphic to the lateral and to the longitudinal categories of quartets
of the category determined by V( G-, s), for any object s of V. Moreover,
- BG and oo G are isomorphic,
- BG(1) and m G( 1) are isomorphic to G(2),
- BG(2) and m G(2) are pullbacks of (G(«),G(k)) in V.

REMARK. F(V) is the category of 1-morphisms of the 2-category TUv)
of natural transformations in V:1f 6: G = G' and 8': G — G’ are functors
in V, a natural transformation in V from 8 to @' is a functor ® in V,
from G to HG’, such that 9(G)(a)m® =6 and 9(G’)(B)m® = &'
(by construction, we may clearly identify (G ) 1) with G’). When V ad-
mits pullbacks, it is known | G1] that JI(V) is a representable 2-category,
a representation of the category G in V being precisely the lateral catego-

ry BG in V of quartets of G.

PROPOSITION 29. Let O =(V, 7,i,a,b,c, m,D) be a symmetric monoi-
dal closed category, where V admits pullbacks and kernels of pairs.

1° There exists a functor E: F(V)xF(V)* = F(V) such that, for
a pair (G', G) of categories in V, we have:

E(G',G)= [, D(-,G(x))3(G')(x").

2° If the conditions of Proposition 26 are satisfied, E is equivalent
to the closure functor D’ of $(0) and 3(G) is equivalent to the cate-
gory D'(G,qY-) in F(V), for any category G in V.

A. 10 The Lemma of Proposition 26 shows that the existence of pull-
backs and kemels in V implies there exist Z-ends in V. It follows that
there exist also S-ends in F(V), which are computed evaluationwise. We
choose a X-end-functor [ : Fv)EXI* L Foy).

a) Let G and G’ be categories in V. There exists a functor A from

ZXZXZ* to V which assigns
D(3(G')x')(y), G(x)) to (y,x' x).
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The corresponding functor A': 2 X s* s yZ , which assigns

D(-,G(x)) d(G')(x') to (x',x),

takes its values in F(V), since A*(u', u) is, for a pair (u', u) of ob-
jects of =, the composite of the category O(G’)(u') in V with the func-
tor D(-,G(u)) which commutes with pullbacks. So, there exists a func-
tor H(G',G): ExZ* > F(V), restriction of A’. We denote by E(G’, G)
the canonical end [H(G’,G) in (V).

b) Let 0:G =G and 6': G' = G’ be functors in V. If u and u’ are

objects of 2, we have the natural transformation

H(E,0)u' u)=D(-,0(u)) 90(6')(u'),

E(G,G) H(G',G X u',u) 1%
E(6",6)1 H(E',OXu'u) @%
E(G.C) >
from H(G',G)(u',u) to H(G', G)(u’,u) . Assigning this natural trans-

formation to (', u), weget a natural transformation
H(6',6): H(G',G) = H(G", G): ExZ* 2 F(v).
We write E(6',68) = [H(6',6).
c) It is easily verified tha't we have so defined a functor
H: Fv)xFv)* - Fv)Ex 2",
and a fortiori a functor
E=[H:F(v)xF(v)* -F(v).

2° We suppose moreover that the conditions of Proposition 26 are sa-
tisfied, i. e. V admits sums of pairs and also either 7 commutes with pull-
backs or the insertion functor from F(V) to VE admits a left adjoint. Then
there exists a symmetric monoidal closed category F(V) whose closure
functor D’ is defined by D'(G’,G) = [H'(G’, G), (Proposition 23), the
functor H'(G',G): ZxZ* = F (V) assigning
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D(-,G(x) )D'(G', qY-)(x') to (x' %),

where ¢ is a «partial adjoint» of V(-,1).
For any category G in V, we denote the category D'(G,qY-) in
F(v) by 8(G).

a) Let G be a category in V. Then 6(G) is equivalent to 3(G).
Indeed, according to the proof of Proposition 23 (Part 1), for each object
u of 2, the category 8(G) is such that V(-,s)8(G)(u) is canonically
equivalent to O (V(G-,s))(u), for any object s of V.

V(G- s))(u)=V(-,5)3(G)(u),

by Proposition 28. Hence, denoting yet by d: F(V) — & the isomorphism
defined in Part 1, Proposition 28, we deduce that
d(8(G)(u)) and d(3(G)(u))
are equivalent; a fortiori there exists an equivalence £(G)(u): 8( G)(u)-
3(G)(u). More precisely, we get an equivalence £(G): §(G) — 3(G).
b) Let G and G’ be categories in V. We define an equivalence
X(G',G):H' (G',G) ~H(G',G): ExZ* 3F(v)
assigning the equivalence
D(-,G(u’))E(G)(u) to (u',u)eZoXZ, .
Moreover, there exists
- a functor H': ‘f(V)Xﬂ:(V)* -*E(V)E>< E*, defined as in Part 1,
such that D'(6',0) is an end of H'(6', 6), for each pair (0',6) of
functors in V;
- an equivalence X: H' = H assigning X(G',G) to (G',G).
Hence fX : fH' - IH is an equivalence, and D' is equivzlent to E. V

The construction of E does not depend upon the existence of sums
in V. This suggests that E could always be a closure functor on F(V).

In fact, we have:
PROPOSITION 30. Let O be a symmetric monoidal closed category

(Vy"r'itat by c, m, D)I
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If V admits pullbacks and kernels of pairs and if v commutes with pull-

backs, then there exists a symmetric monoidal closed category
(F(v), #,i%a, 6", & I E),

where E is the functor defined in Proposition 29 and where T assigns the

category 7 [G', G] to the pair (G’, G) of categories in V.
A.Let 7 be thetensor-product functor on vZ such that
(0'70)(x)=06"(x)r6(x), forany x€2,

if @ and O' are natural transformations. As 7 commutes with pullbacks,
G'7G is a category in V when such are G and G’'. So, there exists a func-
tor +:F(V)xF(v)->F(V), restriction of 7 and, F(V) being a full
subcategory of Vz, the canonical symmetric monoidal category on v ,

whose tensor-product is 7, admits a symmetric monoidal subcategory

-

(F(v), #',i% a8, b, &, m')

since i is a category in V, the category I indexing pullbacks being con-
nected. Hence Proposition 30 will result from Theorem II1-5-8 [EK] if we
know that E(G', G) is a cofree structure generated by G’ relative to the
functor -7'G: F(V) = F(V), for each pair (G', G) of categories in V.
We will only sketch the proof of this assertion, omitting the purely techni-

cal computations.

1° The following remarks will be useful:

a) Let F and F' be categories in V and f: F(2) = F’(2) a mor-
phism of V. There exists a functor 6: F = F' in V such that 6(2)=f
iff [ satisfies the equalities:

- [-F(c.a)=F'(c.a)f, [-F(e.B)=F(c.B)f

- [.F(k)=F'(k).[", where [’ is the «pullback» morphism such that
F'(v).f'=f. F(v) and F'(v').f"=f.F(v') (it exists, the two first
equalities "implying F'(a).f.F(v)=F'(B).f.F(v'), since F'(¢) is
a monomorphism and a.v = 8. v").

In this case, we have

0(3)=f, O6(1)=F'(a).f.F(¢),
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F'(ﬁ) F'(V')

—~— F'()

F'(a)
S =

001) / r 6(4)4

F(B) F(v')

N F( k)
F(a) F(v)

and 6(4) is defined by pullbacks. (The existence of & means that o ad-
mits an «idea» [E3], which is (k,¢.a,¢.8).)
We will say that &: F — F’ is the functor in V defined by f.

b) Let B: SXZ* =V be a functor such that B(-,u) is a category
in V for each object u of 2, and S an end of B, with canonical projec-
tions p(u):S 2 B(u,u). If g: s 2 B(2,2) is a morphism in V, there
exists a morphism g: s — S such that p(2). g = g iff:

- B(2,t.a).g=B(t.a,2).g, B(2,..8).g=B(¢.5.2).g,

- B(2,«x).g=B(k,3).g", where g’ is the unique morphism such that

B(2,v).g=B(v,3). g and B(2,v').g=B(v',3).g

(its existence follows from the fact that B(-, 3) is a category in V).

It is easily proved that there exists a cone A:s” — .. B, where

M2)=g, AN3)=g', A1)=B(a, ).g,

B(a,3)
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and A(4) is defined by pullback as being the morphism such that
B(3,v).g"=B(v,4). \(4),
B(3,7').g'=B(v'.4). \(4).
Then § is the factor of A\ through the cone p:§S” — .. B defining the end.
20 Let G and G' be categories in V.
a) We consider:
- the longitudinal category m G' = (G )-)(2) of quartets ot G’,
denoted by G (definition page 97);
- the canonical projection p( 2) from the end
E(G',.G)(2)= fx.xD(é'(x'), G(x)) to D(G'(2),G(2)),
- the morphism
p:D(G'(2),G(2))rG(2) ~G'(2)

defining D(&'(Z), G(2)) as a cofree structure generated by G'(2) rela-
tive to the functor -7G(2): V = V;

- the canonical projections w: G'(2) = G'(3) and w' defining G'(2)
as a pullback of (G'(k),G'(k)).

It may be shown that the composite morphism r(2):

G'(2) r(2) E(G',G)(2)rG(2)

G'(K) 5(2)7G(2)

D(G'(2).G(2))rG(2)

satisfies the hypothesis of Part 1-a, so it defines a functor:
r:E(G',G)7'G = G".
b) r defines E(G', G) as a cofree structure generated by G' relative

to -7'G:F(V) ~F(V). Indeed, let 6: G"7'G = G' be a functor in V.

To define the unique functor in V:
6': G" ~E(G',G) suchthat rm(68'7'G) =06,

we are going to construct a morphism g: G"(2) — D(&'(Z), G(2)) satis-

fying the hypothesis of Part 1-b, applied to the functor B assigning
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D(G'(x'),G(x)) to (x',x).
Then there exists a morphism
g:G"(2) 2 E(G',G)(2) suchthat p(2).g=g,

and a technical argument proves that g defines a functor 8’ in V, from
G" to E(G’, G), satisfying the wanted property.
To construct g, we consider:
- the morphism 0(8)(2)(2): m(G"+'G)(2) = G'(2),
- the morphisms G”(ja)'rG(le) and G"(jﬁ) 7G(j,) from G"(2)7 G(2)
to G"(3)7rG(3),
- the projections @ and @' of the pullback of

(G"(k)7G(Kk), G"( k) TG(k)) defining mM(G"7'G)(2).
m(G"7'G)(2)

G"(3)rG(3)

> G"(2)7rG(2
G (107G(7g) (2)7G(2)

- the unique morphism b: G"(2)7G(2) = m(G"7'G)(2) such that
w.h=G"(jg)TG(j ), @' h=G"(j)rG(jg);
it exists, since
(G"(k) TG(K))(G"(jg)TG(j N=G"(«k. ig)TG(K.jo) =
G"(2)7G(2)=(G"(k)rG(K)-(G"(jo)TG(jg))

(For usual categories, this morphism corresponds to the map from the pro-

duct category C"XC to O(C"”XC) assigning to ( k", k) the quartet

( BCk"), k)
(k" B(k))| | (k" a(k))

(a(k”), k) )

- the composite morphism b* = 0 (6)(2)(2).b .
g7TG(2)

G"(2)rG(2)
G'(2)

(6 X2X2)
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Then g is the unique morphism g: G"(2) ~ D(G'(2), G(2)) such that
p.(grG(2))=h". V

COROLLARY. If V admits pullbacks, kernels of pairs and a cartesian clo-

sed structure, then F( V) admits a cartesian closed structure. V

REMARKS. 1° Proposition 30 (announced in [BE]) has been indicated by
the first of the authors in 1971, in a lecture at the Séminaire Ehresmann
(Paris). The proof given then was along the same arguments as above ex-
cept that ends were not explicitely used (the authors did not know them) but

constructed from kernels and pullbacks.

2° It may be asked whether Proposition 30 extends to more general
cone-bearing categories. This does not seem true. Indeed, we denote now
by o any projective cone-bearing category (X,["). As in Part 1 Propo-’
sition 28, we prove that there exists an equivalence 4 from V7, for any
category V, to the full subcategory &' of (m")"* defined as follows:
the objects of &' are those functors H such that the functor H(-)(u)
is representable, for any object u of =
(in the case where O is the prototype of categories, ®' is identical with
£, since 1,3 and 4 are constructed successively as projective limits).
But, even if O is cartesian, there is no way to prove that, G being

*
a o -structure in V, the functor from 2 to (?m")" associated to
M(d(G)-,Y-): V¥XZ =N

takes its values in £'. However, if such is the case, we may extend the

construction of 9(G), and then the construction of E.
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AB.

B .

BE.

Bu.

D1.

DK.

E1l.
E2.

E3.

E4.

E5.

E6 .

EH.

EK.

Fl.
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