@article{COCV_2000__5__71_0, author = {Ben Belgacem, Hafedh}, title = {Relaxation of singular functionals defined on {Sobolev} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {71--85}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1745687}, zbl = {0936.49008}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__71_0/} }
TY - JOUR AU - Ben Belgacem, Hafedh TI - Relaxation of singular functionals defined on Sobolev spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 71 EP - 85 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__71_0/ LA - en ID - COCV_2000__5__71_0 ER -
Ben Belgacem, Hafedh. Relaxation of singular functionals defined on Sobolev spaces. ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 71-85. http://www.numdam.org/item/COCV_2000__5__71_0/
[1] A variational definition of the strain energy for an elastic string. J. Elasticity 25 ( 1991) 137-148. | MR | Zbl
, and ,[2] Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 ( 1984) 125-145. | MR | Zbl
and ,[3] Dimension reduction in variational problems, asymptotic development in Γ-convergence, and thin structures in elasticity. Asymptot. Anal 9 ( 1994) 61-100. | MR | Zbl
, and ,[4] Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 ( 1977) 337-403. | MR | Zbl
,[5] W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 ( 1984) 225-253. | MR | Zbl
and ,[6] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 ( 1987) 13-52. | MR | Zbl
and ,[7] Une méthode de Γ-convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris. Sér. I Math. ( 1996) 845-849. | MR | Zbl
,[8] Modélisation de structures minces en élasticité non linéaire. Thèse de l'Université Pierre et Marie Curie, Paris ( 1996).
,[9] The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128( 1998) 463-479. | MR | Zbl
, and ,[10] Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. North-Holland, Amesterdam ( 1988). | MR | Zbl
,[11] Quasiconvexity and relaxation of non convex problems in the calculus of variations. J. Funct. Anal. 46 ( 1982) 102-118. | MR | Zbl
,[12] Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl. 64 ( 1985) 403-438. | MR | Zbl
,[13] Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 ( 1989. | MR | Zbl
,[14] General existence theorems for Hamilton-Jacobi equations in the scalar and vectoriel cases. Acta Math. 178 ( 1997) 1-37. | MR | Zbl
and ,[15] Analyse convexe et problèmes variationnels. Dunod, Paris ( 1974). | MR | Zbl
and ,[16] The lower quasiconvex envelope of the stored energy for an elastic crystal. J. Math. Pures Appl. 67 ( 1988) 175-195. | MR | Zbl
,[17] Variational techniques for problems in materials science. Progr. Nonlinear Differential Equations Appl. 25 ( 1996) 162-175. | MR | Zbl
,[18] Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré 14 ( 1997) 309-338. | Numdam | MR | Zbl
and ,[19] Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc. 9 ( 1983) 211-214. | MR | Zbl
and ,[20] Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 ( 1986) 113-137, 139-182, 353-377. | MR | Zbl
and ,[21] Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. ( 1993) 221-226. | MR | Zbl
and ,[22] The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl. 74 ( 1995) 549-578. | MR | Zbl
and ,[23] Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 ( 1985) 1-28. | MR | Zbl
,[24] On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3 ( 1986) 391-409. | Numdam | MR | Zbl
,[25] Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math. 2 ( 1952) 25-53. | MR | Zbl
,[26] Multiple Integrals in the Calculus of Variations. Springer, Berlin ( 1966). | MR | Zbl
,[27] Variational models for microstructure and phase transitions, to appear in Proc. C.I.M.E. summer school "Calculus of variations and geometrie evolution problems". Cetraro ( 1996). | MR | Zbl
,[28] Large deformation isotropic elasticity: On the correlation of the theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. London Ser. A 328 ( 1972). | Zbl
,[29] Convex Analysis. Princeton University Press ( 1970). | MR | Zbl
,[30] Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. IV, R.J. Knops Ed. Pitman, London ( 1979). | MR | Zbl
,[31] Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. ( 1993) 435-439. | MR | Zbl
,