Limitations on the control of Schrödinger equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 615-635.

We give the definitions of exact and approximate controllability for linear and nonlinear Schrödinger equations, review fundamental criteria for controllability and revisit a classical “No-go” result for evolution equations due to Ball, Marsden and Slemrod. In Section 2 we prove corresponding results on non-controllability for the linear Schrödinger equation and distributed additive control, and we show that the Hartree equation of quantum chemistry with bilinear control (E(t)·x)u is not controllable in finite or infinite time. Finally, in Section 3, we give criteria for additive controllability of linear Schrödinger equations, and we give a distributed additive controllability result for the nonlinear Schrödinger equation if the data are small.

DOI : https://doi.org/10.1051/cocv:2006014
Classification : 35Q40,  35Q55,  81Q99,  93B05
Mots clés : Schrödinger equations, exact and approximate control, quantum control
@article{COCV_2006__12_4_615_0,
     author = {Illner, Reinhard and Lange, Horst and Teismann, Holger},
     title = {Limitations on the control of {Schr\"odinger} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {615--635},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006014},
     mrnumber = {2266811},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2006014/}
}
TY  - JOUR
AU  - Illner, Reinhard
AU  - Lange, Horst
AU  - Teismann, Holger
TI  - Limitations on the control of Schrödinger equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
DA  - 2006///
SP  - 615
EP  - 635
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2006014/
UR  - https://www.ams.org/mathscinet-getitem?mr=2266811
UR  - https://doi.org/10.1051/cocv:2006014
DO  - 10.1051/cocv:2006014
LA  - en
ID  - COCV_2006__12_4_615_0
ER  - 
Illner, Reinhard; Lange, Horst; Teismann, Holger. Limitations on the control of Schrödinger equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 615-635. doi : 10.1051/cocv:2006014. http://www.numdam.org/articles/10.1051/cocv:2006014/

[1] F.Kh. Abdullaev and J. Garnier, Collective oscillations of one-dimensional Bose-Einstein gas under varying in time trap potential and atomic scattering length. Phys. Rev. A 70 (2004) 053604.

[2] G. Bachman and N. Narici, Functional Analysis. Academic Press, N.Y. (1966). | MR 217549 | Zbl 0141.11502

[3] J. Ball, J. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Contr. Opt. 20 (1982) 575-597. | MR 661034 | Zbl 0485.93015

[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Contr. Opt. 30 (1992) 1024-1065. | MR 1178650 | Zbl 0786.93009

[5] L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Mat. (To appear). | MR 2254931 | Zbl 1109.49003

[6] L. Baudouin, Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics. Rev. Mat. Complut. 18 (2005) 285-314. | MR 2166510

[7] L. Baudouin and J.-P. Puel, Bilinear optimal control problem on a Schrödinger equation with singular potentials. Preprint (2004).

[8] K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. 84 (2005) 851-956. | MR 2144647 | Zbl 1124.93009

[9] K. Beauchard and J.M. Coron, Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328-389. | MR 2200740

[10] P.W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes. Wiley-VCH, Berlin (2003).

[11] R. Carles, Linear vs. nonlinear effects for nonlinear Schrödinger equations with potential. Commun. Contemp. Math. 7(4) (2005) 483-508. | MR 2166662 | Zbl 1095.35044

[12] E. Cancès and C. Lebris, On the time-dependent Hartree-Fock equations coupled with classical nuclear dynamics. Math. Mod. Meth. Appl. Sci. 9 (1999) 963-990. | MR 1710271 | Zbl 1011.81087

[13] E. Cancès, C. Lebris and M. Pilot, Contrôle optimale bilinéaire d'une équation de Schrödinger. C. R. Acad. Sci. Paris, Sér. 1 330 (2000) 567-571. | Zbl 0953.49005

[14] J.W. Clark, D.G. Lucarelli and T.J. Tarn, Control of quantum systems. Int. J. Mod. Phys. B 17 (2003) 5397-5412. | Zbl 1081.81506

[15] C. Fabre, Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger at leurs limites asymptotiques, Application à certaines équations de plaques vibrantes. Asymptotic Analysis 5 (1992) 343-379. | Zbl 0745.93005

[16] H. Helson, Harmonic Analysis. Addison-Wesley, Reading (1983). | MR 729682 | Zbl 0555.43001

[17] M. Holthaus and S. Stenholm, Coherent control of self-trapping transition. Eur. Phys. J. B 20 (2001) 451-467.

[18] G.M Huang, Tarn T.J and J.W. Clark, On the controllability of quantum-mechanical systems. J. Math. Phys. 24 (1983) 2608-2618. | MR 720133 | Zbl 0539.93003

[19] H. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9 (1953) 381-402. | MR 56461 | Zbl 0050.22002

[20] R. Illner, H. Lange and H. Teismann, A note on the exact internal control of nonlinear Schrödinger equations. CRM Proc. Lecture Notes 33 (2003) 127-137. | MR 2043524

[21] A.E. Ingham, Some trigonometric inequalities with applications to the theory of series. Math. Z. 41 (1936) 367. | MR 1545625 | Zbl 0014.21503

[22] J.L. Journé, A. Soffer and C.D. Sogge, Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44 (1991) 573-604. | MR 1105875 | Zbl 0743.35008

[23] K.H. Kerner, Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys. 36 (1958) 371-377. | Zbl 0079.42301

[24] C. Lan, T.J. Tarn, Q.-S. Chi and J.W. Clark, Analytic controllability of time-dependent quantum control systems. J. Math. Phys. 46 (2005) 052102 | MR 2142978 | Zbl 1110.93008

[25] I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differ. Int. Equ. 5 (1992) 571-535. | MR 1157485 | Zbl 0784.93032

[26] I. Lasiecka and R. Triggiani, Control theory for partial differential equations, continuous and approximation theories. I & II. Cambridge University Press, Cambridge (2000). | MR 1745475 | Zbl 0961.93003

[27] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates 12 (2004) 43-123. | MR 2040524 | Zbl 1057.35042

[28] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates 12 (2004) 183-231. | MR 2061430 | Zbl 1061.35170

[29] G. Lebeau, Contrôle de l'équation de Schrödinger. Jour. Math. Pures Appl. 71 (1992) 267-291. | Zbl 0838.35013

[30] C. Lebris, Control theory applied to quantum chemistry, some tracks, in Conf. Int. contrôle des systèmes gouvernés par des équations aux derivées partielles. ESAIM Proc. 8 (2000) 77-94. | MR 1807561 | Zbl 0996.81116

[31] C. Lebris, Computational Chemistry, in Handbook of Numerical Analysis, C. LeBris, Ph.G. Ciarlet Eds. North-Holland, Amsterdam (2003). | MR 2008385 | Zbl 1052.81001

[32] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 & 2. Masson, Paris (1988). | MR 953547 | Zbl 0653.93003

[33] E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34. | MR 1255957 | Zbl 0795.93018

[34] E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation. Portugaliae Mat. 51 (1994) 243-256. | MR 1277994 | Zbl 0814.35008

[35] M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automatic Control 49 (2004) 745-747. | MR 2057808

[36] K.-D. Phung, Observability and control of Schrödinger equations. SIAM J. Contr. Opt. 40 (2001) 211-230. | MR 1855313 | Zbl 0995.93037

[37] S.A. Rice and M. Zhao, Optical Control of Molecular Dynamics. John Wiley & Sons, New York (2000).

[38] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations, recent progress and open questions. SIAM Rev. (1978) 20 639-739. | MR 508380 | Zbl 0397.93001

[39] S.G. Schirmer, J.V. Leahy and A.I. Solomon, Degrees of controllability for quantum systems and application to atomic systems. J. Phys. A 35 (2002) 4125-4141. | MR 1910143 | Zbl 1040.93007

[40] A.P. Shustov, Coherent states and energy spectrum of the anharmonic osciallator. J. Phys. A 11 (1978) 1771-1780.

[41] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1974). | MR 290095 | Zbl 0207.13501

[42] G. Turinici, Analyse de méthodes numériques de simulation et contrôle en chimie quantique. Ph.D. Thesis, Univ. Paris VI (2000).

[43] G. Turinici, Controllable quantities for bilinear quantum systems, in Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia (2000) 1364-1369.

[44] R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). | MR 591684 | Zbl 0493.42001

[45] J. Zabczyk, Introduction to Control Theory. Birkhäuser, Basel (1994). | MR 2348543

[46] E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lecture Notes 33 (2003) 193-211. | MR 2043529

Cité par Sources :