Optimal control of obstacle problems : existence of Lagrange multipliers
ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 45-70.
@article{COCV_2000__5__45_0,
     author = {Bergounioux, Ma{\"\i}tine and Mignot, Fulbert},
     title = {Optimal control of obstacle problems : existence of {Lagrange} multipliers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {45--70},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     mrnumber = {1745686},
     zbl = {0934.49008},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2000__5__45_0/}
}
TY  - JOUR
AU  - Bergounioux, Maïtine
AU  - Mignot, Fulbert
TI  - Optimal control of obstacle problems : existence of Lagrange multipliers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
SP  - 45
EP  - 70
VL  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2000__5__45_0/
LA  - en
ID  - COCV_2000__5__45_0
ER  - 
%0 Journal Article
%A Bergounioux, Maïtine
%A Mignot, Fulbert
%T Optimal control of obstacle problems : existence of Lagrange multipliers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 45-70
%V 5
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_2000__5__45_0/
%G en
%F COCV_2000__5__45_0
Bergounioux, Maïtine; Mignot, Fulbert. Optimal control of obstacle problems : existence of Lagrange multipliers. ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 45-70. http://www.numdam.org/item/COCV_2000__5__45_0/

[1] D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim. 38 ( 1998) 121-140. | MR | Zbl

[2] V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math. 100 ( 1984). | MR | Zbl

[3] M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36 ( 1997) 147-172. | MR

[4] M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim. 36 ( 1998) 273-289. | MR | Zbl

[5] M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78 ( 1993) 493-521. | MR | Zbl

[6] M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal. 5 ( 1998) 329-351. | MR | Zbl

[7] M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans ( 1998).

[8] M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim. 37 ( 1999) 1273-1290. | MR | Zbl

[9] A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math. 121 ( 1984) 478-487. | MR

[10] A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim. 25 ( 1987) 576-582. | MR | Zbl

[11] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 ( 1973) 17-31. | MR | Zbl

[12] W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math. 18 ( 1992). | MR | Zbl

[13] K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim. 21 ( 1990) 223-241. | MR | Zbl

[14] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear. | MR | Zbl

[15] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 5 ( 1976). 81-110. | MR | Zbl

[16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 ( 1976) 130-185. | MR | Zbl

[17] F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 ( 1984) 466-476. | MR | Zbl

[18] F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 ( 1984) 277-280. | MR | Zbl

[19] D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim. 17 ( 1996) 1005-1028. | MR | Zbl

[20] L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 ( 1993) 291-312. | MR | Zbl

[21] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 ( 1979) 49-62. | MR | Zbl