Curve cuspless reconstruction via sub-riemannian geometry
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 748-770
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We consider the problem of minimizing 0 ξ 2 +K 2 (s)ds ∫ 0 ℓ ξ 2 + K 2 ( s )   d s for a planar curve having fixed initial and final positions and directions. The total length is free. Here s is the arclength parameter, K(s) is the curvature of the curve and ξ > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary conditions for which there exists a solution to the problem.

DOI : https://doi.org/10.1051/cocv/2013082
Classification:  94A08,  49J15
Keywords: curve reconstruction, generalized pontryagin maximum principle
@article{COCV_2014__20_3_748_0,
     author = {Boscain, Ugo and Duits, Remco and Rossi, Francesco and Sachkov, Yuri},
     title = {Curve cuspless reconstruction via sub-riemannian geometry},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {3},
     year = {2014},
     pages = {748-770},
     doi = {10.1051/cocv/2013082},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_3_748_0}
}
Boscain, Ugo; Duits, Remco; Rossi, Francesco; Sachkov, Yuri. Curve cuspless reconstruction via sub-riemannian geometry. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, pp. 748-770. doi : 10.1051/cocv/2013082. http://www.numdam.org/item/COCV_2014__20_3_748_0/

[1] A. Agrachev, Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1-12. | MR 1845741 | Zbl 1039.53038

[2] A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321-358. | MR 1403262 | Zbl 0941.53022

[3] A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and Sub-Riemannian geometry, available at http://www.math.jussieu.fr/˜barilari/Notes.php

[4] A.A. Agrachev, Yu. L. Sachkov,Control Theory from the Geometric Viewpoint. Encyclopedia of Math. Sci., vol. 87. Springer (2004). | MR 2062547 | Zbl 1062.93001

[5] A. Bellaiche, The tangent space in sub-Riemannian geometry. Sub-Riemannian Geometry, Progr. Math., vol. 144. Edited by A. Bellaiche and J.-J. Risler. Birkhäuser, Basel (1996) 1-78. | MR 1421822 | Zbl 0862.53031

[6] U. Boscain, G. Charlot and F. Rossi, Existence planar curves minimizing length and curvature. Proc. Steklov Institute Math. 270 (2010) 43-56. | MR 2768936 | Zbl 1215.53006

[7] U. Boscain, R. Chertovskih, J.-P. Gauthier and A. Remizov, Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory. To appear in SIAM J. Imaging Sci. | MR 3196939 | Zbl pre06332844

[8] U. Boscain, J. Duplaix, J.P. Gauthier and F. Rossi, Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion. SIAM J. Control Opt. 50 1309-1336. | MR 2968057 | Zbl 1259.94011

[9] U. Boscain and F. Rossi, Projective Reeds-Shepp car on S2 with quadratic cost. ESAIM: COCV 16 (2010) 275-297. | Numdam | MR 2654194 | Zbl 1217.49034

[10] G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24 (2006) 307-326. | MR 2235475 | Zbl 1088.92008

[11] R. Duits, U. Boscain, F. Rossi and Y. Sachkov, Association fields via cuspless sub-Riemannian geodesics in SE(2). To appear in J. Math. Imaging Vision. | MR 3197347 | Zbl 1296.49040

[12] R. Duits and E.M. Franken, Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2). Quart. Appl. Math. 68 (2010) 293-331. | MR 2663002 | Zbl 1202.35334

[13] R. Duits and E.M. Franken, Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusions on invertible orientation scores. Quart. Appl. Math. 68 (2010) 255-292. | MR 2663001 | Zbl 1205.35326

[14] M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, in vol. 144 Progr. Math., edited by A. Bellaiche and J.-J. Risler (1996) 79-323. | MR 1421823 | Zbl 0864.53025

[15] R.K. Hladky and S.D. Pauls, Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model. J Math Imaging Vis 36 (2010) 1-27. | MR 2579306

[16] W.C. Hoffman, The visual cortex is a contact bundle. Appl. Math. Comput. 32 (1989) 137-167. | MR 1007333 | Zbl 0676.92020

[17] L. Hörmander, Hypoelliptic Second Order Differential Equations. Acta Math. 119 (1967) 147-171. | MR 222474 | Zbl 0156.10701

[18] D.H. Hubel and T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The J. Phys. 160 (1962) 106.

[19] I. Moiseev and Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 380-399. | Numdam | MR 2654199 | Zbl 1217.49037

[20] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91 of Math. Surveys and Monogr. AMS (2002). | MR 1867362 | Zbl 1044.53022

[21] M. Nitzberg and D. Mumford, The 2.1-D sketch. ICCV (1990) 138-144.

[22] J. Petitot, Vers une Neuro-géomètrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inform. Sci. Humaines 145 (1999) 5-101.

[23] J. Petitot, Neurogéomètrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l'École Polytechnique (2008). | MR 3077550

[24] J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Phys. - Paris 97 (2003) 265-309.

[25] Y. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018-1039. | Numdam | MR 2744160 | Zbl 1208.49003

[26] Y.L. Sachkov, Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 17 (2011) 293-321. | Numdam | MR 2801321 | Zbl 1251.49057

[27] Y.L. Sachkov, Discrete symmetries in the generalized Dido problem. Sb. Math. 197 (2006) 235-257. | MR 2230093 | Zbl 1144.53043

[28] G. Sanguinetti, G. Citti and A. Sarti, Image completion using a diffusion driven mean curvature flow in a sub-riemannian space, in Int. Conf. Comput. Vision Theory and Appl. (VISAPP'08), Funchal (2008) 22-25.

[29] A.V. Sarychev, First and Second-Order Integral Functionals of the Calculus of Variations Which Exhibit the Lavrentiev Phenomenon. J. Dyn. Control Syst. 3 (1997) 565-588. | MR 1481627 | Zbl 0951.49011

[30] R. Vinter, Optimal Control. Birkhauser (2010). | MR 2662630

[31] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). | MR 1424469 | Zbl 0951.30002