Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 581-600

Optimal control problems for semilinear elliptic equations with control constraints and pointwise state constraints are studied. Several theoretical results are derived, which are necessary to carry out a numerical analysis for this class of control problems. In particular, sufficient second-order optimality conditions, some new regularity results on optimal controls and a sufficient condition for the uniqueness of the Lagrange multiplier associated with the state constraints are presented.

DOI : https://doi.org/10.1051/cocv/2009010
Classification:  49J20,  49K20,  35J65
Keywords: optimal control, pointwise state constraints, first and second order optimality conditions, Lagrange multipliers, Borel measures
@article{COCV_2010__16_3_581_0,
     author = {Casas, Eduardo and Tr\"oltzsch, Fredi},
     title = {Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {3},
     year = {2010},
     pages = {581-600},
     doi = {10.1051/cocv/2009010},
     zbl = {1201.49004},
     mrnumber = {2674627},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2010__16_3_581_0}
}
Casas, Eduardo; Tröltzsch, Fredi. Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, pp. 581-600. doi : 10.1051/cocv/2009010. http://www.numdam.org/item/COCV_2010__16_3_581_0/

[1] J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3-4 (1997) 235-250. | MR 1448889 | Zbl 0885.49010

[2] E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993-1006. | MR 1227543 | Zbl 0798.49020

[3] E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: COCV 8 (2002) 345-374. | Numdam | MR 1932955 | Zbl 1066.49018

[4] E. Casas, Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM: COCV 14 (2008) 575-589. | Numdam | MR 2434067 | Zbl pre05309732

[5] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431-1454. | MR 1882801 | Zbl 1037.49024

[6] E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. App. Math. Optim. 39 (1999) 211-227. | MR 1665676 | Zbl 0921.49013

[7] E. Casas, J.-P. Raymond and H. Zidani, Optimal control problems governed by semilinear elliptic equations with integral control constraints and pointwise state constraints, in International Conference on Control and Estimations of Distributed Parameter Systems, Vorau, Austria, 1996, W. Desch, F. Kappel and K. Kunisch Eds., Int. Series Num. Analysis, Birkhäuser-Verlag, Basel (1998) 89-102. | MR 1627663 | Zbl 0906.49010

[8] E. Casas, F. Tröltzsch and A. Unger, Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 (2000) 1369-1391. | MR 1766420 | Zbl 0962.49016

[9] E. Casas, J. De Los Reyes and F. Tröltzsch, Sufficient second order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19 (2008) 616-643. | MR 2425032 | Zbl 1161.49019

[10] M. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | Zbl 1154.65055

[11] M. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2007, Graz, Austria, K. Kunisch, G. Of and O. Steinbach Eds., Springer, Heidelberg (2008) 597-604. | Zbl 1157.65400

[12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York (1977). | Zbl 0562.35001

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne (1985). | Zbl 0695.35060

[14] D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161-219. | Zbl 0832.35034

[15] M. Mateos, Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobre el gradiente del estado. Ph.D. Thesis, University of Cantabria, Spain (2000).

[16] H. Maurer and J. Zowe, First- and second-order conditions in infinite-dimensional programming problems. Math. Programming 16 (1979) 98-110. | Zbl 0398.90109

[17] P. Merino, F. Tröltzsch and B. Vexler, Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. ESAIM: M2AN (submitted). | Numdam | Zbl 1191.65076

[18] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37 (2008) 51-83. | Zbl 1170.65055

[19] J. Saut and B. Scheurer, Sur l'unicité du problème de Cauchy et le prolongement unique pour des équations elliptiques à coefficients non localement bornés. J. Diff. Eq. 43 (1982) 28-43. | Zbl 0431.35017

[20] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. | Numdam | Zbl 0151.15401