On some general almost periodic optimal control problems : links with periodic problems and necessary conditions
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 590-603

In this paper, we are concerned with periodic, quasi-periodic (q.p.) and almost periodic (a.p.) Optimal Control problems. After defining these problems and setting them in an abstract setting by using Abstract Harmonic Analysis, we give some structure results of the set of solutions, and study the relations between periodic and a.p. problems. We prove for instance that for an autonomous concave problem, the a.p. problem has a solution if and only if all problems (periodic with fixed or variable period, q.p. or a.p.) have a constant solution. After that, we give some first order necessary conditions (weak Pontryagin) in the space of Harmonic Synthesis and we also give in this space an existence result.

DOI : https://doi.org/10.1051/cocv:2007065
Classification:  43A60,  49K27,  49J27
Keywords: almost periodic optimal control, periodic optimal control, Pontryagin theorem, almost periodicity on groups
@article{COCV_2008__14_3_590_0,
     author = {Pennequin, Denis},
     title = {On some general almost periodic optimal control problems : links with periodic problems and necessary conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     pages = {590-603},
     doi = {10.1051/cocv:2007065},
     zbl = {1142.49012},
     mrnumber = {2434068},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_3_590_0}
}
Pennequin, Denis. On some general almost periodic optimal control problems : links with periodic problems and necessary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, pp. 590-603. doi : 10.1051/cocv:2007065. http://www.numdam.org/item/COCV_2008__14_3_590_0/

[1] J.-P. Aubin, Optima and Equilibria: an introduction to Nonlinear Analysis. Springer, 2nd Edn. (1988). | MR 1729758 | Zbl 0930.91001

[2] A.S. Besicovitch, Almost Periodic Functions. Cambridge University Press, Cambridge (1932) (and Dover, 1954). | JFM 58.0264.02 | MR 68029 | Zbl 0004.25303

[3] J. Blot, Le théorème de Markov-Kakutani et la presque-périodicité, Fixed Point Theory and Applications, M. Théra and J.B. Baillon Eds., Pitman Research Notes in Mathematical Series 252, Longman, London (1991) 45-56. | MR 1122817 | Zbl 0757.47027

[4] J. Blot, Oscillations presque-périodiques forcées d'équations d'Euler-Lagrange. Bull. Soc. Math. France 122 (1994) 285-304. | Numdam | MR 1273905 | Zbl 0801.34043

[5] J. Blot, Variational Methods for the Almost Periodic Lagrangian Oscillations. Preprint, Cahiers Eco et Maths No. 96.44 (1996).

[6] J. Blot and D. Pennequin, Spaces of quasi-periodic functions and oscillations in dynamical systems. Acta Appl. Math. 65 (2001) 83-113. | MR 1843787 | Zbl 1010.42003

[7] J. Blot and D. Pennequin, Existence and structure results on Almost Periodic solutions of Difference Equations. J. Diff. Equa. Appl. 7 (2001) 383-402. | MR 1939590 | Zbl 1005.39011

[8] H. Bohr, Almost Periodic Functions. Julius Springer, Berlin (1933) (Chelsea Publishing Company, N.Y., 1947). | MR 20163

[9] F. Colonius, Optimal Periodic Control, in Lect. Notes Math. 1313, Springer, Berlin (1988). | MR 947339 | Zbl 0663.49011

[10] C. Corduneanu, Almost Periodic Functions. Chelsea (1989). | Zbl 0672.42008

[11] G. Da Prato and A. Ichikawa, Optimal control of linear systems with a.p. inputs. SIAM J. Control Optim. 25 (1987) 1007-1019. | MR 893995 | Zbl 0626.93030

[12] D.G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989). | MR 1019559 | Zbl 0688.49011

[13] J. Favard, Leçons sur les fonctions presque-périodiques. Gauthiers-Villars, Paris (1933). | JFM 59.0996.01 | Zbl 0007.34303

[14] A. Halanay, Optimal Control of Periodic solutions. Rev. Rouman. Mat. Pure Appl. 19 (1974) 3-16. | MR 344968 | Zbl 0276.49012

[15] V.P. Havin and N.K. Nikolski Eds., Commutative Harmonic Analysis II. Springer, Berlin (1991). | MR 1622489 | Zbl 0892.00021

[16] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I & II. Springer, Berlin, 2nd Edn. (1979) (and 1970). | Zbl 0213.40103 | Zbl 0416.43001

[17] F.J.M. Horn and J.E. Bailey, An application of the theorem of relaxed control to the problem of increasing catalyst selectivity. J. Opt. Theory Appl. 2 (1968) 441-449. | MR 1551295

[18] A. Kovaleva, Optimal Control of Mechanical Oscillations. Springer, Berlin (1999). | MR 1692110 | Zbl 0939.74002

[19] J.L. Mauclaire, Intégration et Théorie des Nombres. Travaux en Cours, Hermann, Paris (1986). | MR 860561 | Zbl 0628.10058

[20] G.M. N'Guérékata, Almost automorphic and almost periodic functions in abstract spaces. Kluwer Academic Publishers (2001) | Zbl 1001.43001

[21] P. Nistri, Periodic Control Problems for a class of nonlinear periodic differential systems. Nonlinear Anal. Theor. Meth. Appl. 7 (1983) 79-90. | MR 687032 | Zbl 0502.49004

[22] D. Pennequin, Existence results on almost periodic solutions of discrete time equations. Discrete Cont. Dynam. Syst. 7 (2001) 51-60. | MR 1806372 | Zbl 1012.39012

[23] I.C. Percival, Variational principles for the invariant toroids of classical dynamics. J. Phys. A: Math. Nucl. Gen. 7 (1974) 794-802. | MR 363071 | Zbl 0304.70022

[24] I.C. Percival, Variational principles for invariant tori and cantori. A.I.P. Conf. Proc. 57 (1979) 302-310. | MR 624989

[25] L. Pontryagin, Topological Groups. N.Y. Gordon and Breach (1966). | MR 201557

[26] J.L. Speyer, Periodic optimal flight. J. Guid. Control Dynam. 61 (1996) 745-754. | Zbl 0854.93107

[27] W. Rudin, Fourier Analysis on Groups. Interscience Publishers, N.Y. (1962). | MR 152834 | Zbl 0107.09603

[28] A. Weil, L'intégration dans les Groupes Topologiques. Hermann, Paris (1940). | JFM 66.1205.02 | Zbl 0063.08195