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DIAGRAM LEMMAS IN SEMI-EXACT JTK-CATEGORIES

by J. V. MICHALOWICZ

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XII, 4

1. Introduction

The concept of a JTK-category was introduced in [5] to provide a

procedure for dealing in categories with the non-categorical concepts of

subobject, quotient object, one-to-one mapping, onto mapping, embedding
and quotient map.

D E F INIT IO N. A category LI is called a JTK-category if there is a class T

of morphisms in Q such that T and the classes J, K, L , N of morphisms
defined by

satisfy the following conditions

(T7) Every morphism f in (1 has a representation f = j t k which

is unique up to isomorphism.
We use M, E, B , S, I, R , C for the classes of monomorphisms, epimor-

phisms, bimorphisms, isomorphisms, identity morphisms, retractions, core-

tractions, respectively, in any category and we use lower case letters as

indicators; e.g., m E M, t E T , t1 E T , etc. In the jTK-category, j is de-

signed to be an abstraction of the class of embeddings in 8, K of the quo-
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tient maps, T of the one-to-one onto mappings, L of the one-to-one map-

pings and N of the onto mappings. In [4, 5] it is shown that these clas-

ses of morphisms do indeed retain the desired properties of their progeni-
tors, examples of JTK-cate’gories are given, and the basic theory of the

JTK-category is developed.
A J-normal and K-conormal JTK-category (i.e., every morphism in

J is a kernel and every morphism in K is a cokernel) with kernels and co-

kernels is called a semi-exact JTK-cate ,,gory. A few basic properties of the
semi-exact JTK-category are obtained in [4, 5] and it i s shown that every

exact category is a balanced semi-exact JTK-category in which the JTK-

categorical classes of morphisms are just the corresponding categorical
classes. However, there are semi-exact JTK-categories which are not exact

categories; an example is given in [4, 5] .
We begin thi s paper by giving several examples of semi- exact J TK-

categories which are not exact categories. Some of these are important ca-

tegories and thus a deeper investigation of the semi-exact JTK-category is

justified. In this paper we generalize various diagram lemmas and isomor-

phism theorems from the exact category to the semi-exact JTK-category,
with special attention being paid to conditions under which our results can

be strengthened. It will be clear from these results that the essential dif-

ference between the exact category and the semi-exact JTK-category lies

in the fact that each morphism in the exact category has a two-part decom-

position f = me whereas in the semi-exact JTK-category the decomposition
is in three-parts as f = j t k .

2. Examples

Our first example is the category C1 of abelian tcpological groups
and continuous homomorphisms, where by a topological group we mean a

set with a group structure and a topology compatible with the group struc-

ture. Any single-point group is a zero object for this category and kernels

and cokernels are constructed in the obvious way. It follows that M = M

(the class of one-to-one morphisms), E = E (the class of onto morphisms),
B = B (the class of one-to-one onto morphisms) and S C B . This category
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becomes a J TK-category with T = B , L = M , N = E , J the class of embed-

dings and K the class of quotient maps; each morphism f: G - G’ has the

decomposition G - G / Ker f - Im f - G’ . It is easily seen that C1 is in

fact J-normal and K-conormal and thus a semi-exact JTK-category, but it

is not an exact category since it is not balanced.

We note further that e1 is additive and has products (Cartesian

product) and thus e1 is a semi-exact additive JTK-category with products
which is not an abelian category. ( The full subcategory of C1 the objects
of which are the compact (Hausdorff) abelian topological groups is an a-

belian category). For the most part, the construction of categorical con-

cepts such as intersections, pullbacks, equalizers, cointersections, etc.,

in e1 is achieved by combining the corresponding constructions in the ca-

tegories of topological spaces and abelian groups.
Similar examples are the category of real linear topological spaces

and, more generally, the category of topological (left) A-modules over a

topological ring A with identity.
Another example is the full subcategory e2 of the category of

pointed topological spaces which has as objects those with one or two

points. It is easily checked that M = M , E = E , B = B , and S ¥- B and that

C2 is a semi-exact jT K-category, with T = B , L = Mt, N = E , J the class

of embeddings and K the class of quotient maps, which is not an exact

category.

3. Diagram lemmas.

Various results will now be presented, including versions of the

nine lemma, five lemma, and Noether isomorphism theorems for the semi-

exact JTK-category, which reduce to the familiar theorems in the special
case of an exact category. The proofs involve similar technics as used for

the exact category ( although the line of reasoning differs in some cases )
and hence will usually be omitted. Associated with each of these diagram
lemmas is the important problem of keeping the assumptions as weak as

possible and further, of obtaining conditions under which the conclusions

can be strengthened. We begin with

PROPOSITION 1. (Nine Lemma) For a commutative diagram
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in a semi-exact JTK-category (i where all the rows and columns are semi-

exact and f, f’, f", hIE J and g, b4 E K, there are unique morphisms

f1 : A’ -&#x3E; A and f2 : A -. A" which keep the diagram commutative. Moreover,

0 ----...A’ . A -A" -0 is sem i- exact and f1 E J .
Now f2 EN but in general f2 E K. In fact, f2 E K for all h2 in K if and

only if K J C j K . The sufficiency of this condition will be clear to the rea-

der who works through the proof of Proposition 1 . For the necessity, con-

sider k j E K J , and construct a diagram to use in Proposition 1 by letting

b2 = k , f = j , g = cokernel o f j , b1 = kernel o f k , b4 = cok rnel of gb1 and

h3 = kernel of h4 . Then g" in K and g’ in N exist automatically and we

let f" and f’ be the kernels of g" and g’ , respectively. Thus k j = f" f2
i s in J K .

The condition K J C j K holds in the finite semi-exact JTK-catego-
ry of [4,5], in C2 , and, of course, in any exact category; it does not

hold in C1 . For example, let G be R2, H the subgroup given by a straight
line through the origin with slope a, where a is irrational, and N the sub-

group consisting of all points with integral coordinates. Then

b: H -&#x3E; G -&#x3E; G/N

is in K J, where H - G is the inclusion map and G - G / N the natural sur-

jection, but h is not open onto its image and thus is not in J K, for a

morphism f = j t k in C1 has t E S iff f is open onto its image, which fol-

lows from the fact that each natural surjection in e1 is open.

It can be shown that f2 c K for all h2 in Proposition 1 iff Q is an

exact category. Another version of the Nine Lemma is
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P R O P O SI T I O N 2 . Given a commutative diagram

in a semi-exact JTK-category where the columns and middle row are semi-
exact and f, f’, f", b1 E J and g, g’, g", h2 E K, then the top row is se-

mi-exact iff the bottom row is semi-exact.

Consider a pullback diagram

Now /2 E M implies g1 E M in any category and f2 E J implies gz E j in

any JTK.category. Moreover, in a semi-exact JTK.category (1, gz E M im-

plies f2 E M , which follows from the fact that, if u is a kernel of gy then

g2 u is a kernel of f2 . On the other hand, g1 E J implies f2 E j for each

pullback diagram in (1 iff a is exact.

PROPOSITION 3 . ( First Noether Isomorphism Theorem For j: B -&#x3E; A2 and

j’ : A2 -&#x3E; A1 fz.e., BC A2 C A1) in a semi-exact JTK-category, there is a
commutative diagram

with semi-exact rows.
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PROOF. Apply Proposition 1* to the diagram

Note that in the resulting semi-exact sequence
a a

we have 92 E K so we can write (A1/ B) / (A2/ B) = A1 / A 2 . 
Now g, E L but it does not appear necessary that gl E J . In fact,

91 E J for all j , j’ iff’ {kj |(kemel of k) , j} C j K - For if this condition
holds, then in the above proof we have k’ j’ - g1 k" where k’ is the coker-

nel of j’j , k" the cokernel of j , and (kernel of k’)= j’j  j’ -so that g1 k" E

J K and g, E J . The converse follows by constructing, for any morphism

’ k’ j’ wi th (kernel of k’ ) = j’ j , the diagram in the above proof f or j , j’ . This

condition is satisfied in all the examples of semi-exact JTK-categories
which have been presented. I do not have an example of a semi-exact JTK-

category in which it does not hold, although it is not satisfied in the JTK-

category of topological spaces with distinguished points, which is J-nor-
mal with kernels and cokernels. It might be noted that the intersection of

the class {k j |(kernel of k) j} with T (resp. L , N ) is S (resp. J , K )
in any semi-exact JTK-category.

Two more corollaries of Proposition 1 in the semi-exact JTK-cate-

gory d are as follows. Any pullback diagram
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with h2 E K and f" 6 j can be extended to a commutative diagram

with semi-exact rows and columns where g, g" E K and f1, b1 E J. In fact,
if we change h2 E K to h2 E N, then the same conclusion is valid if the

assertion f2 E N is omitted and g E K is weakened to g E N . As a conse-

quence of this, for any f: A -B and j: B’-B, there is a semi-exact se-

quence 

where g E J . Moreover, if f E J K, then h E K and there is a morphism

n : f-1 ( B’ ) -&#x3E; J -Im ( f) N B’ in N; if also {k j |(kernel of k) j}C J K in
S, then this n is in K . Finally, if f E K then f J ( f -1 ( B’) ) = B’ .
PROPOSITION 4. Suppose in a semi-exact JTK-category we are given the

di agram
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with semi-exact middle row and middle column, and f, hI E J and g, h2 E K .

This diagram is commutative with semi-exact rows and columns and with

f’ E J , g" E K , f" E I ( or f2 E K ) and gl E J ( or g’ E K ) iff I is a pull back,

IV is a pushout, and II and III are factorizations of h2 f and g b1 , irespec-
tively, through their J-images ( or K-coimages ) . In this case it follows that

f 1 E j and g2 E K .

As a consequence we have

PROPOSITION 5 . For j1:A1-&#x3E; A and j2: A2 - A in a semi-exact JTK-ca-

tegory, there is a commutative diagram

with semi-exact rows and columns.

Next we consider the version of the Second Noether Isomorphism
Theorem which is valid in the semi-exact JTK-category.

PROPOSITION 6. I f jl : A1 -. A and j2:A2-.A are morphisms in j in a

semi-exact JTK-category, then there is a commutative diagram

with semi-exact rows where the le ft-hand square is a pullback and t E T.

The morphism t in this diagram is in general not an isomorphism. In fact,
we can show that this t E S for all jl , j2 in a semi-exact JTK-category
(I iff {k j|:D-&#x3E;B, k : B -&#x3E; C and iB is the j-union of j and the kernel
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of k}C J K in a - This condition holds in the finite semi-exact JTK-cate-

gory of [4,5-] in e2, and certainly in any exact category; on the other
hand, it fails in C-11. For instance, if we look back at the example follow-

ing Proposition 1, we have H U N = H + N which is dense in G and H n N
is the origin since a, is irrational. Now N / N n N is isomorphic to N and

so is discrete but H JU N/H , although in one-to-one correspondence with
N, is not discrete since the point H in H U N/H is not open. Hence

NIHNN and H U N/ H are not isomorphic so that the morphism t of Pro-

position 6 cannot be an isomorphism.
For j1:A1...A, j2:A2-.A in a semi-exact JTK-category a we

will call the j-union j : A1 JU AZ -&#x3E; A a direct j-union if A1 N A2 = 0 .
Clearly this definition is motivated by the notion of direct sum for abelian

topological groups. It now follows from Proposition 6 that if j : A1 UA2-. A
is a direct j-union of il and j2 , then there is a morphism

in T . Again t need not be an isomorphism, by the above example.
It is not surprising that the morphisms in J K should play such an

important role in the discussion of the preceding results, for in the cate-

gory C1 these are precisely the strict morphisms, as in Bourbaki [l,p.
236]. Hence in any semi-exact j TK-category 8 we ,will call the mor-

phisms in j K strict morphisms. For example, any zero morphism is strict.

Also if f: A -&#x3E; B and g: B - C are strict morphisms in (f, then g f i s strict
if f EN or gEL.

PROPOSITION 7. For f : A -. C and j : B - A in a semi-exact JTK-category
there is induced a morphism n : A / B -&#x3E; fI ( A) / fJ (B) in N . Moreover, i f

f is strict, then so is n; that is, n E K.

PROOF. Let u : f J ( A ) -&#x3E; C be the J-image of f and v: f J ( B -&#x3E; C the I-

image of f j . Then f = u h and fj=vh’ where b , b’ E N . Now f j = u h j im-

plies v = u j’ so that u b j = u j’ b’ . Thus we have the commutative diagram
with semi-exact rows
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and so there is a morphism g : A/ B -&#x3E; f J ( A )/ f J ( B ) with g k = k’ b . Now

g E N since h E N ; and, if f is strict, then h E K which implies that g E K .

This result, as well as the next one; are generalizations of familiar results

in C1 . 
PROPOSITION 8 . Let (i be a semi-exact JTK-category. 1 f (i has pro-

ducts, then for a family {jy: A x - BX I À E A} of morphisms in J , there is

induced a morphism 1: X BX/ X Ak - X (BÀ( AÀ) in L . If a is semi-ad-

ditive with finite products, this morphism I is in T for each finite in-

dex set A. On the other hand, i f a has products and i f the product o f epi-

morphisms is an epimorphism in a, then I E T in all cases., Finally, if (t

has products and if the product of morphisms in K is again in K, then this

1 is always an isomorphism.

PROOF . Let A = X AÀ with projections {PÀ: A - AÀ | À E Al and B = X B
with projections {qÀ: B -&#x3E; BX XE A}. Then we h ave the commutative dia-
gram with semi-exact rows

for each k where u = X jÀ E J. Let g = X kÀ. Then u is the kernel of g
since the product preserves kernels. Therefore, we can represent g as

j’t’k , since k is the cokernel of u and thus the K-coimage of g and 1 =

j’t’ : B/A -. X ( BÀ/ AÀ) is in L . Note that for each X, PÀ j’ t’ is the uni-

que morphism which completes the above diagram, where the pg’ s are the:
projections for X (BÀ/ AÀ).

If Q is semiadditive with finite products and A is finite, let

be the appropriate inj ections. Then for each 4 E A ,

It now follows that Coker (g) = 0 and so g E N and l E T’ . For if v g = 0,

then 0 = vgu03BC. = vu’03BC k03BC. so v U3 = 0 for all J.L E A which implies v = 0 . The

rest of the statement is obvious.

For example, in C1 the product of morphisms in K i s always in K
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so we get l E S in thi s proposition.
Now consider j1 :A1 -A, j2: A2 -&#x3E; A in a semi-exact j T’K-category

(t where we assume that A1+ A2 exists with u1: A1-&#x3E; A1 + A2 and u2 :

A2 -&#x3E; A1 + A2 a’s the inj ections. Then there exists a unique morphism

f : A1 + AZ -&#x3E; A with fu1 = j1 and fu2 = j2 This morphism f may give us

quite a bit of information about A1 JU A2 and A1 N A2 as we will now

discuss. We can show that the J-union of jl and j2 is the j-image of f.
Hence f E N iff iA is the J-union of jl and j2 ; i.e., A1 JU A2 = A . Also
f E j iff f is the J-union of j1 and j2 ; i.e., A1 U A2 = A1 + A2 . Further-
more, f E L implies A1 N A2 = 0 for in this case

is a pullback diagram since if j1 hl = j2 h2 , then f u1 hl = f u2 h2 which
implies u1h1=u2h2’ so that b1 = p1 u1 b1 = p1 u2 b2 = 0 and likewise

h2 = 0 , where Pl ’ p2 are the proj ections. If (î is additive, the converse

of this statement is also true. For if the above diagram is a pullback and

f f1 = f f 2’ then

so that

from the pullback. Then p1 (f1 -f2)=0 and P2(f1-!2)=O implies

so that /6AI=L. To summarize, we have for any semi-exact additive J TK-

category, like e l’ that f E N iff A1 JU A2 = A, f E L iff Al n A 2 = 0, and
f E T iff A1 JU A2=A and A1 N A2 = 0; that is, iA is a direct J-union of

j1 and j2 - result we’d like to include is that if A f B 9 C-0 andAnother result we’d like to include is that if 0-&#x3E;A-&#x3E;B-&#x3E;C-&#x3E;0 and

0 -&#x3E; A’ f’-&#x3E; B g’-&#x3E;C’-&#x3E;0 are semi-exact sequences in a semi-exact JTK-category

with f, f’ in J and g, g’ in K, then A’f’-&#x3E; B g-&#x3E;C is in N (L, T) if and on-
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lyif A f-&#x3E; B g-&#x3E; C’ is in N (L, T).

We will now consider a few results concerning split semi-exact se-

quences in a semi-exact JTK-category N; for the most part these are sim-

ple generalizations of the corresponding statements in the exact category.

We say that a short semi-exact sequence 0 -&#x3E; A f -&#x3E; B C -&#x3E; 0 in (f splits if

g E R.

PROPOSITION 9. If (1 is additive and the semi-exact sequence

spl its with f E J ( say g f’ = iC)’ then B=AE3C with f and f’ as the in-

jections ; further, g’ : B -A can be chosen so that g’ and g are the pro-

jections for this coproduct.

PROPOSITION 10. 1 f (t is additive, A f-&#x3E; B g-&#x3E; C semi-exact, A.!!:...B:!...C o f
order two and u f = iA and gv=iC’ then B = A e C with f and v as in-

jections and u and g as projections.
f1 f2

We also point out that, if (1 is additive, any sequence A - B -. C of order

two for which there are morphisms g1 : B -. A and g2 : C -. B with

is semi-exact.

Again consider j1 : A1 -&#x3E; A and j2 : A2 -&#x3E; A in a semi-exact JTK-ca-

tegory d. It can now be shown that if A = A1 + A2 and jl and j2 are the

injections, then, iA is the direct j-union of jl and j2. If a is also addi-
tive, we have a partial converse in that if i A is the direct j-union of jl
and j2 , then A = A 1 + A2 with jl and j2 as injections iff k2 j 1 is strict,

where k2 is the cokernel of j2 . For, using the diagram in Proposition 5
with A1 n A2 = 0 and A/Al JU A2 = 0, we see that k2 j1 E T . Hence k2iI
strict is equivalent to k2 jl E S. So if k2 jl is strict, then k2 j1 = s E S
and 0 -&#x3E; A j2 -&#x3E; A SIk2-&#x3E; A 1 -&#x3E; 0 splits, so A=AIEBA2 with injec-

tions j, and j2 , by Proposition 9. On the other hand, if A = A 1 + A2 with

injections jl and j2 , then we can take k2 to be the projection p1 A -+ A I
so k2 il = iA 1 E S:. Note that this does not generally hold in C1 , for exam-
ple.
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In a semi-exact additive JTK-category with finite products, it can

be shown that in a pullback diagram

f1 E K implies 92 E N . I have not been able to strengthen this general re-

sult, even though in e1 the stronger statements that f1 E N implies g2 E N
and f 1 E K impl ies g2 E K are valid.

We now give the « 5 lemma» .

PROPOSITION 11 . Suppose

is a commutaive diagram with semi-exact rows in a semi-exact JTK-cate-

gory. Then we have the following implications :
(i) 1 f hl E N, h2 E J, h4 E L and f2 is strict, then h3 E L .

(ii) 1 f h5 E L, h2 E N , h 4 E K and g3 is strict, then h3 E N .
(iii) 1 f hI E N , h5 E L , h2 and h4 E S, f2 and g3 are strict, then h 3 E T .

Pullback and pushout diagrams are related to semi-exact sequences
in a semi-exact additive JTK-category (1 with finite products much like

they are to exact sequences in the special case of an abelian category

( see Freyd [2 p. 52] ) . That is, suppose we have a square

in d . Consider the composition Then
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P -&#x3E; A1 + A2 -&#x3E; A is 0 iff the square commutes; 0 -&#x3E; P -&#x3E; A1 +A2 -&#x3E; A is semi-

exact with P-&#x3E; A1 + A2 in J iff the square is a pullback; the sequence

P-&#x3E;A1 + A-&#x3E; 0 is semi-exact with A1+ A2 -&#x3E; A in K iff the square is

a pushout; and 0 -&#x3E; P -&#x3E; A1 + A2 -&#x3E; A -&#x3E; 0 is semi-exact with P -&#x3E; A 1 + A2 in

J and A1 + A2 -&#x3E; A in K iff the square is both a pullback and a pushout.
As a corollary, we note that if at least one of f I : A1 -&#x3E; A and f2 : A 2"" A is

in K , then the corresponding pullback diagram is also a pushout.
Of course many other diagram lemmas can be formulated for semi-

exact jT’K-categories as the need arises; however, the results given in this
section should give the reader a good idea of the type of answers to expect.

4. The connecti ng morphism

In this section we will construct (under certain conditions) the

connecting morphism in the semi-exact JTK-category. Our approach will

follow the same general lines as the corresponding construction in the abe-

lian category as presented, for example, by U. Oberst at the NSF Advanced

Seminar in Category Theory at Bowdoin College in the summer of 1969. We

will need some preliminary lemmas, where (I denotes a semi-exact JTK-

category.

LEMMA 12 . In S we have:

and

and

PROOF, (i) was given previously; (ii) is valid in any ITK-category.

LEMMA 13 . For any JTK-category which has inverse images for morphisms
in j and which satisfies the assumption:

then

whenever

PROOF. For /: A - B in L and j : A’ -&#x3E; A we have fj = j’t’E, L. Then
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is a pullback, for if f b1 = j’b2 then, if j" is the J-image of h, , we have

J-image ( f j") = J-image ( fb1)  j’ = J-image ( fj) which implies j"-, i by
(Sl). So b1 = j g for some g . Also i’t’g = f h, = j’h2 implies b2 = t’g, and
this . g is unique. Hence A’ = f-1 ( fJ (A’)) .

We note that a semi-exact jT’K-category has inverse images for mor-

phisms in j . Furthermore, any concrete jT’K-category with J the class of

embeddings, L = M and j-image the intuitive notion of Image satisfies

(Sl); likewise, any concrete JTK-category with K the class of quotient

maps, N = E and K-Coimage the intuitive notion of Coimage satisfies the

dual assumption

then

In particular, all of the examples given previously satisfy (Sl) and (Sl)*.

Examples of ,jT’K-categories not satisfying (Sl), say, can be constructed

by omitting the morphism which produces the desired inclusion.

L E M M A 14 . If (1 satisfies (Sl), then for f : A - B and j : A’ - A ,

PROOF. First consider the case where f E K and Ker f C A’ (so we have

A’ JU Ker f = A’ ) . We obtain the commutative diagram with columns and top
two rows semi-exact

so, by the 9 lemma, the bottom row is semi-exact or g’ E K n ( T = S. Now
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consider the commutative diagram

where the top square is a pullback and the right-hand column is semi-exact.

But then the left-hand column is also semi-exact so that jo =kernel (k’f) =
kernel ( g’k ) = kernel ( k ) = j and A’ =,1 (f J ( A’ )) as desired.

Next assume only that FE K. Then

part of the proof. Consequently,

Finally, for arbitrary f : A -. B , write f=l0 k0; then by lemma 13,

Note that if the (Sl) assumption is omitted, then, by Lemma 12 , the con-
clusion of Lemma 14 is still valid for f strict.

To dualize these results we need some additional notation. For

f: A - B and e: B - B’ we define (fJ)*(B’) to be K-Coim (ef). Also for

f: A - B and e : A -&#x3E; A ’ we use the notation

for the pushout. In the same vein we will use the symbol U * for the K-
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counion.

LEMMA 15 . The following hold in Q:

(i) For f:A -&#x3E; B and j : B’ -&#x3E; B , in the p ull back diagram

j’ = kernel ( v f ) where v is the cokernel o f j .
(ii) For f : A - B and k : A - A’ , in the pushout diagram

k’ = cokernel ( f u ) where u is the kernel of k .

PROOF, (i) is proved in [4, p-72] ; (ii) is the dual result.

LEMMA 16. For k1: B -&#x3E; C1 and k2 : B -&#x3E; C2 in 8.

PROOF. This is left to the reader.

LEMMA 17. 1 f a satisfies (S1)*, then for f:A - B and j : B’ -&#x3E; B,

PROOF. By Lemma 14* we have

Thus by Lemmas 15 and 16 and the pullback
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Again, if the (S1) * assumption is omitted, Lemma 17 is still valid if f is

strict.

LEMMA 18. Suppose a satisfies (Sl). Then for j1 : A1 -&#x3E; A, j2: A2 -&#x3E; A,
j3 : A3 -&#x3E; A with j1  j2 ( i. e:, Ale A2 ),

PROOF. We have j1 = j2 j . Let k be the cokernel of j3 . Then

It is clear from the above proof that the conclusion of Lemma 18 is still

true, when the (Sl) assumption is omitted, as long as k j2 is strict. Hence

the (Sl) assumption could be replaced by the requirement that Kj C j K
in S. Consequently, in a semi-exact JTK-category satisfying (Sl) or the
condition K J C J K, the equivalence classes of the JTK-categorical sub-

obj ects of any object form a modular lattice under Ó and n ; dually, in

a semi-exact J TK-category satisfying (Sl)* or the condition K J C J K , the

equivalence classes of the JTK-categorical guotient objects of any object
form a modular lattice under U * (K-counion) and n* ( cointersection ) .

Now suppose we are given a commutative diagram

with semi-exact rows in a semi-exact jT’K-category a , where hi and h3
are in J and h2 and h¢ in K . This can be enlarged to the commutative

diagram


