The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples are presented: the first one compares topological optimization with standard shape optimization, and the second one, issued from a lake oxygenation problem, illustrates the use of the new asymptotic expansion.
Classification : 49Q10, 49Q12, 74P05, 74P10, 74P15
Mots clés : topological optimization, topological sensitivity, topological gradient, shape optimization, Stokes equations
@article{COCV_2008__14_1_160_0, author = {Hassine, Maatoug and Guillaume, Philippe}, title = {Removing holes in topological shape optimization}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {160--191}, publisher = {EDP-Sciences}, volume = {14}, number = {1}, year = {2008}, doi = {10.1051/cocv:2007045}, zbl = {1140.49029}, mrnumber = {2375755}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007045/} }
TY - JOUR AU - Hassine, Maatoug AU - Guillaume, Philippe TI - Removing holes in topological shape optimization JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 DA - 2008/// SP - 160 EP - 191 VL - 14 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007045/ UR - https://zbmath.org/?q=an%3A1140.49029 UR - https://www.ams.org/mathscinet-getitem?mr=2375755 UR - https://doi.org/10.1051/cocv:2007045 DO - 10.1051/cocv:2007045 LA - en ID - COCV_2008__14_1_160_0 ER -
Hassine, Maatoug; Guillaume, Philippe. Removing holes in topological shape optimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 160-191. doi : 10.1051/cocv:2007045. http://www.numdam.org/articles/10.1051/cocv:2007045/
[1] A numerical modelling of a two phase flow for water eutrophication problems. ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelone, 11-14 September (2000).
, , and ,[2] On some recent advances in shape optimization. C. R. Acad. Sci. Paris, Ser. II B 329 (2001) 383-396. | Zbl 0986.49023
and ,[3] Optimal bounds on the effective behavior of a mixture of two well-orded elastic materials. Quart. Appl. Math. 51 (1996) 643-674. | MR 1247433 | Zbl 0805.73043
and ,[4] Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363-393. | MR 2033390 | Zbl 1136.74368
, and ,[5] The topological asymptotic for the Helmholtz equation. SIAM J. Contr. Optim. 42 (2003) 1523-1544. | MR 2046373 | Zbl 1051.49029
, and ,[6] The differentiability of the drag with respect to the variations of a lipschitz domain in a Navier-Stokes flow. SIAM J. Control Optim. 35 (1997) 626-640. | MR 1436642 | Zbl 0873.76019
, , and ,[7] Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).
,[8] IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006). | Zbl 1099.74005
, and ,[9] Mixed and hybrid finite element method, Springer Series in Computational Mathematics 15. Springer Verlag- New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[10] Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | MR 1076053 | Zbl 0762.49017
and ,[11] Conception optimale ou identification de forme, calcul rapide de la dérivée directionnelle de la fonction coút. RAIRO Math. Modél. Anal. Numér. 20 (1986) 371-402. | Numdam | MR 862783 | Zbl 0604.49003
,[12] Quelques résultats sur l'identification de domains. Calcolo (1973). | Zbl 0303.93023
, and ,[13] The shape and topological optimizations connection. Comput. Methods Appl. Mech. Engrg. 188 (2000) 713-726. | MR 1784106 | Zbl 0972.74057
, , and ,[14] Relaxed shape optimization: the case of nonnegative data for the Dirichlet problems. Adv. Math. Sci. Appl. 1 (1992) 47-81. | MR 1161483 | Zbl 0769.35013
and ,[15] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR 520174 | Zbl 0383.65058
,[16] Analyse mathémathique et calcul numérique pour les sciences et les techniques. Masson, collection CEA (1987). | Zbl 0642.35001
and ,[17] The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756-1778. | MR 1825864 | Zbl 0990.49028
, and ,[18] Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer Verlag (1986). | MR 851383 | Zbl 0585.65077
and ,[19] Toward the computational of minimun drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58-66. | MR 455851 | Zbl 0361.76035
and ,[20] Dérivées d'ordre supérieur en conception optimale de forme. Ph.D. thesis, Université Paul Sabatier, Toulouse, France (1994).
,[21] Computation of high order derivatives in optimal shape design. Numer. Math. 67 (1994) 231-250. | MR 1262782 | Zbl 0792.65044
and ,[22] The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41 (2002) 1052-1072. | MR 1972502 | Zbl 1053.49031
and ,[23] Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Control Optim. 43 (2004) 1-31. | MR 2081970 | Zbl 1093.49029
and ,[24] Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895-909. | MR 1613877 | Zbl 0917.49004
and ,[25] The topological sensitivity analysis for the Quasi-Stokes problem. ESAIM: COCV 10 (2004) 478-504. | Numdam | MR 2111076 | Zbl 1072.49027
and ,[26] Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).
, and ,[27] Problèmes aux limites non homogenes et applications. Dunod (1968). | Zbl 0165.10801
and ,[28] The topological asymptotic, in Computational Methods for Control Applications, H. Kawarada and J. Periaux Eds., International Séries Gakuto (2002). | Zbl 1082.93584
,[29] The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl. 21 (2005) 547-564. | MR 2146276 | Zbl 1070.35129
, and ,[30] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains2000). | Zbl 1127.35301
, and ,[31] On optimum profiles in Stokes flow. J. Fluid Mech. 59 (1973) 117-128. | MR 331973 | Zbl 0274.76022
,[32] Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). | MR 725856 | Zbl 0534.49001
,[33] Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. Ph.D. thesis, Universitat-Gesamthochschule-Siegen (1995).
,[34] Mechanical inclusions identification by evolutionary computation. Revue européenne des éléments finis 5 (1996) 619-648. | MR 1436837 | Zbl 0924.73321
, and ,[35] Domain variation for Stokes flow, in Lect. Notes Control Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28-42. | MR 1129956 | Zbl 0801.76075
,[36] Domain variation for drag Stokes flows, in Lect. Notes Control Inform. Sci. 114, A. Bermudez Eds., Springer, Berlin (1987) 277-283. | Zbl 0801.76075
,[37] On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251-1272 (electronic) | MR 1691940 | Zbl 0940.49026
and ,[38] Modelling of topological derivatives for contact problems. Numer. Math. 102 (2005) 145-179. | MR 2206676 | Zbl 1077.74039
and ,[39] Navier Stokes equations (1985).
,Cité par Sources :