This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
Classification : 49J20, 49K20, 90C29, 91B76
Mots clés : optimal control, pointwise control, Nash equilibrium, existence, optimality conditions, numerical simulation, wastewater management
@article{COCV_2009__15_1_117_0, author = {Garc\'\i a-Chan, N\'estor and Mu\~noz-Sola, Rafael and V\'azquez-M\'endez, Miguel Ernesto}, title = {Nash equilibrium for a multiobjective control problem related to wastewater management}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {117--138}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008019}, zbl = {1155.49002}, mrnumber = {2488571}, language = {en}, url = {http://www.numdam.org/item/COCV_2009__15_1_117_0/} }
García-Chan, Néstor; Muñoz-Sola, Rafael; Vázquez-Méndez, Miguel Ernesto. Nash equilibrium for a multiobjective control problem related to wastewater management. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 117-138. doi : 10.1051/cocv:2008019. http://www.numdam.org/item/COCV_2009__15_1_117_0/
[1] Numerical convergence for a sewage disposal problem. Appl. Math. Model. 25 (2001) 1015-1024. | Zbl 1197.76080
, , and ,[2] Numerical optimization for the location of wastewater outfalls. Comput. Optim. Appl. 22 (2002) 399-417. | MR 1927428 | Zbl 1013.90088
, , and ,[3] Mathematical model for optimal control in wastewater discharges: the global performance. C. R. Biologies 328 (2005) 327-336.
, , and ,[4] The water conveyance problem: Optimal purification of polluted waters. Math. Models Meth. Appl. Sci. 15 (2005) 1393-1416. | MR 2166209 | Zbl 1089.49037
, , , and ,[5] Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994). | Zbl 0843.90026
,[6] Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. | MR 1089549 | Zbl 0713.76069
, and ,[7] Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. | MR 1453300 | Zbl 0893.49017
,[8] A Primer in Game Theory. Pearson Higher Education (1992). | Zbl 0759.90106
,[9] Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence (1968). | MR 241822 | Zbl 0174.15403
, and ,[10] Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968). | MR 244606 | Zbl 0179.41801
,[11] Problèmes aux limites non homogenes et applications. Dunod, Paris (1968). | Zbl 0165.10801
and ,[12] Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. | Zbl 0961.49002
, and ,[13] Elements of the mathematical modeling in the control of pollutants emissions. Ecol. Model. 167 (2003) 263-275.
and ,[14] Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989). | MR 1030279 | Zbl 0712.76001
,[15] Nash equilibria for the multiobjetive control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457-498. | MR 1892232 | Zbl 1012.49020
, and ,[16] Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993).
,