Optimal regularity for the pseudo infinity laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 2, p. 294-304

In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.

DOI : https://doi.org/10.1051/cocv:2007018
Classification:  35A05,  35B65,  35J15
Keywords: viscosity solutions, optimal regularity, pseudo infinity laplacian
@article{COCV_2007__13_2_294_0,
     author = {Rossi, Julio D. and Saez, Mariel},
     title = {Optimal regularity for the pseudo infinity laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {2},
     year = {2007},
     pages = {294-304},
     doi = {10.1051/cocv:2007018},
     zbl = {1129.35087},
     mrnumber = {2306637},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2007__13_2_294_0}
}
Rossi, Julio D.; Saez, Mariel. Optimal regularity for the pseudo infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 2, pp. 294-304. doi : 10.1051/cocv:2007018. http://www.numdam.org/item/COCV_2007__13_2_294_0/

[1] G. Aronsson, Extensions of functions satisfiying Lipschitz conditions. Ark. Math. 6 (1967) 551-561. | Zbl 0158.05001

[2] G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. 41 (2004) 439-505. | Zbl pre02108961

[3] G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Part. Diff. Eq. 26 (2001) 2323-2337. | Zbl 0997.35023

[4] M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p. ESAIM: COCV 10 (2004) 28-52. | Numdam | Zbl 1092.35074

[5] M. Belloni, B. Kawohl and P. Juutinen, The p-Laplace eigenvalue problem as p in a Finsler metric. J. Europ. Math. Soc. (to appear). | Zbl pre05042376

[6] G. Bouchitte, G. Buttazzo and L. De Pasquale, A p-laplacian approximation for some mass optimization problems. J. Optim. Theory Appl. 118 (2003) 125. | MR 1995692 | Zbl 1040.49040

[7] M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl 0755.35015

[8] M.G. Crandall, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. PDE 13 (2001) 123-139. | Zbl 0996.49019

[9] L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999), No. 653. | MR 1464149 | Zbl 0920.49004

[10] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | Zbl 0789.35008

[11] O. Savin, C 1 regularity for infinity harmonic functions in two dimensions. Arch. Rational Mech. Anal. 176 (2005) 351-361. | Zbl 1112.35070