Magnetization switching on small ferromagnetic ellipsoidal samples
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 676-711.

The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.

DOI : https://doi.org/10.1051/cocv:2008047
Classification : 49J15,  35A05,  35A07,  35D05,  35K20,  35K55,  35Q60
Mots clés : Landau-Lifschitz equation, micromagnetics, stabilization
@article{COCV_2009__15_3_676_0,
     author = {Alouges, Fran\c{c}ois and Beauchard, Karine},
     title = {Magnetization switching on small ferromagnetic ellipsoidal samples},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {676--711},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {3},
     year = {2009},
     doi = {10.1051/cocv:2008047},
     zbl = {1167.49003},
     mrnumber = {2542578},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008047/}
}
Alouges, François; Beauchard, Karine. Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 676-711. doi : 10.1051/cocv:2008047. http://www.numdam.org/articles/10.1051/cocv:2008047/

[1] F. Alouges and A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and nonuniqueness. Nonlinear Anal. Theory Meth. Appl. 18 (1992) 1071-1084. | MR 1167422 | Zbl 0788.35065

[2] M. Bauer, J. Fassbender, B. Hillebrands and R.L. Stamps, Switching behavior of a Stoner particle beyond the relaxation time limit. Phys. Rev. B 61 (2000) 3410-3416.

[3] G. Bertotti and I. Mayergoyz, The Science of Hysteresis. Academic Press (2006). | Zbl 1117.34047

[4] W.F. Brown, Micromagnetics. Interscience Publishers (1963). | Zbl 0129.23401

[5] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Diff. Integral Eqns. 14 (2001) 219-229. | MR 1797387 | Zbl 1161.35421

[6] G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51-59. | MR 2375581 | Zbl 1310.82059

[7] K.-C. Chang, W.Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507-515. | MR 1180392 | Zbl 0765.53026

[8] J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1992) 335-344. | EuDML 78227 | Numdam | MR 1067779 | Zbl 0707.58017

[9] J.-M. Coron and J.-M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 339-344. | MR 992088 | Zbl 0679.58017

[10] A. Desimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591-603. | MR 1360973 | Zbl 0836.73060

[11] A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95-105. | MR 1384838 | Zbl 0814.35057

[12] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures. Springer (1998).

[13] J. Jost, Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses. Manuscripta Math. 34 (1981) 17-25. | MR 614386 | Zbl 0459.58013

[14] R. Kikuchi, On the minimum of magnetization reversal time. J. Appl. Phys. 27 (1956) 1352-1357.

[15] S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Ph.D. thesis, Université Paris XIII, France (1998).

[16] J.C. Mallinson, Damped gyromagnetic switching. IEEE Trans. Magn. 36 (2000) 1976-1981.

[17] J.-C. Mitteau, Sur les applications harmoniques. J. Differ. Geom. 9 (1974) 41-54. | MR 345129 | Zbl 0281.35034

[18] A. Visintin, On Landau-Lifschitz equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69-84. | MR 839320 | Zbl 0613.35018