Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 725-747
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of Γ-convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order ε2α-2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized plate theory.

DOI : https://doi.org/10.1051/cocv/2013081
Classification:  74C15,  74G65,  74K20,  49J45
Keywords: finite plasticity, thin plates, Γ-convergence
@article{COCV_2014__20_3_725_0,
     author = {Davoli, Elisa},
     title = {Linearized plastic plate models as $\Gamma $-limits of 3D finite elastoplasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {3},
     year = {2014},
     pages = {725-747},
     doi = {10.1051/cocv/2013081},
     zbl = {1298.74145},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_3_725_0}
}
Davoli, Elisa. Linearized plastic plate models as $\Gamma $-limits of 3D finite elastoplasticity. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, pp. 725-747. doi : 10.1051/cocv/2013081. http://www.numdam.org/item/COCV_2014__20_3_725_0/

[1] E. Acerbi, G. Buttazzo and D. Percivale, A variational definition for the strain energy of an elastic string. J. Elasticity 25 (1991) 137-148. | MR 1111364 | Zbl 0734.73094

[2] A. Bertram, An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plasticity 15 (1999) 353-374. | Zbl 1016.74009

[3] C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. London Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002) 299-317. | MR 1889770 | Zbl 1008.74016

[4] G. Dal Maso, An introduction to Γ-convergence. Boston, Birkhäuser (1993). | MR 1201152 | Zbl 0816.49001

[5] G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257-290. | Numdam | MR 2580510 | Zbl 1188.35205

[6] E. Davoli, Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Preprint SISSA (2012), Trieste. | MR 3211118 | Zbl pre06322950

[7] G.A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55-91. | MR 2244798 | Zbl 1101.74015

[8] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR 1916989 | Zbl 1021.74024

[9] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Rational Mech. Anal. 180 (2006) 183-236. | MR 2210909 | Zbl 1100.74039

[10] M. Lecumberry and S. Müller, Stability of slender bodies under compression and validity of the Von Kármán theory. Arch. Ration. Mech. Anal. 193 (2009) 255-310. | MR 2525119 | Zbl 1200.74060

[11] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR 1365259 | Zbl 0847.73025

[12] E.H. Lee, Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1969) 1-6. | Zbl 0179.55603

[13] M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Methods Appl. Sci. 21 (2011) 1961-1986. | MR 2843026 | Zbl 1232.35165

[14] M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Γ-convergence. NoDEA Nonlinear Differ. Eqs. Appl. 19 (2012) 437-457. | MR 2949627 | Zbl 1253.35180

[15] A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19 (2009) 221-248. | MR 2511255 | Zbl 1173.49013

[16] J. Mandel, Equations constitutive et directeur dans les milieux plastiques et viscoplastique. Int. J. Sol. Struct. 9 (1973) 725-740. | Zbl 0255.73004

[17] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351-382. | MR 1999280 | Zbl 1068.74522

[18] A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), Geometry, Dynamics, and Mechanics. Springer, New York (2002) 61-90. | MR 1919826 | Zbl 1146.74309

[19] A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary Gamma-limit of finite plasticity. J. Eur. Math. Soc. 15 (2013) 923-948. | MR 3085096 | Zbl pre06164612

[20] P.M. Naghdi, A critical review of the state of finite plasticity. Z. Angew. Math. Phys. 41 (1990) 315-394. | MR 1058818 | Zbl 0712.73032