Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 4, p. 825-863

The paper deals with an optimal control problem with a scalar first-order state constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of the trajectory is not stable. Under some reasonable assumptions, we show that boundary arcs are structurally stable, and that touch point can either remain so, vanish or be transformed into a single boundary arc. Assuming a weak second-order optimality condition (equivalent to uniform quadratic growth), stability and sensitivity results are given. The main tools are the study of a quadratic tangent problem and the notion of strong regularity. Those results enable us to design a new continuation algorithm, presented at the end of the paper, that handles automatically changes in the structure of the trajectory.

DOI : https://doi.org/10.1051/cocv:2008016
Classification:  49K40,  49N60,  34B15
Keywords: optimal control, first-order state constraint, strong regularity, sensitivity analysis, touch point, homotopy method
@article{COCV_2008__14_4_825_0,
     author = {Bonnans, Joseph Fr\'ed\'eric and Hermant, Audrey},
     title = {Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     pages = {825-863},
     doi = {10.1051/cocv:2008016},
     zbl = {1148.49026},
     mrnumber = {2451799},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_4_825_0}
}
Bonnans, Joseph Frédéric; Hermant, Audrey. Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 4, pp. 825-863. doi : 10.1051/cocv:2008016. http://www.numdam.org/item/COCV_2008__14_4_825_0/

[1] E.L. Allgower and K. Georg, Numerical continuation methods, Springer Series in Computational Mathematics 13. Springer-Verlag, Berlin (1990). | MR 1059455 | Zbl 0717.65030

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | MR 1857292 | Zbl 0957.49001

[3] P. Berkmann and H.J. Pesch, Abort landing in windshear: optimal control problem with third-order state constraint and varied switching structure. J. Optim. Theory Appl. 85 (1995) 21-57. | MR 1330841 | Zbl 0827.49027

[4] J.F. Bonnans and A. Hermant, Conditions d'optimalité du second ordre nécessaires ou suffisantes pour les problèmes de commande optimale avec une contrainte sur l'état et une commande scalaires. C. R. Math. Acad. Sci. Paris 343 (2006) 473-478. | MR 2267189 | Zbl 1101.49020

[5] J.F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). | Numdam | MR 2504044 | Zbl 1158.49023

[6] J.F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control. SIAM J. Control Optim. 46 (2007) 1398-1430. | MR 2346386 | Zbl 1251.49036 | Zbl pre05306559

[7] J.F. Bonnans and A. Hermant, No gap second order optimality conditions for optimal control problems with a single state constraint and control. Math. Programming, Ser. B (2007) DOI: 10.1007/s10107-007-0167-8. | MR 2421298 | MR 2267189 | Zbl 1167.49021

[8] J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New York (2000). | MR 1756264 | Zbl 0966.49001

[9] A.E. Bryson, W.F. Denham and S.E. Dreyfus, Optimal programming problems with inequality constraints I: Necessary conditions for extremal solutions. AIAA Journal 1 (1963) 2544-2550. | MR 162686 | Zbl 0142.35902

[10] R. Bulirsch, F. Montrone and H.J. Pesch, Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy. J. Optim. Theory Appl. 70 (1991) 223-254. | MR 1120953 | Zbl 0752.49017

[11] P. Deuflhard, Newton methods for nonlinear problems, Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004). | MR 2063044 | Zbl 1056.65051

[12] A.L. Dontchev and W.W. Hager, Lipschitzian stability for state constrained nonlinear optimal control. SIAM J. Control Optim. 36 (1998) 698-718 (electronic). | MR 1616530 | Zbl 0917.49025

[13] N. Dunford and J. Schwartz, Linear operators, Vols. I and II. Interscience, New York (1958), (1963). | MR 188745 | Zbl 0084.10402

[14] J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294-310 (electronic). | Numdam | MR 2209355 | Zbl 1113.49032

[15] W.W. Hager, Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17 (1979) 321-338. | MR 528899 | Zbl 0426.90083

[16] A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615-631. | MR 481060 | Zbl 0387.46022

[17] R.F. Hartl, S.P. Sethi and R.G. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Review 37 (1995) 181-218. | MR 1343211 | Zbl 0832.49013

[18] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979). Russian Edition: Nauka, Moscow (1974). | MR 410502 | Zbl 0407.90051

[19] D.H. Jacobson, M.M. Lele and J.L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality contraints. J. Math. Anal. Appl. 35 (1971) 255-284. | MR 284905 | Zbl 0188.47203

[20] K. Malanowski, Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397-443. | MR 1239267 | Zbl 0791.49015

[21] K. Malanowski, Stability and sensitivity of solutions to nonlinear optimal control problems. J. Appl. Math. Optim. 32 (1995) 111-141. | MR 1332810 | Zbl 0842.49020

[22] K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205-227. | MR 1430290 | Zbl 0905.49012

[23] K. Malanowski and H. Maurer, Sensitivity analysis for state constrained optimal control problems. Discrete Contin. Dynam. Systems 4 (1998) 241-272. | MR 1617298 | Zbl 0952.49022

[24] P. Martinon and J. Gergaud, An application of PL continuation methods to singular arcs problems, in Recent advances in optimization, Lect. Notes Econom. Math. Systems 563, Springer, Berlin (2006) 163-186. | MR 2191157 | Zbl 1108.49026

[25] H. Maurer, On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrum 41, Universität Münster (1979).

[26] H. Maurer and H.J. Pesch, Solution differentiability for nonlinear parametric control problems. SIAM J. Control Optim. 32 (1994) 1542-1554. | MR 1297096 | Zbl 0820.49012

[27] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. | MR 423155 | Zbl 0364.49003

[28] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Translated from the Russian by K.N. Trirogoff; L.W. Neustadt Ed., Interscience Publishers John Wiley & Sons, Inc. New York-London (1962). | MR 166037 | Zbl 0117.31702

[29] S.M. Robinson, First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (1976) 597-607. | MR 406529 | Zbl 0364.90093

[30] S.M. Robinson, Stability theorems for systems of inequalities, part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497-513. | MR 410522 | Zbl 0347.90050

[31] S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43-62. | MR 561153 | Zbl 0437.90094

[32] J. Sokolowski, Sensitivity analysis of control constrained optimal control problems for distributed parameter systems. SIAM J. Control Optim. 25 (1987) 1542-1556. | MR 912455 | Zbl 0647.49019

[33] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer-Verlag, New York (1993). | MR 1295246 | Zbl 0771.65002