An Ingham type proof for a two-grid observability theorem
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 604-631

Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time T>22; this time, if the observation is made in (-T/2,T/2), is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413-418]. Our proof follows an Ingham type approach.

DOI : https://doi.org/10.1051/cocv:2007062
Classification:  35L05,  65M55,  93B07
Keywords: uniform observability, two-grid method, Ingham type theorem
@article{COCV_2008__14_3_604_0,
     author = {Mehrenberger, Michel and Loreti, Paola},
     title = {An Ingham type proof for a two-grid observability theorem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     pages = {604-631},
     doi = {10.1051/cocv:2007062},
     zbl = {1157.35415},
     mrnumber = {2434069},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_3_604_0}
}
Mehrenberger, Michel; Loreti, Paola. An Ingham type proof for a two-grid observability theorem. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, pp. 604-631. doi : 10.1051/cocv:2007062. http://www.numdam.org/item/COCV_2008__14_3_604_0/

[1] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1D wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413-462. | MR 2207268 | Zbl 1102.93004

[2] R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I), Dirichlet controls: Description of the numerical methods. Japan. J. Appl. Math. 7 (1990) 1-76. | MR 1039237 | Zbl 0699.65055

[3] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | MR 1046761 | Zbl 0685.93039

[4] L. Ignat, Propiedades cualitativas de esquemas numéricos de aproximción de ecuaciones de difusión y de dispersión. Ph.D. thesis, Universidad Autónoma de Madrid, Spain (2006).

[5] J.A. Infante and E. Zuazua, Boundary observability for the space discretization of the 1D wave equation. ESAIM: M2AN 33 (1999) 407-438. | Numdam | MR 1700042 | Zbl 0947.65101

[6] A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 (1936) 367-379. | MR 1545625 | Zbl 0014.21503

[7] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Wiley, Chichester; Masson, Paris (1994). | MR 1359765 | Zbl 0937.93003

[8] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics. Springer-Verlag, New York (2005). | MR 2114325 | Zbl 1094.49002

[9] J.-L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte. Masson, Paris, RMA 8 (1988). | MR 953547 | Zbl 0653.93002

[10] P. Loreti and V. Valente, Partial exact controllability for spherical membranes. SIAM J. Control Optim. 35 (1997) 641-653. | MR 1436643 | Zbl 0879.93002

[11] S. Micu, Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math. 91 (2002) 723-766. | MR 1912914 | Zbl 1002.65072

[12] S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Cont. Optim. 35 (1997) 1614-1638. | MR 1466919 | Zbl 0888.35017

[13] A. Münch, Family of implicit and controllable schemes for the 1D wave equation. C. R. Acad. Sci. Paris Sér. I 339 (2004) 733-738. | MR 2110946 | Zbl 1061.65054

[14] M. Negreanu, Numerical methods for the analysis of the propagation, observation and control of waves. Ph.D. thesis, Universidad Complutense Madrid, Spain (2003). Available at http://www.uam.es/proyectosinv/cen/indocumentos.html

[15] M. Negreanu and E. Zuazua, Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Acad. Sci. Paris, Sér. I 338 (2004) 413-418. | MR 2057174 | Zbl 1038.65054

[16] M. Negreanu and E. Zuazua, Discrete Ingham inequalities and applications. SIAM J. Numer. Anal. 44 (2006) 412-448. | MR 2217389 | Zbl 1142.93351

[17] E. Zuazua, Propagation, observation, control and numerical approximation of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197-243. | MR 2179896 | Zbl 1077.65095

[18] E. Zuazua, Control and numerical approximation of the wave and heat equations, in Proceedings of the ICM 2006, Vol. III, “Invited Lectures", European Mathematical Society Publishing House, M. Sanz-Solé et al. Eds. (2006) 1389-1417. | MR 2275734 | Zbl 1108.93023