Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands
ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 456-477

New L 1 -lower semicontinuity and relaxation results for integral functionals defined in BV(Ω) are proved, under a very weak dependence of the integrand with respect to the spatial variable x. More precisely, only the lower semicontinuity in the sense of the 1-capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to x. Under this further BV dependence, a representation formula for the relaxed functional is also obtained.

DOI : https://doi.org/10.1051/cocv:2007061
Classification:  49J45,  49Q20,  49M20
Keywords: semicontinuity, relaxation, BV functions, capacity
@article{COCV_2008__14_3_456_0,
     author = {Fusco, Nicola and Cicco, Virginia De and Amar, Micol},
     title = {Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     pages = {456-477},
     doi = {10.1051/cocv:2007061},
     zbl = {1149.49016},
     mrnumber = {2434061},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2008__14_3_456_0}
}
Fusco, Nicola; Cicco, Virginia De; Amar, Micol. Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, pp. 456-477. doi : 10.1051/cocv:2007061. http://www.numdam.org/item/COCV_2008__14_3_456_0/

[1] M. Amar, and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91-133. | Numdam | MR 1259102 | Zbl 0842.49016

[2] M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear). | MR 2408343 | Zbl 1153.49016

[3] M. Amar, V. De Cicco and N. Fusco, A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396-412. | Numdam | MR 2306643 | Zbl pre05173191

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). | MR 1857292 | Zbl 0957.49001

[5] G. Anzellotti, G. Buttazzo and G. Dal Maso, Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603-613. | MR 844989 | Zbl 0612.49008

[6] G. Bouchitté and M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398-420. | MR 961907 | Zbl 0662.46009

[7] G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51-98. | MR 1656477 | Zbl 0921.49004

[8] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989). | Zbl 0669.49005

[9] M. Carriero, G. Dal Maso, A. Leaci and E. Pascali, Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359-396. | MR 978576 | Zbl 0617.49018

[10] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | MR 567216 | Zbl 0435.49016

[11] G. Dal Maso, On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85-113. | MR 740203 | Zbl 0543.49001

[12] G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[13] V. De Cicco and G. Leoni, A chain rule in L 1 ( div ;Ω) and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23-51. | MR 2027846 | Zbl 1056.49019

[14] V. De Cicco, N. Fusco and A. Verde, On L 1 -lower semicontinuity in BV(Ω). J. Convex Analysis 12 (2005) 173-185. | MR 2135805 | Zbl 1115.49011

[15] V. De Cicco, N. Fusco and A. Verde, A chain rule formula in BV(Ω) and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427-447. | MR 2293980 | Zbl 1136.49011

[16] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR 448194 | Zbl 0339.49005

[17] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.

[18] H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Un. Math. J. 22 (1972) 139-158. | MR 435361 | Zbl 0238.28015

[19] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519-565. | MR 1838501 | Zbl 1003.49015

[20] I. Fonseca and S. Mu ¨ller, Quasi-convex integrands and lower semicontinuity in L 1 . SIAM J. Math. Anal. 23 (1992) 1081-1098. | MR 1177778 | Zbl 0764.49012

[21] I. Fonseca and S. Mu ¨ller, Relaxation of quasiconvex functionals in BV(Ω, p ) for integrands f(x,u,u). Arch. Rat. Mech. Anal. 123 (1993) 1-49. | MR 1218685 | Zbl 0788.49039

[22] N. Fusco, F. Giannetti and A. Verde, A remark on the L 1 -lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313-323. | MR 2067041 | Zbl 1030.49014

[23] N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425-433. | MR 2314327 | Zbl pre05151299

[24] M. Gori and F. Maggi, The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95-114. | MR 2128096 | Zbl pre05058510

[25] M. Gori, F. Maggi and P. Marcellini, On some sharp conditions for lower semicontinuity in L 1 . Diff. Int. Eq. 16 (2003) 51-76. | MR 1948872 | Zbl 1028.49012

[26] F. Maggi, On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477-489. | MR 2044431 | Zbl 1084.49015

[27] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515-542. | Numdam | MR 174706 | Zbl 0152.24402

[28] Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039-1045. | Zbl 0176.44402