We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.
Classification : 47D07, 35K90
Mots clés : stochastic systems, reaction-diffusion equations, invariant measures
@article{COCV_2002__8__587_0, author = {Prato, Giuseppe Da}, title = {Asymptotic behaviour of stochastic quasi dissipative systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {587--602}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002038}, zbl = {1064.47047}, mrnumber = {1932964}, language = {en}, url = {www.numdam.org/item/COCV_2002__8__587_0/} }
Prato, Giuseppe Da. Asymptotic behaviour of stochastic quasi dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002) , pp. 587-602. doi : 10.1051/cocv:2002038. http://www.numdam.org/item/COCV_2002__8__587_0/
[1] Large deviations and the Malliavin Calculus. Birkhäuser (1984). | MR 755001 | Zbl 0537.35003
,[2] Opérateurs maximaux monotones. North-Holland, Amsterdam (1973).
,[3] A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994) 349-367. | Zbl 0817.47048
,[4] Second order PDE's in finite and infinite dimensions. A probabilistic approach. Springer, Lecture Notes in Math. 1762 (2001). | Zbl 0983.60004
,[5] Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients. SIAM J. Control Optim. 39 (2001) 1779-1816. | MR 1825865 | Zbl 0987.60073
,[6] Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem. SIAM J. Control Optim. (to appear). | Zbl 0992.60066
,[7] Stochastic evolution equations by semigroups methods. Centre de Recerca Matematica, Barcelona, Quaderns 11 (1998).
,[8] Invariant measures of non symmetric dissipative stochastic systems. Probab. Theor. Related Fields (to appear). | MR 1918538
, and ,[9] Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. | MR 1313205 | Zbl 0817.60081
, and ,[10] Singular dissipative stochastic equations in Hilbert spaces, Preprint. S.N.S. Pisa (2001). | MR 1936019 | Zbl 1036.47029
and ,[11] Stochastic equations in infinite dimensions. Cambridge University Press (1992). | MR 1207136 | Zbl 0761.60052
and ,[12] Ergodicity for Infinite Dimensional Systems. Cambridge University Press, London Math. Soc. Lecture Notes 229 (1996). | MR 1417491 | Zbl 0849.60052
and ,[13] Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Accad. Lincei. 8 (1997) 183-188. | Zbl 0910.93025
and ,[14] Markov Processes, Vol. I. Springer-Verlag (1965). | Zbl 0132.37901
,[15] Stochastic flows on Riemannian manifolds, edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis II (1992) 33-72. | MR 1187985 | Zbl 0758.58035
,[16] Controlled Markov processes and viscosity solutions. Springer-Verlag (1993). | MR 1199811 | Zbl 0773.60070
and ,[17] Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 10 (1967) 508-520. | MR 226230 | Zbl 0163.38303
,[18] Probability measures on metric spaces. Academic Press (1967). | MR 226684 | Zbl 0153.19101
,