Multi-phase structural optimization via a level set method
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, p. 576-611

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves jump of discontinuous quantities at the interface which are difficult to numerically evaluate. Therefore we suggest an alternative smoothed interface approach which yields more convenient shape derivatives. We rely on the signed distance function and we enforce a fixed width of the transition layer around the interface (a crucial property in order to avoid increasing “grey” regions of fictitious materials). It turns out that the optimization of a diffuse interface has its own interest in material science, for example to optimize functionally graded materials. Several 2-d examples of compliance minimization are numerically tested which allow us to compare the shape derivatives obtained in the sharp or smoothed interface cases.

DOI : https://doi.org/10.1051/cocv/2013076
Classification:  49Q10,  74P15,  74P20,  49J50
Keywords: shape and topology optimization, multi-materials, signed distance function
@article{COCV_2014__20_2_576_0,
     author = {Allaire, G. and Dapogny, C. and Delgado, G. and Michailidis, G.},
     title = {Multi-phase structural optimization via a level set method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     pages = {576-611},
     doi = {10.1051/cocv/2013076},
     zbl = {1287.49045},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_2_576_0}
}
Allaire, G.; Dapogny, C.; Delgado, G.; Michailidis, G. Multi-phase structural optimization via a level set method. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, pp. 576-611. doi : 10.1051/cocv/2013076. http://www.numdam.org/item/COCV_2014__20_2_576_0/

[1] G. Allaire, Shape optimization by the homogenization method. Springer Verlag, New York (2001). | MR 1859696 | Zbl 0990.35001

[2] G. Allaire, Conception optimale de structures, vol. 58 of Mathématiques et Applications. Springer, Heidelberg (2006). | MR 2270119 | Zbl 1132.49033

[3] G. Allaire and C. Castro, A new approach for the optimal distribution of assemblies in a nuclear reactor. Numerische Mathematik 89 (2001) 1-29. | MR 1846762 | Zbl 0985.65074

[4] G. Allaire, F. Jouve and A.M. Toader, Structural optimization using shape sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363-393. | MR 2033390 | Zbl 1136.74368

[5] G. Allaire, F. Jouve and N. Van Goethem, Damage evolution in brittle materials by shape and topological sensitivity analysis. J. Comput. Phys. 230 (2011) 5010-5044. | MR 2795994 | Zbl pre05920273

[6] G. Allaire and S. Gutierrez, Optimal Design in Small Amplitude Homogenization. ESAIM: M2AN 41 (2007) 543-574. | Numdam | MR 2355711 | Zbl 1148.65048

[7] L. Ambrosio, Lecture notes on geometric evolution problems, distance function and viscosity solutions, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazo, A. Marino and M.K.V. Murthy. Springer (1999) 5-93. | Zbl 0956.35002

[8] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55-69. | MR 1261717 | Zbl 0794.49040

[9] M. Bendsoe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications. Springer Verlag, New York (2003). | MR 2008524 | Zbl 1059.74001

[10] Ch. Bernardi and O. Pironneau, Sensitivity of Darcy's law to discontinuities. Chinese Ann. Math. Ser. B 24 (2003) 205-214. | MR 1982064 | Zbl 1040.35067

[11] H.-J. Butt, K. Graf and M. Kappl, Physics and Chemistry of Interfaces. Wiley (2003).

[12] P. Cannarsa and P. Cardaliaguet, Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. 6 (2004) 1-30. | MR 2094399 | Zbl 1084.35015

[13] J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. Math. Model. Numer. 20 (1986) 371-420. | Numdam | MR 862783 | Zbl 0604.49003

[14] A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal. 167 (2003) 211-233. | MR 1978582 | Zbl 1030.74007

[15] I. Chavel, Riemannian Geometry, a modern introduction, 2nd Edn. Cambridge University Press (2006). | MR 2229062 | Zbl 0819.53001

[16] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-289. | MR 385666 | Zbl 0317.49005

[17] A. Cherkaev, Variational Methods for Structural Optimization. Springer, New York (2000). | MR 1763123 | Zbl 0956.74001

[18] C. Dapogny, Ph.D. thesis, Université Pierre et Marie Curie. In preparation.

[19] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343-367. | MR 2225309 | Zbl 1108.74046

[20] G. Delgado, Ph.D. thesis, Ecole Polytechnique. In preparation.

[21] M.C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition. SIAM, Philadelphia (2011). | MR 2731611 | Zbl 1251.49001

[22] M.C. Delfour and J.-P. Zolesio, Shape identification via metrics constructed from the oriented distance function. Control and Cybernetics 34 (2005) 137-164. | MR 2211067 | Zbl 1167.49326

[23] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992). | MR 1158660 | Zbl 0804.28001

[24] H. Federer, Curvature Measures. Trans. Amer. Math. Soc. 93 (1959) 418-491. | MR 110078 | Zbl 0089.38402

[25] J. Gomes and O. Faugeras, Reconciling distance functions and level sets, Scale-Space Theories in Computer Vision. Springer (1999) 70-81.

[26] J. Haslinger and J. Dvorak, Optimum composite material design. RAIRO M2AN 29 (1995) 657-686. | Numdam | MR 1360671 | Zbl 0845.73049

[27] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, vol. 48 of Mathématiques et Applications. Springer, Heidelberg (2005). | MR 2512810 | Zbl 1098.49001

[28] F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14 (1998) 67-82. | MR 1607628 | Zbl 0894.35126

[29] A.L. Karchevsky, Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers. J. Inverse Ill-Posed Probl. 18 (2010) 371-388. | MR 2729410 | Zbl 1279.35112

[30] R. Lipton, Design of functionally graded composite structures in the presence of stress constraints. Int. J. Solids Structures 39 (2002) 2575-2586. | MR 1902300 | Zbl 1032.74020

[31] C. Mantegazza and A.C. Menucci, Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds. Appl. Math. Optim. 47 (2002) 1-25. | MR 1941909 | Zbl 1048.49021

[32] W. Mc Lean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR 1742312 | Zbl 0948.35001

[33] Y. Mei and X. Wang, A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mechanica Sinica 20 (2004). | MR 2126423 | Zbl 1083.74573

[34] Y. Mei and X. Wang, A level set method for structural topology optimization and its applications. Adv. Eng. software 35 (2004) 415-441. | Zbl 1067.90153

[35] G. Milton, The theory of composites. Cambridge University Press (2001). | MR 1899805 | Zbl 0993.74002

[36] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Technical Report RR-76015. Laboratoire d'Analyse Numérique (1976).

[37] J. Nocedal and S.J. Wright, Numerical optimization. Springer Science+ Business Media (2006). | MR 2244940 | Zbl 1104.65059

[38] ZH.O. Oralbekova, K.T. Iskakov and A.L. Karchevsky, Existence of the residual functional derivative with respect to a coordinate of gap point of medium, to appear in Appl. Comput. Math. | MR 3100196

[39] J.M. Ortega and W.C. Rheinboldt, On discretization and differentiation of operators with application to Newton's method. SIAM J. Numer. Anal. 3 (1966) 143-156. | MR 205450 | Zbl 0143.17001

[40] S.J. Osher and J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 78 (1988) 12-49. | MR 965860 | Zbl 0659.65132

[41] O. Pantz, Sensibilité de l'équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 333-337. | MR 2166150 | Zbl 1115.35053

[42] O. Pironneau, F. Hecht and A. Le Hyaric, FreeFem++ version 2.15-1. Available on http://www.freefem.org/ff++/.

[43] J.A. Sethian, Level-Set Methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press (1999). | MR 1700751 | Zbl 0859.76004

[44] O. Sigmund and S. Torquato, Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45 (1997) 1037-1067. | MR 1456086

[45] O. Sigmund, Design of multiphysics actuators using topology optimization-part ii: Two-material structures. Comput. Methods Appl. Mech. Eng. 190 (2001) 6605-6627. | Zbl 1116.74407

[46] N. Sukumar, D.L. Chopp, N. Moes and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6183-6200. | MR 1857695 | Zbl 1029.74049

[47] S. Suresh, A. Mortensen, Fundamentals of functionally graded materials. London, Institute of Materials (1998).

[48] V. Šverak, On optimal shape design. J. Math. Pures Appl. 72 (1993) 537-551. | MR 1249408 | Zbl 0849.49021

[49] C.C. Swan, I. Kosaka, Voigt-Reuss topology optimization for structures with linear elastic material behaviors. Int. J. Numer. Methods Eng. 40 (1997). | MR 1461999 | Zbl 0903.73047

[50] L. Tarta, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin, UMI, Bologna (2009). | MR 2582099 | Zbl 1188.35004

[51] R. Tilley, Understanding Solids: The Science of Materials. Wiley (2004).

[52] N. Vermaak, G. Michailidis, Y. Brechet, G. Allaire, G. Parry and R. Estevez, Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using A Level Set Method. submitted.

[53] L.A. Vese and T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50 (2002) 271-293. | Zbl 1012.68782

[54] M. Wang, S. Chen, X. Wang and Y. Mei, Design of Multimaterial Compliant Mechanisms Using Level-Set Methods. J. Mech. Des. 127 (2005) 941-956.

[55] M. Wang and X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193 (2004) 469-496. | MR 2033962 | Zbl 1060.74585

[56] M. Wang and X. Wang, A level-set based variational method for design and optimization of heterogeneous objetcs. Compututer-Aided Design 37 (2005) 321-337.

[57] L. Yin and G.K. Ananthasuresh, Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23 (2001) 49-62.

[58] S. Zhou and Q. Li, Computational design of multi-phase microstructural materials for extremal conductivity. Comput. Mater. Sci. 43 (2008) 549-564.

[59] S. Zhou and M.Y. Wang, Multimaterial structural optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. | MR 2291576 | Zbl 1245.74077