New regularity results and improved error estimates for optimal control problems with state constraints
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 803-822
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence for the error in L2(Ω) of the control variable is h | log h | in dimensions 2 and 3.

DOI : https://doi.org/10.1051/cocv/2013084
Classification:  49K20,  49M05,  49M25,  65N30,  65N15
Keywords: optimal control, state constraints, elliptic equations, Borel measures, error estimates
@article{COCV_2014__20_3_803_0,
     author = {Casas, Eduardo and Mateos, Mariano and Vexler, Boris},
     title = {New regularity results and improved error estimates for optimal control problems with state constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {3},
     year = {2014},
     pages = {803-822},
     doi = {10.1051/cocv/2013084},
     zbl = {1293.49044},
     mrnumber = {3264224},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_3_803_0}
}
Casas, Eduardo; Mateos, Mariano; Vexler, Boris. New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, pp. 803-822. doi : 10.1051/cocv/2013084. http://www.numdam.org/item/COCV_2014__20_3_803_0/

[1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201-229. | MR 1937089 | Zbl 1033.65044

[2] M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22 (2002) 193-224. | MR 1911062 | Zbl 1015.49026

[3] M. Bergounioux and K. Kunisch, On the structure of Lagrange multipliers for state-constrained optimal control problems. Systems Control Lett. 48 (2003) 169-176. Optimization and control of distributed systems. | MR 2020634 | Zbl 1134.49310

[4] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556-581. | MR 595625 | Zbl 0445.35023

[5] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, Berlin, Heidelberg (1994). | MR 1278258 | Zbl 1135.65042

[6] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. | MR 861100 | Zbl 0606.49017

[7] E. Casas, J.C. De Los Reyes and F. Tröltzsch, Sufficient second order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19 (2008) 616-643. | MR 2425032 | Zbl 1161.49019

[8] E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21 (2002) 67-100. | MR 2009948 | Zbl 1119.49309

[9] E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state contraints. ESAIM: COCV 8 (2002) 345-374. | Numdam | MR 1932955 | Zbl 1066.49018

[10] E. Casas and M. Mateos, Numerical approximation of elliptic control problems with finitely many pointwise constraints. Comput. Optim. Appl. 51 (2012) 1319-1343. | MR 2891940 | Zbl 1244.49051

[11] E. Casas and F. Tröltzsch, Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM: COCV 16 (2010) 581-600. | Numdam | MR 2674627 | Zbl 1201.49004

[12] S. Cherednichenko, K. Krumbiegel and A. Rösch, Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008) 21. | MR 2438938 | Zbl 1147.49027

[13] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991) 17-351 | MR 1115237 | Zbl 0875.65086

[14] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741-808. | Numdam | MR 1760541 | Zbl 0958.35045

[15] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 35 (2007) 1937-1953. | MR 2346365 | Zbl 1154.65055

[16] K. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Proc. of ENUMATH, 2007. Numer. Math. Advanced Appl., edited by K. Kunisch, G. Of and O. Steinbach. Springer, Berlin (2008) 597-604. | Zbl 1157.65400

[17] M. Degiovanni and M. Scaglia, A variational approach to semilinear elliptic equations with measure data. Discrete Contin. Dyn. Syst. 31 (2011) 1233-1248. | MR 2836350 | Zbl 1236.49018

[18] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Math. Reprint of the 1998 edition. Springer-Verlag, Berlin (2001). | MR 1814364 | Zbl 1042.35002

[19] W. Gong and N. Yan, A mixed finite element scheme for optimal control problems with pointwise state constraints. J. Sci. Comput. 46 (2011) 182-203. | MR 2753242 | Zbl 1239.65038

[20] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne, 1985. | MR 775683 | Zbl 0695.35060

[21] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, vol. 23. Math. Model.: Theory Appl. Springer, New York (2009). | MR 2516528 | Zbl 1167.49001

[22] D. Leykekhman, D. Meidner and B. Vexler, Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55 (2013) 769-802. | MR 3071172 | Zbl 1272.49049

[23] W. Liu, W. Gong and N. Yan, A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27 (2009) 97-114. | MR 2493560 | Zbl 1199.49067

[24] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybernet 37 (2008) 51-83. | MR 2440724 | Zbl 1170.65055

[25] C. Meyer, U. Prüfert and Tröltzsch, On two numerical methods for state-constrained elliptic control problems. Optim. Methods Softw. 22 (2007) 871-899. | MR 2360802 | Zbl 1172.49022

[26] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51-85. | MR 2440724 | Zbl 1170.65055

[27] K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788-2808. | MR 3072225 | Zbl pre06227446

[28] A. Rösch and S. Steinig, A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM: M2AN 46 (2012) 1107-1120. | Numdam | Zbl 1271.65104

[29] W. Rudin, Real and Complex Analysis. McGraw-Hill, London (1970). | Zbl 0925.00005

[30] A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31 (1977) 414-442. | MR 431753 | Zbl 0364.65083

[31] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, Grenoble 15 (1965) 189-258. | Numdam | MR 192177 | Zbl 0151.15401