Design-dependent loads in topology optimization
ESAIM: Control, Optimisation and Calculus of Variations, Volume 9  (2003), p. 19-48

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of S. We propose an approximation of our problem in the framework of Γ-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.

DOI : https://doi.org/10.1051/cocv:2002070
Classification:  49Q20,  74P05,  74P15
Keywords: topology optimization, optimal design, design-dependent loads, Γ-convergence, diffuse interface method
@article{COCV_2003__9__19_0,
     author = {Bourdin, Blaise and Chambolle, Antonin},
     title = {Design-dependent loads in topology optimization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     pages = {19-48},
     doi = {10.1051/cocv:2002070},
     zbl = {1066.49029},
     mrnumber = {1957089},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2003__9__19_0}
}
Bourdin, Blaise; Chambolle, Antonin. Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003) , pp. 19-48. doi : 10.1051/cocv:2002070. http://www.numdam.org/item/COCV_2003__9__19_0/

[1] G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazzo et al. Springer-Verlag (2000) 95-114. | MR 1757697 | Zbl 0957.35017

[2] G. Allaire, É. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. | MR 1438681 | Zbl 0889.73051

[3] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). | MR 1859696 | Zbl 0990.35001

[4] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55-69. | MR 1261717 | Zbl 0794.49040

[5] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, Mass.-London (1984). | MR 773850 | Zbl 0561.49012

[6] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67-90. | Numdam | MR 1051228 | Zbl 0702.49009

[7] A.C. Barroso and I. Fonseca, Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 527-571. | MR 1286918 | Zbl 0804.49013

[8] M.P. Bendsøe, Optimization of Structural Topology, Shape and Material. Springer Verlag, Berlin Heidelberg (1995). | MR 1350791 | Zbl 0822.73001

[9] M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69 (1999) 635-654. | Zbl 0957.74037

[10] É. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093-1121. | MR 1898515 | Zbl 1001.49017

[11] B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. | MR 1771782 | Zbl 0961.65062

[12] B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. | MR 1745759 | Zbl 0995.74057

[13] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I - interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.

[14] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. | Numdam | MR 1700035 | Zbl 0947.65076

[15] B.-C. Chen and N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37 (2001) 57-70. | Zbl 0962.74049

[16] L.Q. Chen and J. Shen, Application of semi implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108 (1998) 147-158. | Zbl 1017.65533

[17] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, New York (2000). | MR 1763123 | Zbl 0956.74001

[18] A. Cherkaev and R.V. Kohn, Topics in the mathematical modelling of composite materials. Birkhäuser Boston Inc., Boston, MA (1997). | MR 1493036 | Zbl 0870.00018

[19] P.G. Ciarlet, Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity. | MR 936420 | Zbl 0648.73014

[20] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[21] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English Edition (1999). Translated from the French. | MR 1727362 | Zbl 0939.49002

[22] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). | MR 1158660 | Zbl 0804.28001

[23] D. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. | MR 1247174 | Zbl 0853.73060

[24] K.J. Falconer, The geometry of fractal sets. Cambridge University Press, Cambridge (1986). | MR 867284 | Zbl 0587.28004

[25] H. Federer, Geometric measure theory. Springer-Verlag, New York (1969). | MR 257325 | Zbl 0176.00801

[26] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). | MR 775682 | Zbl 0545.49018

[27] R.B. Haber, C.S. Jog and M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on the perimeter. Struct. Optim. 11 (1996) 1-12.

[28] V.B. Hammer and N. Olhoff, Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19 (2000) 85-92.

[29] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. | MR 820342 | Zbl 0621.49008

[30] R.V. Kohn and G. Strang, Optimal design in elasticity and plasticity. Internat. J. Numer. Methods Engrg. 22 (1986) 183-188. | MR 831844 | Zbl 0593.73091

[31] P.H. Leo, J.S Lowengrub and H.J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (1998) 2113-2130.

[32] L. Modica and S. Mortola. Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. | MR 473971 | Zbl 0364.49006

[33] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. | MR 445362 | Zbl 0356.49008

[34] M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. | MR 1728172 | Zbl 0953.49024

[35] R.H. Nochetto, S. Rovida, M. Paolini and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by mean curvature and related topics (Trento, 1992) de Gruyter, Berlin (1994) 124-149. | MR 1277396 | Zbl 0814.35051

[36] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. | MR 1843648 | Zbl 1056.74061

[37] M. Paolini and C. Verdi, Asympto. and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptot. Anal. 5 (1992) 553-574. | MR 1169358 | Zbl 0757.65078

[38] J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. | MR 1783559 | Zbl 0994.74082

[39] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). | MR 711964 | Zbl 0547.73026

[40] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | MR 1014685 | Zbl 0692.46022