Univalent σ-harmonic mappings : applications to composites
ESAIM: Control, Optimisation and Calculus of Variations, Volume 7 (2002), p. 379-406

This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional G-closure problems in conductivity.

DOI : https://doi.org/10.1051/cocv:2002060
Classification:  35B27,  74A40,  74Q20,  30C62
Keywords: effective properties, harmonic mappings, composite materials, quasiregular mappings
@article{COCV_2002__7__379_0,
     author = {Alessandrini, Giovanni and Nesi, Vincenzo},
     title = {Univalent $\sigma $-harmonic mappings : applications to composites},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     pages = {379-406},
     doi = {10.1051/cocv:2002060},
     zbl = {1024.30010},
     mrnumber = {1925034},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2002__7__379_0}
}
Alessandrini, Giovanni; Nesi, Vincenzo. Univalent $\sigma $-harmonic mappings : applications to composites. ESAIM: Control, Optimisation and Calculus of Variations, Volume 7 (2002) pp. 379-406. doi : 10.1051/cocv:2002060. http://www.numdam.org/item/COCV_2002__7__379_0/

[1] G. Alessandrini and R. Magnanini, Elliptic equation in divergence form, geometric critical points of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994) 1259-1268. | MR 1289138 | Zbl 0809.35070

[2] G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings. Arch. Rational Mech. Anal. 158 (2001) 155-171. | MR 1838656 | Zbl 0977.31006

[3] G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings: Connections with quasiconformal mappings, Quaderni Matematici II serie, 510 Novembre 2001. Dipartimento di Scienze Matematiche, Trieste. J. Anal. Math. (to appear). | MR 2001070

[4] G. Allaire and G. Francfort, Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 301-339. | Numdam | MR 1629349 | Zbl 0913.49008

[5] G. Allaire and V. Lods, Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 439-466. | MR 1693645 | Zbl 0958.49008

[6] K. Astala, Area distortion of quasiconformal mappings. Acta Math. 173 (1994) 37-60. | MR 1294669 | Zbl 0815.30015

[7] K. Astala and M. Miettinen, On quasiconformal mappings and 2-dimensional G-closure problems. Arch. Rational Mech. Anal. 143 (1998) 207-240. | MR 1649998 | Zbl 0912.65106

[8] K. Astala and V. Nesi, Composites and quasiconformal mappings: New optimal bounds. University of Jyväskylä, Department of Mathematics, Preprint 233, Ottobre 2000, Jyväskylä, Finland. Calc. Var. Partial Differential Equations (to appear). | MR 2020365 | Zbl 1106.74052

[9] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | MR 906132 | Zbl 0629.49020

[10] P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001). | MR 1871388 | Zbl pre01780879

[11] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001

[12] L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience, New York (1964). | MR 163043 | Zbl 0126.00207

[13] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali. Cremonese, Roma (1955) 111-138. | MR 76981 | Zbl 0067.32503

[14] A. Cherkaev, Necessary conditions technique in optimization of structures. J. Mech. Phys. Solids (accepted).

[15] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, Berlin, Appl. Math. Sci. 140 (2000). | MR 1763123 | Zbl 0956.74001

[16] A. Cherkaev and L.V. Gibiansky, Extremal structures of multiphase heat conducting composites. Int. J. Solids Struct. 18 (1996) 2609-2618. | Zbl 0901.73050

[17] A.M. Dykhne, Conductivity of a two dimensional two-phase system. Soviet Phys. JETP 32 (1971) 63-65.

[18] A. Eremenko and D.H. Hamilton, The area distortion by quasiconformal mappings. Proc. Amer. Math. Soc. 123 (1995) 2793-2797. | MR 1283548 | Zbl 0841.30013

[19] G. Francfort and G.W. Milton, Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media. J. Stat. Phys. 46 (1987) 161-177. | MR 887243

[20] G. Francfort and F. Murat, Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, in Non-classical continuum mechanics, edited by R.J. Knops and A.A. Lacey. Cambridge, London Math. Soc. Lecture Note Ser. 122 (1987) 197-212. | MR 926503 | Zbl 0668.73018

[21] L.V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. | MR 1737888 | Zbl 0989.74060

[22] Y. Grabovsky, The G-closure of two well ordered anisotropic conductors. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 423-432. | MR 1226610 | Zbl 0785.49015

[23] Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. | Zbl 0111.41401

[24] J. Keller, A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964) 548-549. | MR 161559 | Zbl 0129.44001

[25] W. Kohler and G. Papanicolaou, Bounds for the effective conductivity of random media. Springer, Lecture Notes in Phys. 154, p. 111. | MR 674963 | Zbl 0496.73002

[26] R.V. Kohn, The relaxation of a double energy. Continuum Mech. Thermodyn. 3 (1991) 193-236. | MR 1122017 | Zbl 0825.73029

[27] R.V. Kohn and G.W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media, edited by J.L. Ericksen, D. Kinderlehrer, R. Kohn and J.-L. Lions. Springer, New York (1986) 97-125. | MR 859413 | Zbl 0631.73012

[28] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. | MR 820342 | Zbl 0621.49008

[29] O. Lehto and K.I. Virtanen, Quasiconformal Mappings in the Plane. Springer, Berlin (1973). | MR 344463 | Zbl 0267.30016

[30] K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984) 71-87. | MR 781086 | Zbl 0564.73079

[31] K.A. Lurie and A.V. Cherkaev, G-closure of a set of anisotropically conducting media in the two-dimensional case. J. Optim. Theory Appl. 42 (1984) 283-304. | MR 737972 | Zbl 0504.73060

[32] K.A. Lurie and A.V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite. J. Optim. Theory Appl. 46 (1985) 571-589. | Zbl 0545.73005

[33] K.S. Mendelson, Effective conductivity of a two-phase material with cylindrical phase boundaries. J. Appl. Phys. 46 (1975) 917.

[34] G.W. Milton, Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys. A 26 (1981) 125-130.

[35] G.W. Milton, On characterizing the set of possible effective tensors of composites: The variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63-125. | MR 1024190 | Zbl 0751.73041

[36] G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. | MR 969257 | Zbl 0672.73012

[37] G.W. Milton and V. Nesi, Optimal G-closure bounds via stability under lamination. Arch. Rational Mech. Anal. 150 (1999) 191-207. | MR 1738117 | Zbl 0941.74012

[38] S. Müller, Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). | MR 1731640 | Zbl 0968.74050

[39] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981) 69-102. | Numdam | MR 616901 | Zbl 0464.46034

[40] F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de L'Homogénéisation : Théorie et Applications en Physique. Eyrolles (1985) 319-369.

[41] V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 633-679. | MR 1237607 | Zbl 0791.49042

[42] V. Nesi, Bounds on the effective conductivity of 2d composites made of n3 isotropic phases in prescribed volume fractions: The weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1219-1239. | MR 1363001 | Zbl 0852.35016

[43] V. Nesi, Quasiconformal mappings as a tool to study the effective conductivity of two dimensional composites made of n2 anisotropic phases in prescribed volume fraction. Arch. Rational Mech. Anal. 134 (1996) 17-51. | MR 1392308 | Zbl 0854.30015

[44] K. Schulgasser, Sphere assemblage model for polycrystal and symmetric materials. J. Appl. Phys. 54 (1982) 1380-1382.

[45] K. Schulgasser, A reciprocal theorem in two dimensional heat transfer and its implications. Internat. Commun. Heat Mass Transfer 19 (1992) 497-515.

[46] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa (3) 21 (1967) 657-699. | Numdam | Zbl 0153.42103

[47] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968) 571-597. | Numdam | MR 240443 | Zbl 0174.42101

[48] L. Tartar, Estimations de coefficients homogénéisés. Springer, Berlin, Lecture Notes in Math. 704 (1978) 364-373. English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, 9-20. Birkhäuser, Progr. Nonlinear Differential Equations Appl. 31. | MR 540123 | Zbl 0920.35018

[49] L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium (Paris 1983), edited by P. Kree. Pitman, Boston (1985) 168-187. | Zbl 0586.35004

[50] L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, in Heriot-Watt Symposium, Vol. IV, edited by R.J. Knops. Pitman, Boston (1979) 136-212. | Zbl 0437.35004

[51] L. Tonelli, Fondamenti di calcolo delle variazioni. Zanichelli, Bologna (1921). | JFM 48.0581.09

[52] I.N. Vekua, Generalized Analytic Functions. Pergamon, Oxford (1962). | MR 150320 | Zbl 0100.07603

[53] V.V. Zhikov, Estimates for the averaged matrix and the averaged tensor. Russian Math. Surveys (46) 3 (1991) 65-136. | MR 1134090 | Zbl 0751.15014