A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 494-516

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently formally passing to the limit of continuous time. The resulting functionals may be regarded as a weighted dissipation-energy functional with a weight decaying with a rate 1/ε. The corresponding Euler-Lagrange equation leads to an elliptic regularization of the original evolutionary problem. The Γ-limit of these functionals for ε0 is highly degenerate and provides limited information regarding the limiting trajectories of the system. Instead we seek to characterize the minimizing trajectories directly. The special class of problems characterized by a rate-independent dissipation functional is amenable to a particularly illuminating analysis. For these systems it is possible to derive a priori bounds that are independent of the regularizing parameter, whence it is possible to extract convergent subsequences and find the limiting trajectories. Under general assumptions on the functionals, we show that all such limits satisfy the energetic formulation (S) & (E) for rate-independent systems. Moreover, we show that the accumulation points of the regularized solutions solve the associated limiting energetic formulation.

DOI : https://doi.org/10.1051/cocv:2007064
Classification:  49J40,  49M20,  49S05,  74N10
Keywords: weighted energy-dissipation functional, incremental minimization problems, relaxation of evolutionary problems, rate-independent processes, energetic solutions
@article{COCV_2008__14_3_494_0,
     author = {Ortiz, Michael and Mielke, Alexander},
     title = {A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     pages = {494-516},
     doi = {10.1051/cocv:2007064},
     zbl = {pre05309728},
     mrnumber = {2434063},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_3_494_0}
}
Ortiz, Michael; Mielke, Alexander. A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, pp. 494-516. doi : 10.1051/cocv:2007064. http://www.numdam.org/item/COCV_2008__14_3_494_0/

[1] J. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). | MR 755330 | Zbl 0538.34007

[2] S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. Royal Soc. London, Ser. A 459 (2003) 3131-3158. | MR 2027358 | Zbl 1041.74506

[3] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | MR 906132 | Zbl 0629.49020

[4] D. Brandon, I. Fonseca and P. Swart, Oscillations in a dynamical model of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 59-81. | MR 1820295 | Zbl 0982.74052

[5] H. Brézis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. C. R. Acad. Sci. Paris 282 (1976) 971-974 and 1197-1198. | Zbl 0334.35040

[6] C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London, Ser. A 458 (2002) 299-317. | MR 1889770 | Zbl 1008.74016

[7] F.H. Clarke, Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990). | MR 1058436 | Zbl 0696.49002

[8] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Diff. Eq. 15 (1990) 737-756. | MR 1070845 | Zbl 0707.34053

[9] S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176 (2005) 103-147. | MR 2185859 | Zbl 1064.74144

[10] S. Conti and F. Theil, Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal. 178 (2005) 125-148. | MR 2188468 | Zbl 1076.74017

[11] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989). | MR 990890 | Zbl 0703.49001

[12] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser Boston Inc., Boston, MA (1993). | MR 1201152 | Zbl 0816.49001

[13] G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165-225. | MR 2186036 | Zbl 1064.74150

[14] I. Fonseca, D. Brandon and P. Swart, Dynamics and oscillatory microstructure in a model of displacive phase transformations, in Progress in partial differential equations: the Metz surveys 3, Longman Sci. Tech., Harlow (1994) 130-144. | MR 1316196 | Zbl 0857.35086

[15] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math. 595 (2006) 55-91. | MR 2244798 | Zbl 1101.74015

[16] N. Ghoussoub and L. Tzou, A variational principle for gradient flows. Math. Ann. 330 (2004) 519-549. | MR 2099192 | Zbl 1062.35008

[17] A. Giacomini and M. Ponsiglione, A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal. 180 (2006) 399-447. | MR 2214962 | Zbl 1089.74011

[18] M.E. Gurtin, Variational principles in the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 3 (1963) 179-191. | MR 214321 | Zbl 0123.40803

[19] M.E. Gurtin, Variational principles for linear initial-value problems. Quart. Applied Math. 22 (1964) 252-256. | Zbl 0173.37602

[20] K. Hackl and U. Hoppe, On the calculation of microstructures for inelastic materials using relaxed energies, in IUTAM Symposium on Computational Mechanics of Solids at Large Strains, C. Miehe Ed., Kluwer (2003) 77-86. | MR 1991326 | Zbl 1040.74006

[21] R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the Fokker-Planck equation. Physica D 107 (1997) 265-271. | MR 1491963 | Zbl 1029.82507

[22] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | MR 1617171 | Zbl 0915.35120

[23] R. Jordan, D. Kinderlehrer and F. Otto, Dynamics of the Fokker-Planck equation. Phase Transit. 69 (1999) 271-288.

[24] M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (2005) 389-418. | MR 2200210 | Zbl 1106.74048

[25] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Springer-Verlag, New York (1972). | MR 350177 | Zbl 0223.35039

[26] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22 (2005) 73-99. | MR 2105969 | Zbl pre02135755

[27] A. Mielke, Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 85-123. | MR 1669205 | Zbl 0924.35076

[28] A. Mielke, Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 5095-5127. | MR 2103044 | Zbl 1112.74332

[29] A. Mielke, Evolution in rate-independent systems (Chap. 6), in Handbook of Differential Equations, Evolutionary Equations 2, C. Dafermos and E. Feireisl Eds., Elsevier B.V., Amsterdam (2005) 461-559. | MR 2182832 | Zbl 1120.47062

[30] A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. angew. Math. Mech. 86 (2006) 233-250. | MR 2205645 | Zbl 1102.74006

[31] A. Mielke and R. Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems. Math. Models Methods Appl. Sci. 17 (2007) 81-123. | MR 2290410 | Zbl 1121.34052

[32] A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN (submitted). WIAS Preprint 1169.

[33] A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag (1999) 117-129.

[34] A. Mielke and F. Theil, On rate-independent hysteresis models. NoDEA Nonlinear Differ. Equ. Appl. 11 (2004) 151-189. | MR 2210284 | Zbl 1061.35182

[35] A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162 (2002) 137-177. (Essential Science Indicator: Emerging Research Front, August 2006.) | MR 1897379 | Zbl 1012.74054

[36] A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Equ. (2007) Online first. DOI: 10.1007/s00526-007-0119-4 | MR 2359137 | Zbl pre05236593

[37] M. Ortiz and E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397-462. | MR 1674064 | Zbl 0964.74012

[38] M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Engrg. 171 (1999) 419-444. | MR 1685716 | Zbl 0938.74016

[39] M. Ortiz, E. Repetto and L. Stainier, A theory of subgrain dislocation structures. J. Mech. Physics Solids 48 (2000) 2077-2114. | MR 1778727 | Zbl 1001.74007

[40] T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag, Basel (2005). | MR 2176645 | Zbl 1087.35002

[41] S.M. Sivakumar and M. Ortiz, Microstructure evolution in the equal channel angular extrusion process. Comput. Methods Appl. Mech. Engrg. 193 (2004) 5177-5194. | MR 2103047 | Zbl 1112.74358

[42] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York (1988). | MR 953967 | Zbl 0662.35001

[43] F. Theil, Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation. Arch. Rational Mech. Anal. 144 (1998) 47-78. | MR 1657320 | Zbl 0936.74040

[44] F. Theil, Relaxation of rate-independent evolution problems. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 463-481. | MR 1899832 | Zbl 1119.49303

[45] Q. Yang, L. Stainier and M. Ortiz, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54 (2006) 401-424. | MR 2192499 | Zbl 1120.74367