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Introduction.

Let M be a COO Riemannian manifold, R the curvature operator,

and M m the tangent space at the point m . Then let

be the nullity space at m . Set 1.~, ( m ) = dim N ( m ) . oL is the Index of Nul-

lity. Chern and Kuiper showed that if kL is constant in a neighborhood then

N constitutes a completely integrable field of planes, and that the leaves

of the resulting foliation are locally flat. In this paper the following results

are established : ( 1 ) The leaves are totally geodesic submanifolds of M

(this implies they are locally flat). Let G be the open s’et on which
takes its minimum value fJ.-o (assumed &#x3E; 0 ) . ( 2 ) Assuming M is complete,
the leaves of the nullity foliation of G are also complete. ( 3 ) If /~ is

constant in a deleted neighborhood of a point p , then it has that same value

at p also. ( 4 ) The boundary of G is the union of geodesics tangent to N.

1. Intrinsic Riemannicn Geometry.
Let M be a d- dimensional COO Riemannian manifold, and ‘ ,

its Riemannian inner product (metric). Let Mm denote the tangent space

to M at the point m , ~ ( M ) the algebra of COO -differentiable real-valued

functions on M and -I ( M the algebra of vector fields on M . X (M ) forms
a Lie algebra under the bracket product

The bracket operator is bilinear over R , anti-commutative, and satisfies

the Jacobi Identity

Associated with the Riemannian metric there is the unique Rieman-

nian (symmetric) connection, which essentially defines the parallel trans-

lation of tangent vectors. That is, given any (smooth) curve OL : [0~-?] -~ M

and a vector x E M a ~ ~ ~ , x can be extended to a uniquely defined parallel
. 

vector field X along a . A frame at m E M is an ordered orthonormal basis
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for the tangent space Mm . Parallel translation of each of the basis vectors
of a frame along a curve a gives rise to a parallel frame field along a, ,

said to be obtained by parallel translation of the frame. If E = ( E1,... , Ed)
is a parallel frame field along a, so that E ( t ~ _ ( E 1( t ) ,... , , Ed( t ) ) is

a frame at a, ( t ), and X ( t; is a vector field along a such that X ( t ) _

~ ( x= ( t )) Ei ( t ) , then the covariant derivative ~7 a , (t ~ X ( t ) is the vector

field on ~x defined by the expression I d /dt ~ xt ( t ) ~ Ei ( t ). More gene-

rally, for Y in X ( M ), we define 7yX by foliating M (locally) by integral
curves of Y, i.e. by curves ~x such that a’ ( t) = Y ( a. ( t )) (This can

always be done, by the Existence Theorem for solutions of ordinary diffe-

rential equations). Then 7y X = 7~, X along any particular integral curve a,
of Y. It follows from this definition that a vector field X on a curve a is

parallel if and only if ~7a, X = 0 . By convention we extend 0 to Y ( M )
by setting ~Y f = Y ( f ) for f in ?fAU.

P ROP OSIT ION 1. 1. V has the following properties (see ~ 4 ~ ) :

where and

A tensor field T’b of degree ( a, I b) is a differentiable if(M )-
multilinear real-valued map defined on

where X *( M ) is the dual space to X ( M ) and there are a copies of X *( M )
and b factors X ( M ) in the product. If X...... Xd are linearly independent
elements of X*(M) and X.,..., X d are linearly independent in X(’A~,
the components with respect to this basis are defined to be

where the indices take on all possible values from 1 to d .

Now 0 can be extended to tensor fields as follows. Given any tensor
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field T b and a curve a , let E be a parallel frame field on a’. Then if

T’i 1 ~~ . ( t ) are the components of T b a with respect to the basis E ( t ) and

its dual E *(t)., then 7 ,T § is the tensor whose components are d/dt(T .1 .. (t)).° 

a Ji .
By proceeding as in the vector field case we can define 7y T§ for any Y

in X ( M ) .

PROPOSITION 1. 2. Let Tb be a tensor of degree (a, b), and let X~,... Xa
be in ~*( M ), X 1 , ... , Xb in X ( M ). Then

P R O O F . This proposition is easily checked by writing out the X 
i and the

X. 1 in terms of a parallel frame field along an integral curve of Y.

Now we can note that by Proposition 1.1, ( i ), ~ Y T b is linear in
Y , so that T~ can be considered a tensor of degree ( a, b + 1 ). Also it

should be noted that by fixing a certain number of variables in a tensor Ta
the resulting operator is still multilinear in the remaining variables, and

hence defines a new tensor of lower degree. In computing the covariant

derivative of the new tensor the appropriate generalization to 1.2 must be

used. 
_

The curvature tensor of a Riemannian manifold M is a ( 1 , 3 ) tensor,

which for X, Y E ï ( M) can be defined as the operator
given by

where

The curvature has the following properties :

PROPOSITION 1.3.
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R X Y is an ~ ( M ) - lineas operator, and is ~ ( M ) - linear in X and Y . It

follows from this that we can define the operation of R on Mm, as follows :

wh ere X , Y , Z E X ( M ) and

If f = ( xl,..., xd ) is a local coordinate system, then

one of the classical forms of the curvature tensor.

, 

The covariant derivative of R is subj ect to the following condition,
known as Bianchi’s Identity : I

for X, Y, Z E ~(M). This will be abbreviated to 
’

by using the cyclic summation symbol 5 .

It is vital to note the position of the parentheses in this identity.
We do not hav~ ~ OX ( R YZ ) = 0 . It is interesting to note, though, that if

[ X , Z ~ , ~ X , Y ~ , ( Y , Z] all vanish then the last equality holds. This is

the case when X = a/ a x=, Y = a/ a x~ , Z = a/ a xk for some coordinate

system f = ( x 1, x 2 ,... , xd ) . The classical coordinate version of Bianchi’s
Identity is actually

LEMMA 1. 1 then

’P R O O F . These remarks can be verified by expanding

according to Proposition 1. 2 , taking the cyclic sum, and cancelling by using



6

Now let n be a map assigning to each m E M a b - dimensional

linear subspace 11(m) C_ Mm, for some fixed b ~ d . We write X E 11 for a

vector field X if X ( m ) F IZ ( m ) for all m . If there are b linearly inde-

pendent vector fields X 1 ,..., Xb 6FI in a neighborhood 0~ of every point
,

p E M, 11 is said to be a (di f ferentiable) field of b - planes. The Theorem

of Frobenius states (see Bishop and Crittendon, ( 1 J ) : If X, Y E I-I implies
that [ X, Y ] e fl also, then there exists a foliation of M by b - dimensional

maximal connected submanifolds, the leaves, such that II ( m ) is the tangent

plane of the leaf through m. II is said to be completely integrable if it has

this property.

A curve y in M is called a geodesic if ’y’ is parallel along y ,

i.e. y" = 0 y~y t = 0 .

In order to get a useful characterization of geodesics, we now define

the frame bundle F ( M ). F ( M ) is the set of all orthonormal frames on M ,

given a natural differentiable structure so that the projection map 7T , which

assigns to each frame f its base point in M , is differentiable (see Bishop
and Crittendon, [ 1 ] ).

A curve a in F ( M ) will be called horizontal if it is a horizontal

lifting of a curve a, in M, i.e. if it is a parallel frame field on a, . A vector

in F ( M ) f is called horizontal if it is tangent to a horizontal curve through

f . It follows that for each vector x E Mm and frame f at m , there is a

- -

unique horizontal vector x E F ( M ) j such that d7T(x) = x.
The basic vector field Be on F ( M ) can now be defined, for each

d - tup’e of real numbers c = ( c 1, c 2 ,... , cd) . If f = ( f 1, f 2 , ... , f d) E F (M),
then B ~( f ) is the unique horizontal vector in F ( M ) f such that

PROPOSITION 1.4. A curve y in M is a geodesic i f and only i f it has a

horizontal lift y in F ( M ) which is an integral curve of a basic vector

field.

PROOF. Let f be an arbitrary frame at some point y ( t o ) on y . Parallel
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translate f along y to define a parallel frame field

and hence a horizontal lifting y of y into F ( M ) . Now if

the fact that F ( t ) and y’ are both parallel along y assures that

Now

must be the unique horizontal vector in F ( M ) J~t ~ projecting to
But that means

or y is an integral curve of B ~
Reversing the steps proves the converse.

2. Immers ions.

Let M and M be Riemannian manifolds with inner products (,)
and respectively, and curvature operators R and k-. A differentiable

map j : M - M is said to be an isometric immersion if

for any vectors x, y E ~VIm , all m E M . (Here dj denotes the (linear) diffe-

rential map induced on the tangent spaces of M by j ) . From now on we

will suppress j in the notation and consider M to be a subset of M , and

identify ( , ) and (7) . Now let 3( M ) be the algebra of real-valued C°°
functions on M , ~ ( M ) the Lie algebra of vector fields on M , ~( M ) the
algebra of restrictions to M of vector fields on M . Then we have ï ( M ) =

ï ( M)EÐ ï ( 1B1 )..L. where X(M)-L denotes the set of vector fields perpendi-
cular to M. Let P : ~ ( M ) -~ ~ ( M ) be the orthogonal proj ection. Let 7

be the Riemannian connection (covariant differentiation operator) of M and

V the Riemannian connection of M restricted to ~ ( M ) . The difference

operator T : X(M ) X ~( M ) --&#x3E; T(M ) is defined as follows .
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PROPOSITION 2.1. T has the following properties :

( i ) T is bilinear over if ( M ) .

Note that from ( iii ) it follows that T X is determined by its effect

on X ( M ).

PROPOSITION 2.2. Let X, Y E ~( M ). Then on ~( M ) the Gauss Equation
holds :

P ROOF. Use I apply P.

T is related to the classical second fundamental form as follows :

let ~ = ( x 1 , , , , , x n + ’~ ) be a coordinate system in a neighborhood of p E M
such that the a/ a x= are tangent to M for 1  i ~ n and the a/ a x°‘ are

perpendicular to M for n + 1 ~ a.  n + k . The second fundamental form

is then related to T by

By Proposition 2.1 , ( iii ) , T and bij a contain the same information.J a.

NOTE. The T operator was originally defined by Ambrose and Singer using
a frame bundle approach. I am following Alfred Gray [ 6 ] in defining T

in terms of ’7 and

M is said to be totally geodesic in M if for any geodesic y E M ,

j o y is a geodesic of M .

P RO POSITION 2.3. M is totally geodesic in M if and only if T = 0.

P R O O F . ’TX (X) = 0 if and only if Ox (X) = 7X (X). This is e quivalent to

7’ is a geodesic in M.T~X) = 0 for all X if and only if T = 0.
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P RO P OSITION 2.4. I f M is totally geodesic in M then M - parallel trans-

lation along a curve a in M preserves tangency and orthogonality of
vectors with respect to M .

PROOF. Since for we have

Hence M - parallelism and M - parallelism coincide along a, . But M - parallel
translation preserves tangency of vectors on M ; hence the same is true

for M - parallelism along cx . But orthogonality must also be preserved since,
if x is tangent to M at a ( to ) and y is orthogonal, we have ~ x, y , =0.
Now if X and Y are the parallel vector fields on a, generated by x and y, I

we have

Hence B X, Y ) is constant along a, . But

So Y is orthogonal to M along a, .

3. The Index of Nul I ity.
The index of nullity 1.~, is a non-negative integer - valued function

defined on Md as follows : at each point m E Md, kz(m) is the dimension

of the vector subspace N ( m ) of M m spanned by tangent vectors x such

that Rxy = 0 for all y ~M . N ( m ) will be called the nullity space at
xy m

m, while N will denote the field of nullity planes. If Y is a vector field,

Y E N will mean Y is a nullity vector field, i.e. Y ( m ) ~ N ( m ) for all m

in question. In the sequel we assume /.~, ~ 0, I f.L ~ d unless otherwise

specified.
We now state explicitly some simple algebraic consequences of

this definition. Let x EN(m), y, z, w, u EMm.Then Rxy(z) - Ryx(z)=0.
Futhermore

Since y, z and w were chosen arbitrarily in Mm , it follows that R yx ( x ) = 0
also. Hence the R- operator vanishes if any of its entries are nullity vec-

tors. Finally I R y x ( w ) , x) = 0 implies that R y x ( w ) is always in
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N 1 ( m ), the orthogonal complement of N ( m ) in Mm . And conversely, if

~ R 
,yz 

( w ), u i - 0 for all y, z, w E Mm , then u E N ( m ). So we have the

following alternative definition of /i, : d - ~c.~, ( m ) is the rank of the sub-

space N ~ ( m ) o f Mm spanned by all vectors o f the form Rzy ( w ),
(y,,z, w E Mm ).

Now we can see that if u =1= d, then d - /.~, &#x3E; 2. This is true because

Rxy is an anti-symmetric linear operator on Mm and hence has even rank.
In classical notation d - /-L(m ) is the number of linearly indepen-

dent vectors at m of the form ¡ Ri .k j a/ ~ x 1, ~ _ ( x 1, x 2 ,..., xd ) a coor-

i %1

dinate system at m . Or once again, the smallest number of linearly inde-

pendent differential forms c~ 1, c~ 2 ,... in a neighborhood of m needed to

express the curvature form

Chern and Kuiper [ 2 ] showed that if p is constant in an open set,

then the nullity spaces N constitute a completely integrable field of p-

planes. We now reestablish this result using the covariant differentiation

operator 7 . We further show that the resulting leaves are totally geodesic.
It follows as a corollary that the leaves are locally flat in the induced

metric, also established in [ 2 ] .

THEOREM 3. ~ . 1 f l.c is constant on an open submanifold G then the nullity
-

field of planes N is completely integrable on G.

PROOF. We suppose U, V are vector fields in N , and Z is an arbitrary
vector field. We show [ U, V ] E N also, i.e. R ( U, V], Z = 0 ’

We start by expanding ’7Z(RUV) by Proposition 1.2, and then

summing cyclically over U, V and Z . R UV, R VZ , etc., vanish identi-

cally, so we have :

But C’~ (~Z R )UV = 0 by Bianchi’s Identity. Most of the remaining
U,V,Z 

" 2013

terms on the right are zero since U and V are nullity, but we find after

summing that
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But ~7U v - ~v U = [ U, V I , the symmetry condition on ’ . So we have

R[ fy V J ~ Z = 0 as required.
T H E O R E M 3.2. L et L be a leaf of the nullity foliation. Then L is a totally

geodesic submani fold o f M .

PROOF. We have an immersion j : L - M so we use the terminology for

describing immersions as developed in §2. However we continue to use

R for the curvature of M ; / let p denote the curvature of L . N (m ) is iden-

tified with L m , and N ( m ) with L -m , m E L . Our task is to show that
m m

TX = 0 for all X E ~( L ).
We first show

(the product here is composition of linear operators, of course). Note that

we are using the fact that d - /.~, &#x3E; 2 . Since R YZ ( U ) E ~ ~ ( L ) we have

where U E X(M). Taking the cyclic sum C‘~X ~ Y ,2 we get

by nullity of X . Hence

But

by Bianchi’s Identity, and the remaining terms are zero since the image

space of the curvature operator is precisely the non-nullity vector fields,
which is just 6-’( -’- ( L ) , the kernel of P .

Hence But since and
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R YZ are both antisymmetric linear operators. So R YZ . T X = 0 for all

Y , Z E X J. ( L ) .
Now the images of X ( L) under TX are in X ( L ~ . But given any

non-zero vector field W E X .1. ( L ) there must be some Y, Z E ~ 1( L ) for
which R YZ ( W ) ~ 0 , since ~ R YZ ( U ), W j ~ 0 for some U , Y, Z ; and

So all images under T X must vanish, or L is totally geodesic.

C O R O L L A R Y 3.3. L is locally flat in the induced metric.

P R O O F . We use the Gauss Equation

For any X , Y 6 ~("L ) we get immediately ~oX Y = 0 , since T X and Ty va-
nish.

4. The set G of minimal nullity.
In this section we prove some theorems about the set G on which

I-L attains its minimal value’ ~.co &#x3E; 0 .

LEMMA 4.1. Given any p E M , there exists a certain neighborhood 0 of p

such that t /.~,( m )  J..L( p) for all m in 0 .

P R O O F . Choose a coordinate system ~ _ ( x 1, x 2 ,... , xd ) on a neigh-
borhood of m . Then there are d - /.~. ( m ) vector fields Y 1, y2yd m )
all of form £ R ’kl a/ a xj which are linearly independent at m . But then

j il

Y 1 A Y2 A ... A Yd ,~ ~( m ) ) must be non-zero at m , and hence by continuity
non-zero in a neighborhood of m . But that means d - /.~. ( m ) ? d - ~c.,c, ( p )

everywhere on O , or /.~, ( p ) &#x3E; /.~, ( m ) on 0 .

THEOREM 4.2. The set G on which 1.~, takes on its minimum value ~c.c.o is

an open submanifold of Ai.

PROOF. Let ~ E G . Then by Lemma 4.1 /.~. ( p ) = l.~.o ? /.,c. ( m ) on some nbd.
0 of p . But J..L 0 was assumed minimal, so I-L 0 = 4(m) on 0 . But then

~ E 0 C G , I so G is open.
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THEOREM 4.3. Assume M is complete, and let G be the open set on which

u takes its minimum value /-Lo. Then the leaves L of the nullity foliation
induced on G are complete.

Before proving the theorem we recall a few definitions and facts from

the calculus of variations needed in the proof to the theorem.

A rectangle or 1 - parameter family of curves is a COO map Q : R 2 -~ M.

Let u 1 and u 2 denote the natural coordinate functions in R 2 . The longi-
tudinal curves of the rectangle are defined by restricting Q to the lines u 2 -

constant in R 2 , while the transverse curves arise by restricting Q to the

lines u i = constant. ,

The associated vector field to Q , denoted by X, is defined by the

velocity vector fields of the transverse curves. If the longitudinal curves are

all geodesics, then Q is called a 1 - parameter family of geodesics, and X

is called a Jacobi vector field. Now we have the following well-known

L E M M A . I f ~ is a 1 - parameter family of geodesics, X satisfies the Jacobi

Equation X" = i7~ , ( Do. ~ X ) = R X (j’ ( cr’ ) along any longitudinal curve a-.

PROOF. But I
so

Hence

since But so we have

PROOF OF THEOREM. 
’

Let y : [ 0 , c ) - L be a geodesic segment in L . It suffices to

show that y can be extended, as a geodesic of L , over the half-line

[ 0,oo ). Suppose this cannot be done, and that y as given is maximal.

Since M is complete, y can be extended as a geodesic ) of M (y = ~r~L~.
Since L is totally geodesic in M , it follows that y( c ) is not in G. But

that means that ~c.c. ( y ( c )) &#x3E; /,~.o . We now show that is impossible.
First let p = y ( 0 ), p = y (.c ), and let us make the convention that

~ ~ i , j , k ~ f-L 0 are (,nullity)&#x3E; indices, f-L 0 ~- 1 ~ a. , ~ , y  d are «non-nullity»
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indices, while 1 :~ 1, J , K _ d are unrestricted indices.

Now we note that if we have a coordinate system S~ _ ( x 1 ,..., xd )
in a neighborhood U of ~ , with a/ ax i = y · along y and 3/~x~ + nullity
on U r1 G , then by Lemma 1 of paragraph 1, we have

then also, using the fact that the tensors

vanish identically in U n ~ , by nullity of

’0/ Ox 1. But this means that Ra/ axaa/ ~x,Q is parallel along y in U ~ G .
Now let E = ( E 1 ,t.., E ,..., Ed) be a parallel frame field along y ,0 !

adapted to N on G, i. e. E 0 i E N , E a ~ N . (This is possible since L is total-

ly geodesic. Cf. Prop. 2.4). Now if E1 is nullity at p , for some I, we have:

Ra/ axa a/ ~xa ( EI ) is a parallel vector field along j2 I U n G vanishing at

j2 (c ) by assumption, so it must vanish identically on ’jy ~ I U n G . Hence

E 1 E N on ’y ~ I U r1 G . This proves that f-L cannot increase at /~.
We now establish the existence of a coordinate system f as

above, starting with a Frobenius coordinate system 7~ = ( y 1 ,..., yd ) on a

neighborhood V of y ( 0 ) = p . We can further assume that 7~ (p ) = ( 0,..., 0 )
the origin in R d, and that ( a/ ay 1 ) p = (0 3/3y’ i . E N on V . (If 7~ can

be extended to p then the proof can be finished as above, but in general this
cannot be done).

Now let I be the slice of V determined by yi = 0 , and let

be a Coo-frame field on I adapted to the nullity field ( Ei E N ), and such
that E 1 ( p ) = y’ ( 0 ) . 7~ =fy~o~~,..., yd ) defines a coordinate system

on I; set 7] 2 (I ) = WC jR~"~o. Now define F : R¡..Lo x W -~ M by

where s E I and x = ~ x t E i ( s ) . Sinc e M is complete F is defined for all

value s in R E"‘o .

We now prove F is regular along ’~. First we identify R J..Lo X W with

a subset U of Rd, and let u 1 ,..., ud be the natural Euclidean coordinate
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functions on U . Fixing u 1 = 0 for all / ~ 1 , 1 ~ a. , and restricting F to

the plane so defined in U , we obtain an induced mapping F a : R 2 -+ M,
which is just a rectangle. Furthermore the longitudinal curves of Fa are the

geodesics exp S ( t E 1 ( s )) , where s is a point in the slice ~ a of I defined
by u’ = 0 for ~ ~ ~ . It follows that the associated vector field Xa to Fa
is a Jacobi vector field, satisfying the Jacobi equation X~= R~ - , (j2’ )a xa
along the geodesic j2 = exp p ( t E 1( p )) in particular. But RX a ,~, ~ ( y’ ) = 0p xay
in G since y’ E N , so we have Xa = 0 along y , or

where A a and B a are parallel vector fields along y . Hence Xa is well-

defined, bounded and continuous on ’jy ( ( 0 , c ~ ) . (We are setting X a( t ) =

X a ( y ( t )) along y here, of course). Also note that ~=~F~(3/3~)
since Xa is the associated vector field of the rectangle Fa. Writing out the

components of Xa( t ) with respect to the parallel adapted frame field E ( t ),
we have Xa(t) = Aa(t) + tBa(t) = ~IAaEI(t) -~- ~tBaEl(t) where the
components A a and B~ are constants since A a and B a are parallel along
y . Set X~ ( t ) _ ~ a A a E a ( t ) + ~ t Ba E a ( t ), the «late» components of

X a( t ) . (Note that at p the « early» vector fields E i ( t ) remain nullity by

continuity, so that X~- X~ E N on j2 ( [ 0 , c ] ) .
We will now show the X~ remain linearly independent on y ( ( 0 , c) ) .

First of all, the Xa are linearly independent at p since

Hence the X,( 0) form a basis for the non-nullity space N ~ ( p ), which has

dimension d - tL o. But the X~ ( 0 ) also span N ~ ( p ) . Since there are exac-
tly d - tL 0 Xa ( 0 ) , they are linearly independent. Now suppose there is some
linear combination X = I CC1 X~ such that X ( to ) _ ~ c°‘X a ( to ) = 0 for somea 0 C1 0

Now I along ’y , since
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so we can use the Lemma 1 of paragraph 1 again. RX-~ X - RX X
~ 

’ a {3 a f3
on y ( ( 0, c] ) since R vanishes on the nullity components of Xa . Hence
it follows from 7 , ( R~ ~ ) = 0 that the components of RX~ X 

18 
with res-

~ a ~3 a. f3
pect to the parallel frame field E ( t ) are constants, and the same is true of

the components of R XX . * But R XX - 0 at to since X (to) = 0. Hence
Q fl , 

° °

RXX - 0 everywhere on y . o In particular this must be true at p , and for

all ? /.~.o + 1 . But the X, span N~ at p , so R XX = 0 implies X (0) E N ( p ) .
On the other hand X ( 0 ) = I c°‘ X 1 ~, (0) E N ~ (p ), so this is possible only if
all c°‘= 0. Therefore the X~ must remain linearly independent on ’jy (( 0, c] ) .

Now define the map F 1 by

Then F 1 defines a regular mapping onto L, since

and since L is locally flat, exp p is a local isometry. Hence d F I is an

orthogonal linear transformation, and d F 1( a/ ~ui ) are orthonormal at each

point of L. Hence by continuity d F ( a/ au z ) are orthonormal on the boun-

dary of L as well; in particular at p . But dF 1 ( a~ au i ) = dF ( a~ au i ) . So
dF ( a/ aut ) are orthonormal at p . Furthermore dF ( a/ aui ) E N on L, hence

by continuity dF ( a/ au = ) p E N f p ) .
Now we can see that F must be regular on y ( ( 0 , c ~ ) . First let

,.,

N ( t ) be the p - plane at y ( t ) spanned by the (c early)) vectors Ei ( t ) , and
,., 

° S

N 1 ( t ) be the orthogonal complement spanned by the E a( t ) ( N (’y ( t )) -
- 

~ 

a

N ( t ) on L, of course). Then the dF ( ~/ au t ) are linearly independent on
,.,

~([0,c]) and span N ( t ), 0 ~ t ~ c . Furthermore the dF ( a/ ~u°‘) = X a
are linearly independent, and their late components Xa span N~ (t ), 0 ~ t ~ c.
Hence the rank of dF is exactly d everywhere on ( ( 0 , 1 c]).

In particular F is regular at p = ~ ( c ), I so F ~1 defines a coordinate

, system ~ _ ( x 1 ,... , xd ) on a neighborhood U of F. Also "01 "xi E N on
U ~ G , a/ ~x 1 = y’ along j2 . flence ~ is the required coordinate system,
and theTheorem is established.

It is a pleasure to acknowledge essential aid given by Professor

Y. H. Clifton in constructing this proof.



17

T H E O R E M 4.4. Suppose the nullity index /~, has the constant value l,t.1
everywhere in the deleted neighbo.-hood 0 of a point p E M . Then ~c,~ has

the same value l.c 1 at p as well. (NOTE. By Lemma 3.3 we know that

~C.~. ( p ) ? J.L 1. The Theorem claims that / c ( p ) _ /.~.1 ~ .
PROOF. If y is any nullity geodesic in 0 (i.e. y’ E N in 0 ) , and p
lies on y , then p lies in the closure of a leaf of the nullity foliation. In

that case the proof of Theorem 4.3 can be applied to show ~C.~,( p ) = l,c 1. To

show the existence of such a geodesic, we consider a segment of an arbi-

trary geodesic a : ( 0 , 1 ) -~ O starting at p . Let t i, t 2 ,... be an infinite

convergent sequence of real numbers in ( 0, 1 ) such that lim ti = 0 . At
each point a(ti) we pick a (unit-speed) geodesic yi starting in a nullity
direction at a, ( ti ) . Then the yi i lie in leaves of the nullity foliation and

are nullity geodesics in 0 . Now consider the sequence of tangent vectors

’yi t 0 ) . This sequence defines a sequence of points ~’(0) in the sphere-t i

bundle B over the closed segment a, : ~ 0, 1 ] -~ M , and this bundle is a

compact set. Hence we can extract a convergent subsequence y~ ( 0 ) . Now
the limit point y’ ( 0 ) of the sequence y~ ( 0 ) must lie over p = a, ( 0 ) ,

since the bundle projection 7T is a continuous function, so ~ ( y’ ( 0 )) must
."10#

be a limit point of ~ ( y~ ( 0 )) = cx ( t~ ) ; but a ( 0 ) is the only such limit

point. Hence y’ ( 0 ) defines a unique tangent vector y’ ( 0 ) at a. ( 0 ).

Now Iet y be the geodesic starting at p in the y ’ ( 0 ) direction.

We will show y is a nullity geodesic in 0. To do so choose an 60&#x3E; 0
small enough so that all the segments y~ ( ( 0, ~o ~ ) are in O . We will show

, I 0

that for 0  c  c the points y~ ( e) converge to y ( e), and hence that
the tangent vectors y~ ( E ) converge to y’(e) (these assertions are

1

actually true for all E ) . This would prove that ’/’( e) is a nullity vector,

since the y~ ( ~ ) all are nullity vectors when 6 is properly restricted.

[PROOF. Given any R -/,Yt we can set y - lim y~ , Yi E M a(t Then, Y 1 1 a../

R , = lim R , , while the terms of the sequence all vanish. Hence
y y 77

R y ,y = 11 o 11 also. Hence the limit of a sequence of nullity vectors is
Y Y

itself a nullity vector. ]
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To do this we introduce a sequence of frames

such that e~.)==y’.(0~. We may assume that the E ( t .) converge to a
i I 1

definite limit frame E ( 0 ) at a. ( 0 ) , by repeating the sphere-bundle argu-
ment above, substituting F ( M ) for B everywhere, E ( t~ ) for ~’(0~[ori 1

else by using the sphere-bundle argument iteratively on the vector sequences

e i ( t~ ) ~ . In this process% 1

also. Now we parallel translate E ( t~ ) along ’/., thus defining a horizontal
- 

1 1 
-

lifting ’y~ of y. into F ( M ), with initial value E ( t . ). Now the y. are
integral curves of the basic vector field B 1 , 0 ,..., p · Hence the y . 1 are

. essentially solutions to an ordinary differential equation

in F ( M ); these solutions are hence continuous functions of the initial

values E ( t~ ) . Hence y~ ( E ) -~ y ( ~ ) as E ( t~ ) -~ E ( 0 ) . Since the bundle
projection 7T is continuous, we find ^/ i( 6 ) -+ ^/ as required.
THEOREM 4 . 5. The boundary set o f G (the set on which kL has its mit2i-

mum value ~C.t,o) is the union of nullity geodesics, which are limits of nullity
geodesics in G .

P R O O F . Let p be a boundary point of G . By repeating the argument of the

preceding Theorem *, we find a nullity geodesic y going through p , y is

the limiting geodesic of a sequence of nullity geodesics ~, in G , and y

is nullity throughout its length since the T, all have that property. Hence

y cannot be in G anywhere, for then it would lie in a leaf of the nullity

foliation in G, and would have to stay in G throughout its length, contra-

dicting p ~ G. But y is arbitrarily close to geodesics y. in G , so y is

in the boundary of G .

E X A M P L E . In R 3 , define differential forms cv 1, cv 2 , c~ 3 , etc... as follows:
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a) when

b) when

c) define coordinate transformations

This maps ( x , y , z ~ - space one-to-one into ~ )-space. x &#x3E; 0 goes

into the exterior of the ruled hyperboloid ç2 + 7]2 = 1 + 2 ~2 . Inside this
surface

Outside this surface p _ j..L 0 = 1 . The nullity geodesics are straight lines

lying on the hyperboloids

In this case(*), the boundary set of G is a hyperboloid of revo-

lution.

*
We cannot assume the existence of a curve in G leading into p. But all we need is a se-

quence of geodesics in G arbitrarily close to p in order to carry out the argument of 4.4.

~ * ~ This example is due to Prof. Clifton.
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