We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.
Keywords: exact controllability, spectral controllability, approximate controllability, simultaneous controllability, string equation, boundary control, Riesz basis
@article{COCV_2001__6__259_0, author = {Avdonin, Sergei and Tucsnak, Marius}, title = {Simultaneous controllability in sharp time for two elastic strings}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {259--273}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1816075}, zbl = {0995.93036}, language = {en}, url = {http://www.numdam.org/item/COCV_2001__6__259_0/} }
TY - JOUR AU - Avdonin, Sergei AU - Tucsnak, Marius TI - Simultaneous controllability in sharp time for two elastic strings JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 259 EP - 273 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2001__6__259_0/ LA - en ID - COCV_2001__6__259_0 ER -
%0 Journal Article %A Avdonin, Sergei %A Tucsnak, Marius %T Simultaneous controllability in sharp time for two elastic strings %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 259-273 %V 6 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2001__6__259_0/ %G en %F COCV_2001__6__259_0
Avdonin, Sergei; Tucsnak, Marius. Simultaneous controllability in sharp time for two elastic strings. ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), pp. 259-273. http://www.numdam.org/item/COCV_2001__6__259_0/
[1] Simultaneous controllability of several elastic strings, in Proc. CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems. Perpignan, France, June 19-23 (2000).
,[2] Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995). | MR | Zbl
and ,[3] Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital. B 2 (1999) 33-63. | MR | Zbl
, and ,[4] Généralisation d'un théorème de Beurling et application à la théorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 281-286. | Zbl
, and ,[5] An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1965). | MR | Zbl
,[6] A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. | MR | Zbl
and ,[7] Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. | MR | Zbl
, and ,[8] On a theorem of Ingham. J. Fourier Anal. Appl. 3 (1997) 577-582. | MR | Zbl
, and ,[9] Uniform Distribution of Sequences. John Wiley & Sons, New York (1974). | MR | Zbl
and ,[10] Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988). | MR | Zbl
and ,[11] Introduction to Diophantine Approximations. Addison Wesley, New York (1966). | MR | Zbl
,[12] Controlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, Volume 1. Masson, Paris (1988).
,[13] A Treatise on the Shift Operator. Moscow, Nauka, 1980 (Russian); Engl. Transl., Springer, Berlin (1986).
,[14] Basicity of an exponential systems and Muckenhoupt's condition. Dokl. Akad. Nauk SSSR 247 (1979) 37-40 (Russian); English transl. in Soviet Math. Dokl. 20 (1979) 655-659. | Zbl
,[15] Real and complex analysis. McGraw-Hill, New York (1987). | MR | Zbl
,[16] The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199-229. | Zbl
,[17] Simultaneous exact controllability and some applications. SIAM J. Control Optim. 38 (2000) 1408-1427. | MR | Zbl
and ,[18] An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). | MR | Zbl
,