In this work, we propose a methodology for the expression of necessary and sufficient Lyapunov-like conditions for the existence of stabilizing feedback laws. The methodology is an extension of the well-known Control Lyapunov Function (CLF) method and can be applied to very general nonlinear time-varying systems with disturbance and control inputs, including both finite and infinite-dimensional systems. The generality of the proposed methodology is also reflected upon by the fact that partial stability with respect to output variables is addressed. In addition, it is shown that the generalized CLF method can lead to a novel tool for the explicit design of robust nonlinear controllers for a class of time-delay nonlinear systems with a triangular structure.

Classification: 93D15, 93D30

Keywords: control Lyapunov function, stabilization, time-varying systems, nonlinear control

@article{COCV_2010__16_4_887_0, author = {Karafyllis, Iasson and Jiang, Zhong-Ping}, title = {Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, pages = {887-928}, doi = {10.1051/cocv/2009029}, zbl = {1202.93117}, mrnumber = {2744155}, language = {en}, url = {http://www.numdam.org/item/COCV_2010__16_4_887_0} }

Karafyllis, Iasson; Jiang, Zhong-Ping. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 4, pp. 887-928. doi : 10.1051/cocv/2009029. http://www.numdam.org/item/COCV_2010__16_4_887_0/

[1] A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Trans. Automat. Contr. 43 (1998) 968-971. | Zbl 0982.34044

and ,[2] Stabilization with relaxed controls. Nonlinear Anal. Theory Methods Appl. 7 (1983) 1163-1173. | Zbl 0525.93053

,[3] Set-Valued Analysis. Birkhauser, Boston, USA (1990). | Zbl 1168.49014

and ,[4] Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Contr. 42 (1997) 1394-1407. | Zbl 0892.93053

, , and ,[5] Control and Nonlinearity, Mathematical Surveys and Monographs 136. AMS, USA (2007). | Zbl 1140.93002

,[6] A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst. Estim. Contr. 4 (1994) 67-84. | Zbl 0925.93827

and ,[7] Robust Nonlinear Control Design-State Space and Lyapunov Techniques. Birkhauser, Boston, USA (1996). | Zbl 1130.93005

and ,[8] Introduction to Functional Differential Equations. Springer-Verlag, New York, USA (1993). | Zbl 0787.34002

and ,[9] Robust controller design of a class of nonlinear time delay systems via backstepping methods. Automatica 44 (2008) 567-573.

, and ,[10] Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Automat. Contr. 46 (2001) 1048-1060. | Zbl 1023.93056

,[11] Stabilization of Nonlinear Time Delay Systems with Delay Independent Feedback, in Proceedings of the 2005 American Control Conference, Portland, OR, USA (2005) 4253-4258.

,[12] Stabilization of time-varying nonlinear systems: A control Lyapunov function approach, in Proceedings of IEEE International Conference on Control and Automation 2007, Guangzhou, China (2007) 404-409.

, and ,[13] The non-uniform in time small-gain theorem for a wide class of control systems with outputs. Eur. J. Contr. 10 (2004) 307-323.

,[14] Non-uniform in time robust global asymptotic output stability. Syst. Contr. Lett. 54 (2005) 181-193. | Zbl 1129.93480

,[15] Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Anal. Theory Methods Appl. 64 (2006) 590-617. | Zbl 1163.34389

,[16] A system-theoretic framework for a wide class of systems I: Applications to numerical analysis. J. Math. Anal. Appl. 328 (2007) 876-899. | Zbl 1120.93029

,[17] Robust output feedback stabilization and nonlinear observer design. Syst. Contr. Lett. 54 (2005) 925-938. | Zbl 1129.93523

and ,[18] A converse Lyapunov theorem for non-uniform in time global asymptotic stability and its application to feedback stabilization. SIAM J. Contr. Optim. 42 (2003) 936-965. | Zbl 1049.93073

and ,[19] Control Lyapunov functions and stabilization by means of continuous time-varying feedback. ESAIM: COCV 15 (2009) 599-625. | Numdam | Zbl 1167.93021

and ,[20] Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur. J. Contr. 14 (2008) 516-536.

, and ,[21] Nonlinear and Adaptive Control Design. John Wiley (1995).

, and ,[22] A smooth converse Lyapunov theorem for robust stability. SIAM J. Contr. Optim. 34 (1996) 124-160. | Zbl 0856.93070

, and ,[23] Backstepping design for time-delay nonlinear systems. IEEE Trans. Automat. Contr. 51 (2006) 149-154.

and ,[24] On input-to-state stability for nonlinear systems with delayed feedbacks, in Proceedings of the American Control Conference (2007), New York, USA (2007) 4804-4809.

, and ,[25] Stabilization of non-affine systems: A constructive method for polynomial systems. IEEE Trans. Automat. Contr. 50 (2005) 520-526.

and ,[26] Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr. 45 (2000) 756-762. | Zbl 0978.93067

,[27] Exponential stability of nonlinear time-varying differential equations and partial averaging. Math. Contr. Signals Syst. 15 (2002) 42-70. | Zbl 1010.34035

and ,[28] Exponential stability of slowly time-varying nonlinear systems. Math. Contr. Signals Syst. 15 (2002) 202-228. | Zbl 1019.93050

and ,[29] Adaptive stabilization of nonlinear systems, in Foundations of Adaptive Control, P.V. Kokotovic Ed., Springer-Verlag (1991) 374-433. | Zbl 0787.93083

, , and ,[30] A universal construction of Artstein's theorem on nonlinear stabilization. Syst. Contr. Lett. 13 (1989) 117-123. | Zbl 0684.93063

,[31] Notions of input to output stability. Syst. Contr. Lett. 38 (1999) 235-248. | Zbl 0985.93051

and ,[32] Lyapunov characterizations of input-to-output stability. SIAM J. Contr. Optim. 39 (2001) 226-249. | Zbl 0968.93076

, and ,[33] Sufficient Lyapunov-like conditions for stabilization. Math. Contr. Signals Syst. 2 (1989) 343-357. | Zbl 0688.93048

,[34] Output feedback stabilization. IEEE Trans. Automat. Contr. 35 (1990) 951-954. | Zbl 0723.93054

and ,[35] Comments on robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr. 47 (2002) 1586-1586. | Zbl 0978.93067

, and ,