Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 471-498.

We are concerned with the asymptotic analysis of optimal control problems for 1-D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and its solution can be used as suboptimal controls for the original problem.

DOI : https://doi.org/10.1051/cocv:2008037
Classification : 35B27,  35J25,  49J20,  93C20
Mots clés : optimal control, homogenization, elliptic equation, periodic graph
@article{COCV_2009__15_2_471_0,
     author = {Kogut, Peter I. and Leugering, G\"unter},
     title = {Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {471--498},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {2},
     year = {2009},
     doi = {10.1051/cocv:2008037},
     zbl = {1173.35015},
     mrnumber = {2513095},
     language = {en},
     url = {www.numdam.org/item/COCV_2009__15_2_471_0/}
}
Kogut, Peter I.; Leugering, Günter. Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 471-498. doi : 10.1051/cocv:2008037. http://www.numdam.org/item/COCV_2009__15_2_471_0/

[1] H. Attouch, Variational Convergence for Functional and Operators, Applicable Mathematics Series. Pitman, Boston-London (1984). | MR 773850 | Zbl 0561.49012

[2] A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001

[3] G. Bouchitte and I. Fragala, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1226. | MR 1856245 | Zbl 0986.35015

[4] A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl pre01865939

[5] G. Buttazzo, Γ-convergence and its applications to some problems in the calculus of variations, in School on Homogenization, ICTP, Trieste, September 6-17, 1993, SISSA (1994) 38-61.

[6] G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems. J. Optim. Theory Appl. 32 (1982) 385-407. | MR 686213 | Zbl 0471.49012

[7] J. Casado-Diaz, M. Luna-Laynez and J.D. Marin, An adaption of the multi-scale methods for the analysis of very thin reticulated structures. C. R. Acad. Sci. Paris Sér. I 332 (2001) 223-228. | MR 1817366 | Zbl 0984.35017

[8] G. Chechkin, V. Zhikov, D. Lukkassen and A. Piatnitski, On homogenization of networks and junctions. J. Asymp. Anal. 30 (2000) 61-80. | MR 1918738 | Zbl 1031.35018

[9] D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl. 31 (1997) 49-93. | MR 1493040 | Zbl 0912.35020

[10] D. Cioranescu, P. Donato and E. Zuazua, Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl. 69 (1990) 1-31. | MR 1108873 | Zbl 0638.49017

[11] C. Conca, A. Osses and J. Saint Jean Paulin, A semilinear control problem involving in homogenization. Electr. J. Diff. Equ. (2001) 109-122. | MR 1804768 | Zbl 0964.35039

[12] G. Dal Maso, An Introduction of Γ-Convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[13] A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : deux cas bien posés. C. R. Acad. Sci. Paris Sér. I 297 (1983) 21-24. | MR 719938 | Zbl 0531.49016

[14] A. Haraux and F. Murat, Perturbations singulières et problèmes de contrôle optimal : un cas mal posé. C. R. Acad. Sci. Paris Sér. I 297 (1983) 93-96. | MR 720916 | Zbl 0533.49013

[15] S. Kesavan and M. Vanninathan, L'homogénéisation d'un problème de contrôle optimal. C. R. Acad. Sci. Paris Sér. A-B 285 (1977) 441-444. | MR 451153 | Zbl 0354.49004

[16] S. Kesavan and J. Saint Jean Paulin, Optimal control on perforated domains. J. Math. Anal. Appl. 229 (1999) 563-586. | MR 1666365 | Zbl 0919.49005

[17] P.I. Kogut, S-convergence in homogenization theory of optimal control problems. Ukrain. Matemat. Zhurnal 49 (1997) 1488-1498 (in Russian). | MR 1672876 | Zbl 0933.93026

[18] P.I. Kogut and G. Leugering, Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization. Asymptotic Anal. 26 (2001) 37-72. | MR 1829144 | Zbl 0994.49011

[19] P.I. Kogut and G. Leugering, Asymptotic analysis of state constrained semilinear optimal control problems. J. Optim. Theory Appl. 135 (2007) 301-321. | MR 2346537 | Zbl 1126.49020

[20] P.I. Kogut and G. Leugering, Homogenization of Dirichlet optimal control problems with exact partial controllability constraints. Asymptotic Anal. 57 (2008) 229-249. | MR 2414940 | Zbl 1173.35335

[21] P.I. Kogut and T.A. Mel'Nyk, Asymptotic analysis of optimal control problems in thick multi-structures, in Generalized Solutions in Control Problems, Proceedings of the IFAC Workshop GSCP-2004, Pereslavl-Zalessky, Russia, September 21-29 (2004) 265-275.

[22] J.E. Lagnese and G. Leugering, Domain decomposition methods in optimal control of partial differential equations, International Series of Numerical Mathematics 148. Birkhäuser Verlag, Basel (2004). | MR 2093789 | Zbl 1059.49002

[23] M. Lenczner and G. Senouci-Bereski, Homogenization of electrical networks including voltage to voltage amplifiers. Math. Meth. Appl. Sci. 9 (1999) 899-932. | MR 1702869 | Zbl 0963.35014

[24] G. Leugering and E.J.P.G. Schmidt, On the modelling and stabilization of flows in networks of open canals. SIAM J. Contr. Opt. 41 (2002) 164-180. | MR 1920161 | Zbl 1024.76009

[25] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer-Verlag (1971). | MR 271512 | Zbl 0203.09001

[26] V. Mazja and A. Slutsckij, Averaging of a differential operator on thick periodic grid. Math. Nachr. 133 (1987) 107-133. | Zbl 0646.34055

[27] R. Orive and E. Zuazua, Finite difference approximation of homogenization for elliptic equation. Multiscale Model. Simul. 4 (2005) 36-87. | MR 2164709 | Zbl 1090.65126

[28] G.P. Panasenko, Asymptotic solutions of the elasticity theory system of equations for lattice and skeletal structures. Russian Academy Sci. Sbornik Math. 75 (1993) 85-110. | MR 1166759 | Zbl 0774.73010

[29] G.P. Panasenko, Homogenization of lattice-like domains. L-convergence. Reprint No. 178, Analyse numérique, Lyon Saint-Étienne (1994). | Zbl 0942.35022

[30] T. Roubiček, Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, New York (1997). | MR 1458067 | Zbl 0880.49002

[31] J. Saint Jean Paulin and D. Cioranescu, Homogenization of Reticulated Structures, Applied Mathematical Sciences 136. Springer-Verlag, Berlin-New York (1999). | MR 1676922 | Zbl 0929.35002

[32] J. Saint Jean Paulin and H. Zoubairi, Optimal control and “strange term” for the Stokes problem in perforated domains. Portugaliac Mathematica 59 (2002) 161-178. | MR 1907412 | Zbl 1017.49005

[33] M. Vogelius, A homogenization result for planar, polygonal networks. RAIRO Modél. Math. Anal. Numér. 25 (1991) 483-514. | Numdam | MR 1108587 | Zbl 0737.35126

[34] V.V. Zhikov, Weighted Sobolev spaces. Sbornik: Mathematics 189 (1998) 27-58. | MR 1669639 | Zbl 0919.46026

[35] V.V. Zhikov, On an extension of the method of two-scale convergence and its applications. Sbornik: Mathematics 191 (2000) 973-1014. | MR 1809928 | Zbl 0969.35048

[36] V.V. Zhikov, Homogenization of elastic problems on singular structures. Izvestija: Math. 66 (2002) 299-365. | Zbl 1043.35031

[37] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). | MR 1329546 | Zbl 0838.35001