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ON SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
INVOLVING THE “1”-LAPLACIAN AND CRITICAL SOBOLEV EXPONENT

FRANCOISE DEMENGEL!

Abstract. Let 2 be a smooth bounded domain in R™, n > 1, let @ and f be continuous functions on

2, 1 = L. We are concerned here with the existence of solution in BV'(£2), positive or not, to the
problem:

0.Vu= |Vu| in Q

—div o + a(z)sign u= flu|'" ~2u
u is not identically zero, —o.n(u) = |u| on 9.

This problem is closely related to the extremal functions for the problem of the best constant of W' ()
into LN-1(9).
Résumé. On s’intéresse aux solutions dans BV (2), non identiquement nulles au probléme

—div(o + a(x)sign u = f|u|1*_2u

o.Vu = |Vu|
—o.fu = |u| sur 99

(o1 © est un ouvert borné régulier de R".)
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INTRODUCTION

Let €2 be a bounded open subset of R"™, whose boundary is piecewise C!, let @ and f be smooth (at least
continuous on ), f being positive somewhere, a being such that there exists some constant ¢ > 0 such that for
all w e W (),

|Vl o) —|—/Qa|u| > cllullwr1 (- (1.1)

We look for u € Wy (), which satisfies:
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—div o + a(x) sign u= flu|'" "2u
o€ L>®(Q,R"),
o.Vu=|Vu| (12)

u is not identically zero, u = 0 on 92
where 1* = —Z= is the critical Sobolev exponent for the embedding of W'*(€2) into L?(€), and sign u denotes
some L! function defined as:
sign w u = |u|. (1.3)

Later we shall impose to u in (1.2) to be non negative, and we shall replace sign u by sign™ u defined as
sign™ wu = u'.

In order to find solutions to (1.2) one can consider the following minimisation problem

inf /|Vu|+/a(x)|u|. (1.4)
{uewy Q). fq flult* =1} Jo Q

We denote by A(Q,a, f) the value of this infimum. Indeed, if v € VVO1 1(Q) realizes the minimum defined in
(1.4), it is a non trivial solution of

—div o + a(z) sign v = A\(Q, a, f) flv|'" %0

o€ L>*(Q,R"),
0.Vv= |V
v =10 on 90

then u = (A(Q, a, f))ﬁv satisfies (1.2).

In a previous paper [6] (see also [13]), we were concerned with the existence of solutions u € W1?(£2), positive
or not, to the problem

—div (|Vu[P=2Vu) + a(@)[ulP"2u = flul" 2u (1.5)
u is not identically zero ,u = 0 on 9f) '
where p €]1,n[, p* = n”—ij, and a and f are two smooth functions on Q, f is positive somewhere and a is such

that there exists some constant C' such that
[ 1Vl + alul? = Cllullwo o
Q

Let us note that the expression |Vu|P~2Vu makes sense when p > 1, as the function o such that 0.Vu = |[Vul[P
belongs to LP/ p (©2). To obtain solutions, we introduced the variational problem

Ap(Q,a, f) = inf /Q|Vu|p—|—/ﬂa(x)|u|p

{uew? (@), fy flulr*=1}
and we proved by using a method of concentration that there exists a non zero solution, as soon as

M(Q,a, f)  sup f(2) T EE(n,p)? <1,
2. /(2)>0}

where K (n,p) denotes the inverse of the best constant for the embedding from WP(Q) into LP" (Q). Since
the method employed in [6] cannot be applied to our problem, we shall approximate it by a problem analogous
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to (1.5), with a right hand side f|u|'"~2u, and let p tend to 1. Of course, passing to the limit when p — 1
will lead us to consider BV (Q) in place of W11(Q), and to define several things, as 0.Vu when Vu is only a
measure and o € L*°(£2), and to give sense to the trace of u on the boundary of 99 when u is only in BV ().
As the “limit” will be obtained by weak convergence in BV (), we shall be led to overcome the lack of the
weak continuity of the trace map by introducing the concept of “relaxed problem”: these problems are used
in the theory of minimal surfaces and plasticity, and with a slightly different meaning, in the theory of weakly
harmonic functions. Here the relaxed problem is defined as:

inf {/ |Vu|+/ |u|+/a|u|} (1.6)
{ueBV(Q), [, flul*=1} UJ@ a0 Q

and we shall see later that it has the same infimum as (1.4).
As an illustration of what may occur, let us consider the problem of the best constant for the Sobolev
embedding of W11(Q) into L' (Q2), which corresponds to the case where a = 0 and f = 1. Let us define

A(Q,0,1) = inf /|Vu|
{uewy (@), fg lul" =1} Jo

‘We have

koo (o o)

()\(Q,O,l)) - K(TL,]_,Q) - sup 7 1o, (° (17)

{uewy t (@)} fQ [Vl

This problem has been studied by many authors (see [1,14], also [4] and others...). They proved that for any
open set Q of R, K(n,1,Q) = K(n,1,R™) (= K(n, 1) for simplicity in the sequel) and that the infimum is never
achieved on W11(Q), but in some sense, it is achieved on BV (£2), since every characteristic function of ball whose
closure is included in © realizes this supremum. As a consequence, A(Q2,0,1) = n!=1/7(S, _1|» = K(n,1)~%. To
be more correct, the characteristic functions of balls are solutions of (1.8) defined as:

inf Vu 1.8
{ueBV(Q), u=0 on 09, [, |ul*=1} {/Q| |} (18)

inf {/ |Vu|—|—/ |u|}~
{ueBV(Q), [ lul*=1} L/a o0

This infimum has also the value K(n,1)~!, as one can see by using approximation of functions in BV (Q) by
regular functions for a topology related to the narrow convergence of bounded measures, which will be precised
later.

In order to give sense to equations (1.2), when w is only in BV (), we need to define 0.Vu when o €
L>*(Q,R™) and u € BV (Q) (this is possible as soon as div o € L™(Q)):

Suppose that ¢ € D(Q), that w € BV (Q), o0 € L>®(Q) and div o € L™(2), and define

and also of its relaxed form:

(0.Vu, ) = —/ div oup — / o.Vu.
Q Q

Then
[(0.Vu, p)| < [oloo([Vul, |p])- (1.9)
In particular, 0.Vu is a bounded measure on Q) which is absolutely continuous with respect to |Vu|.
We now give the results of this paper: for simplicity in the sequel we drop the terms €2, a, and f in the
definition of A(,a, f). Moreover, we assume that {2 is invariant under some subgroup G of the orthogonal
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group on R™, O(R"), as well as a and f. Since every G-invariant function is also G-invariant one can assume
that G is compact. We denote by Og(x) the orbit of z under G, and we are looking for a solution of (1.2)
which is G-invariant. Of course, whenever {2 does not present any symmetries, one must take G = Id and
Oc¢(x) = {z}. The result is the following:

Theorem 1. Assume that S is invariant under some group G of isometries of R™, as well as a and f, that f
is positive somewhere, that a satisfies (1.1). Define

AG) = inf {/ |Vl +/ a|u|}~ (1.10)
{uEW&’l(Q), u is Gfinvariant,fﬂf\uP*:l} Q Q

Then, if for all x € €, )\(G)f(:lc)%K(n, 1) (Ca’l”dOg(l‘))%l < 1, there exists a solution to the relazed problem:

\NG) = inf {/ |Vu|+/ |u|+/a|U|}- (1.11)
{uEBV(Q),u is G—invariant [, f|u\1*=1} Q []9] Q

Moreover this solution verifies the P.D.FE.

—dive + a(z) sign u= \(G) f|u|'" ~2u
o€ L*®(Q,R")), o.Vu=|Vu|
on(u) = —|u| on 09
u # 0,u is G — invariant.

(1.12)

Finally, we have another theorem which gives sufficient conditions when 2 is invariant under some symmetries,
to get nodal solutions (i.e. which change sign): we assume now that G is some subgroup of O(R") and s is
some involution, such that G and s commute weakly: (s(Og(z)) = Og(s(x)) for all z € Q. We then have the
following result.

Theorem 2. Suppose that G is some subgroup of O(R™), that s is an involution such that s and G commute
weakly. Let H =[G, s] be the group generated by G and s. Assume that Q, a and f are invariant under H, that
a and f are continuous, f being positive somewhere and a satisfying (1.1). Define

Ay = . ~inf {/ |Vu|+/ a|u|}
{uEWO’ (Q),u is G—invariant uoszfu} Q Q

then, if for all z € Q
—1 n—1
(cardOp(z))™ f(z) ™ A& K(n,1) < 1,
then there exists w € BV () which is a solution of the relazed problem

inf {/ |Vu|—|—/ |u|+/a|u|}~ (1.13)
{ueBV(Q),u is G—invariant ,uos=—u} Q 90 Q

Moreover u solves the partial differential equation:

—divo + a(z) sign u= g flul'" %u
o€ L*(Q,R"), o.Vu = |Vu|.
on(u) = —|ul on 0N
u is G — invariant, uo s = —u.

(1.14)

The plan of this paper is as follows: in the first section, we give an existence theorem for (1.11) and (1.12),
by using both the theory of concentration compactness and the method employed in [6]. The solution belongs
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to BV (Q), satisfies (1.11) but not necessarily the condition v = 0 on 9. Let us point out that we have no
regularity result on w. This will probably be a difficult task, which will be the object of a future work.

In the second section, we use test functions to prove that the sufficient condition proposed previously can
be traduced by very simple conditions on a and f and their derivatives on a point zo € {2 where f achieves its
maximum and then to conclude to the existence of a solution.

In the third section, we give specific examples.

1. EXISTENCE’S THEOREMS
1.1. Preliminary results on BV functions
Let us recall the definition of the space
BV(Q) ={ue L'(Q),Vue M (Q)} (1.15)

where (2 is an open set of R", M'(Q) denotes the space of bounded measures on €2, i.e. the dual space of Cp(2),
the space of continuous bounded functions on 2. Of course, endowed with the norm

BV () is a Banach space. The main results about BV () that we need to know here are the following: (the
interested reader can consult Giusti [8] for more complete results on BV functions.)

- BV(Q) is continuously embedded in L(Q2), for ¢ < 25 = 1*, and these embeddings are compact for
q< ;25 =1~
Other topologies than the topology of the norm introduced above, are of importance:

- The weak topology, which can be defined as follows:

up, — u in BV () weakly
if
up — w in L1()
{Vun — Vu in M1(Q) vaguely.
- The narrow topology, defined by

Up — w in L1(2)
Vu, — Vu in M(Q) weakly

/Q|Vun|—>fQ|Vu|.

Let us note that the third condition in (1.16), jointed to the first one, implies the second one and also the
vague convergence of |Vu,| towards |Vul.

- There exists a map from BV (Q) into L*(99), which is linear and continuous for the strong topology and
coincides with the restriction on the boundary for functions in BV () NC(Q). This map is not continuous
for the weak topology, but it is continuous for the narrow topology. (cf. [5])

- There exists some density result of W11(Q) N C>(Q) into BV (Q) for the narrow topology defined above:

For u € BV (Q), there exists u,, € W1(Q) N C*°(Q), such that

(1.16)

Um — U E Lq(Q), Vg < n—1

/Q|Vum|—>/Q|Vu| (1.17)

Uy, = u on Of2.
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Another density result is the following;:
Suppose that Q) is an open set in R™ whose boundary is piecewise C', and that u € BV (). Then, there exists
a sequence u, € C1(Q), such that

Uy, — u in BV (Q) weakly

/|Vun|—>/ |Vu|+/ lul. (117 bis)
Q Q o0

As a corollary of this result, one obtains that the inequality in (1.1) can be extended to functions of BV (2) in
the following manner: There exists some constant C' > 0 such that for all u € BV (Q)

[vas [l [ alul = Cllullpve.
Q o0 Q

The proof of this approximation result is postponed in the fifth step in part II, since it is a key ingredient to
prove that

inf(1.11) = inf(1.10).
We shall also need a generalization of Green’s formula, which gives some sense to 0.Vu when o € L*°(2) and
u € BV (), as soon as div o € L™(2). (This result has already been announced in the introduction.)

Proposition 1. Suppose that o € L>®(Q,R"™), divo € L™(Q), andu € BV (). Then there exists a distribution,
denoted as 0.NVu, which is defined as follows:

(0-Vu,p) = —/Qu(div) op — /Qua.Vgo (1.18)

for ¢ € C>(Q).
The distribution 0.Vu is a bounded measure which satisfies:

lo.Vu| < |0|so|Vul. (1.19)

In addition, if ¢ € C(Q) NCL(), the following Green’s Formula holds

(Vu-o,p0) = —/ u(div o)p — / o-Vou —|—/ o.7up.
Q Q a0
- Suppose that U € BV (RYN), and define for u € BV(Q) the function i as

- Ju in Q
YU imn RN -0

Then @ € BV(RY) and
Vu = Vuxaq + VUX{RNfﬁ} + (U - U)|9589

where Ujq and ujq denote the trace of U and u on 98). (cf. [8, 15, 16]), daq denotes the uniform Dirac measure
on OQ and 71 is the unit outer normal to O). Moreover, one can define the measure o - Vi on Q by the formula

(0-Va) = (0 Vu)xa + 0.7(U — u)dsa
and o - Vi is absolutely continuous with respect to |Vu|, with the inequality
o V] < |orloo V.

We end this section by enouncing a lemma which is classical in the theory of BV -functions:
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Lemma 1. Assume that 2 is an open set of R™, n > 2, and that uw € BV (). Then, if xo € Q, |[Vu|({zo}) = 0.

Remark. Lemma 1 is a mere consequence of a stronger result which says that |Vu|(A) = 0 as soon as the
(n-1)-Hausdorff measure of A is zero.

A proof of this stronger result can be found in [8]. We give here an elementary one.
Proof of Lemma 1. We must prove that

lim IVu| =0
r—0 C(a:o,'r)

where C(zg,r) denotes the open n-cube |zg — r, g + r[". We write

[Vul(C(zo,7)) = / |[u]| (2, 0)da’

Vu|+/ Vu|+/
{C(zo,r)N{zn>0}} {C(zo,r)N{z,<0}} {C(zo,r)N{x,=0}}

where [u] denotes the jump of the trace of u on the hyperplan x, = 0. Since it belongs to L'(2 N {x, = 0}),
one has

lim [[u]|(2',0)dx" = 0.
r—0 C(zo,r)N{z,=0}
On another hand, |Vu| being a bounded measure on

MHO/ V| < MHO/ Vu| =0
C(zo,r)N{z,>0} QN{r>xz,>0}

and

T, o / V| < Tmy o / V| = 0.
C(zo,r)N{—r<z,<0} C(zo,r)N{z, <0}

This yields the desired conclusion.

1.2. Proof of Theorem 1

A first step when one tries to prove Theorem 1 consists in approximating (1.11) with the following minimiza-
tion problem

A(G) = inf {/ |vu|1+€+/ a(x)|u|1+€}, (1.20)
{uEWOI’H'E(Q),uo7’=u,V7’EG7 fnf(x)|u\1*=1} Q Q

where € is some positif parameter. This problem can be solved by classical methods in the calculus of variations,
since 1* is strictly less than the critical power for the embedding of W11+¢(Q) into L9(€). Let us note that a
solution of (1.20) verifies: Vo € D(Q, R) such that ¢ o7 = ¢, V7 € G,

- / div oup + / ol e = A (G) / Fluel . (1.21)
Q Q Q

In order to prove that equation (1.21) may be extended to every ¢ € D(Q) , suppose by contradiction that
there exists ¢ € D(£2) such that

—/ div ocp —|—/ alue|  ucp — /\g(G)/ Fluel* 2ucp = a > 0. (1.22)
Q Q Q
Then for all T € G,

- [avopors [aulTupor =M@ [ flul Pupor =a
Q Q Q
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Using the existence of a Haar measure du on G, the G-invariance of 2, a and f, and integrating this with
respect to the Haar measure du on G one obtains

—/ div oepa —l—/ a|ue|6*1uggog - Ae(G)/ f|u6|1**2uegpg e
Q Q Q

Jo pordu(r)

Tan) Since ¢ is G-invariant and compactly supported in €2, one obtains a contradiction
G

where pg =
with (1.21).

As a consequence, u, is a non trivial solution of

—divo, + a(@)|ue| e = A f(2)|ue| " ~2u, in Q
oe = |Vue| 'V, (1.23)
uc € Wotte(Q).

Second step
Proposition 2.
im0\ (G) = X < A(G).
Proof. Let I.(v) = [, |[Vo[**¢ + [, a(x)v]**=, and let § > 0 be given and v € C°(2) be G-invariant, such that
Jo flo]™* =1 and [, |[Vo|+ [, a(x)|v] < X+ 6. For e small enough, |I.(v) — Io(v)| < &, hence

lime—oAe(G) < MG) +6

§ being arbitrary, we get lime_gAe < A.

Let now ue be a solution of (1.20). Then, it is bounded in W11+¢(Q). Therefore, we may extract from it a
subsequence, still denoted u, such that

ue — u in LP(Q), for all p < 1*

Vue — Vu in M*(Q) weakly
ue — win L' (Q) weakly
(the second assertion is a consequence of Holder’s inequality

/ V| < ( / |w6|1+€)%“ (mes(€))T5).

We need now to recall a result of concentration compactness, which is a consequence of Lions’ concentration
compactness theory [11]:

Proposition 3. 1) Suppose that 2 is an open bounded set in RN and that u. is bounded in WH1T¢(Q), then
if ue — u € BV (Q) weakly, there exists two nonnegative bounded measures on Q, v and u, a numerable set
(x:)ien € Q, and some numbers v; >0, u; > 0, such that

V"7 = > [Vu| + > pide, in M (Q) weakly (1.24)

|ue|1* N |u|1* + Zyiéxi in M'(Q) weakly (1.25)
i
where 5, denotes the Dirac mass on x;. Moreover

1
*

v < K(n,p!". (1.26)
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2) If u. is bounded in WH1T¢(R™) and if the functions u. have their support included in some fized compact
set K the conclusion is the same with u € M*(R"™), v € MY(R"™) with support in K, and the points x; belong
to K.

Remark. If u. is G-invariant for all €, so are the measures p and v, and so is the set {z;}.

Proof. Tt suffices to prove that |Vue| is bounded in W11(Q2) and has a limit (up to subsequences) less than the
limit of |[Vue|'T¢, and to use the results of Lions ([11], see also [5]). For that aim, let ¢ € D(Q),» > 0. By
Holder’s inequality we have:

€

/Wvaos(/WVWP“¢)ﬁ?(/@»)”7

Since the last integral on the right tends to 1, we obtain the conclusion.

Third step: We obtain o = ”%” as the weak limit of o, = |[Vu.|*"'Vu..

Let 0. = |Vue|* 'Vu.. Then o, belongs to L%(Q) Let us prove that 0. — o € L1(Q)) weakly for some
o € L1(Q), for a subsequence, and for all ¢ < co. For that aim, let € < €', then 1J€r—f/ < %, and by Holder’s

inequality,
e(1+€)
o \ ¢ (+e) _e(+4€H
/ o < (/ o %) (mes(Q))' 70,
Q Q
since :,((1;:_66% €]0,1[. By passing to the limit when e goes to 0, one obtains that o. tends to o weakly in

L1(Q), Vg < oo. Moreover , for all € > 0, we have
|U|L1+%, < mes Q.

We need to prove that |o|ec < 1. For that aim, let n be in D(Q2, R™). Then

[
Q

€ 1

Tte
Q&M/@mggw/WMWSQ%(/wwm)
Q Q Q

1
€ T+e
<t o©@7 ([ )7 < [
Q Q

This implies that |o| < 1. On the other hand, by passing to the limit in (1.23), one gets:

PR
S~
3

»

+

m
~
3

—div o +a sign u = Af|u|' 2u (1.27)

and u is G-invariant, as the limit almost everywhere of G-invariant functions.

Fourth step: Extension of u. outside {2 and convergence towards a solution of (1.11).
Let i be the extension of uc by 0 in R” — Q. Then @, € Wh+¢(R"), since u. = 0 on 99, and (i) is
bounded in W11(R"). Then, one may extract from it a subsequence, still denoted () such that

. —vin LFR™), Yk < ——
n—1
i —vin L' (R™)
with v = 0 outside of 2. We denote by wu the restriction of v to . In addition:
Vi — Vo in M (R™)
Oc = |Vue|e_1Vu6 — o in LY(Q) Vg < co.
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Moreover there exists two nonnegative measures p and v, with support in Q, a numerable set {z;} in Q, and
some reals p; and v;, such that

Vi [T = > [Vol + ) pida,

K3
e = v = Jult ) i,
Multiplying (1.23) by @ where ¢ € D(R™), and integrating by parts, one obtains:

/Q 0oV (i) + /Q a(@)| 2.0 = A(G) /Q flad

or equivalently

/ V() ep + / 0eieVio + / a(@)]a "0 = A(G) /R flie" .

1
n—1’
_n_

strongly towards v in every L9, q < 25, one obtains that fR" ocle - Vi tends to fRn ov - V. By passing to
the limit in the last equation above, one obtains

By assuming that € < o tends weakly towards o in L"T*(Q) for some o > 0, and then, since @, tends

o+ [ ouves [ a|u|sazﬁ< /| f|v|1*sa+zw<xi>f<xi>> = A ) (1.25)

Using generalised Green’s Formula in Proposition 1 and (1.27) one obtains that

/Uu.V(pz—/divaugo—/o.Vugo—i—/ o.ni(u)e

=3 [ 1wl [ at@lule = [ oo

Subtracting (1.29) from (1.28), one gets for ¢ € D()

)= [ o Ve =33 vt @)ela). (1.30)

Let now h be a |Vv|-measurable function and p* be a measure orthogonal to |Vu/, such that, according to the
Radon-Nikodym decomposition, one has

pw=h|Vo| + put. (1.31)
By Lemma 1 and the analogous of (1.24) in 2) of Proposition 3, one has
h|Vu| > [V (1.32)
and
pt 2D il (1.33)

Using (1.32) and (1.33) in equation (1.30) one gets that

h|Vv| = 0.Vv on (1.34)
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and

pt= Y e, =AY vif (@), (1.35)

From (1.35), one gets that as soon as f(z;) < 0, then p; = 1, = 0. Using (1.34), |o| < 1 and Proposition 1, one
obtains that in the sense of measures
lo.Vv| < |Vo| on Q
and then
o.Vv = |Vu|

on Q, and h = 1, |Vv|-almost everywhere. Using this in equation (1.28) with ¢ = 1 one gets that

/Q|Vv|+/m |v|+/ﬂa|v| gX/wa*. (1.36)

By the remark done about the 1-coercivity of a, we deduce that fQ f |v|1* > 0, and replacing this in the equation

1= / Aol + e

one obtains that >, v; f(x;) € [0,1] for all 4. This implies that for all 4,

1

(f(zi)vi) < CardOg(z))

Indeed, if CardOg(z;) < oo, suppose by contradiction that there exists ¢ € N such that (f(z;)v;) > m.
Then, summing over the orbit of x; one obtains a contradiction with

L< | >0 S+ 3 f<fck>wc+/ﬂf|vl“ sg%AfluJ“:L

z;¢0c (1) 2, €0 (z4)

Using this inequality one obtains also that CardOg(xz;) = oo implies that v; = 0. We now write, using
n—1

proposition 2, the assumption \(G)f(z) = K(n, 1)C’m“dOg(:1c)%1 < 1forall z € Q, and (1.26):

11—

1 S MG F(a) ™ fl:)' v, T < NG)(cardOg (i)™ e fla) 7w
< MG)(cardOg (2;)) "1 f(2:) ™ K (n, D < cpg

1 1
3 3

where ¢ €]0, 1. This implies that y; = 0, for all i and then »; = 0 for all i. Consequently, lim,_q |i|"" v

and 0.Vv = |Vu|, on QU 9Q. This condition can be splitted in the two equations

:|’U

{J.Vu = |Vu| in §,

o.flu = —|u| on .

Then u is a solution of (1.12), if we are able to prove that w is not identically zero. In fact, since for all i, v; = 0,
we get from the previous computations that

Flad™™ = flol*

vaguely on R", and then

flad" =1 [ gl =1
R?L

R'rL
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RIS

Moreover, the convergence of |Vii.| is tight on Q, which means that

[vud = [ 1val+ [l
Q Q o0

Fifth step: u is a solution of (1.11).
Let us recall the relaxed form of (1.10), for which we shall prove the existence of a solution.

inf {/ |Vu|+/ |u|—|—/a(x)|u|}- (1.11)
{uEBV(Q),u is G—invariant, fﬂf\u|1*:1} Q o0 Q

As we already mentioned it before, this problem makes sense, because of the embedding of BV (Q) into L7 (),
and due to the existence of a trace map from BV (2) into L'(99). We must prove first that

As a consequence, u cannot be zero, and

inf(1.11) = inf(1.10).

First, it is obvious that
inf(1.11) < inf(1.10).
For the reverse inequality, let u be in BV (Q). Since 2 is piecewise C!, there exists a covering of ) by a relatively
compact set {1y and a finite number of balls, B(z;,6),1 < j < k,z; € , such that Q N B(z;, ) is starshaped
with respect to x;, for all j. Let ¢; be a partition of unity subordinate to this covering. We have
j=k

U = pou + Z PiU.
j=1
We always denote by v the extension of u by zero outside 2. Let A be close to 1, A > 1, such that the functions

(pjv)a(z) = pjv(z; + Az — z;))}
have compact support in
Q) = {x € Q,d(x,00) > d(z;,00) (¥>}
(Qx C Q.) Moreover, it is not difficult to see that

im [ [V(p0)al = / IV (50)] + / ;0.
Q o0

A—1 Rn

Let now € be less than the distance of the support of (¢;v)x to 9Q. The functions pe * (¢;v)x (where p. are
standard mollifiers) are C* and have compact support. Moreover

lim [[|pe % (@;0)xllBv (@) = [|(¢50)xllBV (@] = 0.
Let us define

Ue, N = Pe * (@OU) + Z Pe * ((,Djv)
j=1
for A close to 1 and € small enough. We have
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and then the function
- Ue, N
Ve N =~ =7

(S fuly) "

/ Voen| + / afves] — / IVl + / ] + / alul.
Q Q Q o0 Q

Finally, let p be the Haar measure on G and let

is in D(Q?) and satisfies

_ fG Ve © odpu(T) '
|G

tim [ VoS + [ aleSl = [ val+ [l [ ol
Q ’ Q Q 99 Q

and USA = 0 on 02, is G-invariant, and verifies fQ f |vSA|1* = 1, which yields the desired result.
We prove now that the limit u in the two previous steps is a solution of (1.11). For that aim, let us recall
that [, f lv|'" = 1. By lower semi-continuity, we get:

G
ve,/\

Then

AMG) :/ |Vv|+/ a(z)|v| < 1im/ |Vu~e|1+e—|—/ a(x)|ﬁ6|1+6: lim A (G).
n Q e—0 R" Q e—0

[ovel= [ wel= [ 9ul+ [ al
" QUON Q o0

one obtains that u is a solution of the relaxed problem.

Using the fact that

1.3. Existence of nonnegative solutions

We consider the same problem as previously, with the additional assumption that w is nonnegative. So we
are looking for a non trivial solution of

—div 0 + a sign u= \(G) fu! !
o.Vu=|Vu]
u is nonnegative and G — invariant
o€ L>®(Q,R"), on(—u) =u on 909,

where A(G) has been defined in the previous section and sign*u has been defined in the introduction.

As in the previous section, we shall find u as a nonnegative solution to the relaxed problem (1.11). To solve
this problem, we follow the arguments in the proof of Theorem 1. First, there exists a nonnegative solution to
problem (1.20), since if u, € WH1(Q), so is |uc|, and

[V]uel| = [Vue].
Let then u, be a solution of (1.20) which is non negative, then o, = |Vu|*"!Vu, verifies
—div o¢ + aut = A\ (G) ful

0e.Vue = |Vu|
e > 0,ue = 0 on 0N,
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Defining @, as in the proof of Theorem 1, one sees that i, is bounded in W1 1T¢(R") and o, is bounded in
1+e

L=

(©), and then, by extracting subsequences, one obtains

Ue — U

in BV(R"), v = 0 outside of Q, and 0. — o in every L4(2), for all ¢ < oo, with |o| < 1. By passing to the
limit, one gets
—div o + asignt u= \(G) ful !
u>0
o.Vu=|Vul| in Q
T.7(—u) = u on Of).

As in the proof of Theorem 1, one obtains in the same time that

/ fut’ =1,
Q

and arguing as in the previous section, one can show that w is a nonnegative solution to the relaxed problem
(1.11).

1.4. Existence of nodal solutions
We are now under the assumptions of Theorem 2:

Theorem 2. Let Q be a bounded open set of R™ whose boundary is piecewise C*. Let s be an involution of R™,
and G a subgroup of O(R™), such that G and s commute weakly, i.e. Og(s(z)) = s(Og(x)). Let H = |G, s]
be the subgroup generated by G and s. We assume that Q is invariant under H as well as f and a, and that a
verifies the assumption of coercivity (1.1), that f is positive somewhere. Define

A = inf {/ |Vul +/ a|u|}~ (1.37)
{uElel(Q),uO‘r:u, for all TEG,uoszfu,fo\uP*:l} Q Q

Assume that for all x € Q,
(CardOy(x))™ f(z)™ ALK (n,1) < 1. (1.38)

Then there exists some function u € BV () which is G-invariant and s-antisymmetrical such that

~div o + a sign u =\ flu|" ~2u

o€ L*(Q,R"))), 0.Vu=|Vu|
o.flu = —|u]

u is G — invariant and v o s = —u.

(1.39)

Proof. The proof of Theorem 2 follows both [6] and the proof of Theorem 1. We consider the following partial
differential equation:

—dive, + a(x)|u|* ue = M (G) f(2)|ul” ~2u. in Q
u is G — invariant, uos = —u.
oe = |Vue|* 'V,
u. € Wtte(q),

M (G) = inf {/ |Vu|1+e+/a(x)|u|1+e}- (1.41)
{ue EW&’H"’(Q), wor=u,V7€G, uos=—u [, f|u\1*:1} Q Q

(1.40)

where
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This problem possesses a solution that we denote by ue, which satisfies the following equation: Yy € D(Q2, R)
such that poT =, Vr € G, and pos = —yp

—/div ae<p+/a|ue|6*1u€gp:)\e((})/ Flue)” ~ucp. (1.42)
Q Q Q

In order to prove that equation (1.42) may be extended to every ¢ € D(f2), suppose by contradiction that there
exists ¢ € D(Q) such that

—/ div oep —l—/ a|ue|€_1u6g0 — )\ﬁ(G)/ f|u6|1*_2u6g) =a>0
Q Q Q

and define

PG =Pa—PGaos
where ¢ has been defined in the proof of Theorem 1. Then ¢ is G-invariant and s-antisymmetrical. By using
the H-invariance of ), a¢ and f, and integrating over {2 with respect to the Haar measure du on ) one obtains

—/ div oepd —|—/ a|ue|6*1u6<pé - Ae(G)/ f|ue|1**2usapg =2
Q Q Q

from which we get a contradiction. L B
Finally, one obtains that u. is a solution of (1.40). Now, it is not difficult to see that lim. oA (G) = A* <
As(G), as we did in Section 1.2.

Let i, be the extension of u, by 0 outside of Q. Then @, € WH+¢(R") and is bounded in W (R"). Then,
up to a subsequence, it converges weakly to some v € BV(R™). By the compactness of the embedding from
WLL(R™) into LF(R™) for all £ < 1*, one may assume that . tends to v almost everywhere. As a consequence,
voT =u, VT € G, and vo s = —v, i.e. v is G-invariant and s-antisymmetrical. One can prove as we did for
Theorem 1 that o tends to some function o in every L?(2) weakly, for every ¢ < oo, such that o € L*>(f).
Moreover |o| < 1, and (v, o) verifies the P.D.E

—div o + a sign v = X*[v|" 0.

Multiplying this equation by v¢ where ¢ € D(Q), one has:

/ﬁa.vU¢+/ﬂav.V¢+/Qa|v|¢:XS/Qf|v|1* (1.43)

and multiplying (1.40) by #.¢ one has

/_|vae|1+6¢+/aa6.v¢+/a|ae|1+6¢:XS/f|a6|1*. (1.44)
Q Q Q Q

Using Proposition 3, one can assume that there exist two nonnegative and H-invariant measures 4 and v on Q,
a numerable set (z;) C  also H-invariant, and some non-negative reals p; and v;, such that for all ¢ € D(R"),
one has (by passing to the limit in (1.44))

) = [ oVop =X S (1.45)

Substracting (1.43) from (1.45), one obtains

/ [Voulp — / i o.Vvp + ZM@(%‘) =\° Zl/zgo(:lcz)f(xz)
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In addition o verifies:
—div o +a sign v = A flv|'" "%

in Q. We must prove that under the assumption (1.38) in Theorem 2, p;= v; = 0. For that aim, let h be a
|Vv|-measurable function and pt be a measure orthogonal to |Vu/|, such that, according to the Radon-Nikodym

decomposition, one has
w=h|Vo| + pt.
By Lemma 1 and the analogous of (1.34) in 2) of Proposition 3, one has

h|Vv| > [Vu|
and
pt > Zﬂifsxi-
Using (1.46) and (1.47) in equation (1.45) one gets thajc
h|Vv| = 0.Vv onf)

and

(1.46)

(1.47)

(1.48)

(1.49)

From (1.49), one gets that as soon as f(z;) < 0, then y; = v; = 0. From (1.47), using |o| < 1 and Proposition 1,

one obtains that in the sense of measures
|o.Vv| < |Vu| on Q

and then
o.Vu = |Vy|

on Q, and h = 1, |Vv|-almost everywhere. Using this in equation (1.45) with ¢ = 1 one gets that

[rvols [l [al =5 [ sl
Q o0 Q Q

By the 1-coercivity of a, one obtains that fQ f |v|1* > 0, and replacing this in the equation

1:/Qf|v|1* +zi:l/if($i)a

we derive that >, v; f(z;) € [0, 1] for all . This implies that for all ¢,

1

(f(zi)vi) < m'

(1.50)

Indeed, if CardOg (z;) < oo, suppose by contradiction that there exists ¢ € N such that (f(z;)v;) > WH(“

Then, summing over the orbit of x; one obtains a contradiction with

<l >0 gyt ] f(xk)VH/Qflvl“ sggr(l)/ﬂflueﬁ*:l.

z;#0m (wi) R €EO0H ()
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Using this inequality one obtains also that as soon as CardOg(z;) = oo, v; = 0. We now write, using
Proposition 1 and the assumption A&, f(z) = K (n,1)CardOg () = < 1forall z €

1
%

MSXV()%—Af() f()**i %ﬂ%ékamMOM%Y”%f@H%ﬁ

where ¢ < 1.
This implies that for all 4, u; = v; = 0, and one concludes as in the previous section.

2. ESTIMATES AND TEST FUNCTIONS

Theorem 4. Suppose that Q is a bounded open set of R™ whose boundary is piecewise C', that a and f are
two smooth functions on Q, a being 1-coercive and f being positive somewhere, and that xo € Q is such that
f(zo) > 0. Define

kp =inf{k > 1, AFf(z) # 0} (IL.1)

ko = inf{k > 0, A*a(x) # 0}- (11.2)
Then
i) if ko < kg, and AFea(zg) <0,

A, a, f))f(x0) ™ K(n, 1)1 < L.
i) If ke > ky > 2 and AFs f(xg) > 0 then

A€, a, f)) f(zo)

*l"'

K(n,1) " < 1.

i) If ky =1 and a(xo) <0,

A, a, ) f(20) T K (n, 1)1 < 1.
Proof. Let u. be the characteristic function of the ball of center xg and radius €, where € is choosen small enough
such that d(xo,08) < e. The ratio

[ IVu|
n—1
(I1B(zo,€)]"+)
fQ |Vu5|+f3(w L) Qe .
has value K(n,1). Let us define J(u;) = m ; 1*0) 2. We shall prove, developing a and f around x,
B(xzq,€) Ue "
that for e small, J(v.) < ————. We write for every J € N

K(n,1)f(z0)"
j .
[IRCEED Ve Sl BT o
B(zo,e€) 1j1<J J: B(zo,€)

lil
aJl agLn

and 27 = xI'22? .ajr Arguing as in [6], Lemma 6, one has for

where j = (j1,--Jn), 4] = 71 + --Jn, DI =
all J and K

Ala
/B( ) ( )dl‘ = |Sn 1| Z 6n+2j# Q. j + 0(6"""2‘]),
To,€ !

i<J
Ak
/ f(x)dx = |Sn71| E €n+2kan,k# + O(EnJrQK)’
B(zo,€) hk !

LAF denotes the k-iterate of the Laplacian.
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where
TG
" FG+5+1)

One obtains

/'WEH/ e s, Aa(o)
B(zo,e nn | Sp_1|n o, Ala(zg
(x:,_)l = Fani 1+Z 1425 j'J YR +O(62+2J)
(fB( e)f) ’ o <7 b
Zo, 71+71L

Oén RAF f(zo) 2K+1
Hk;lsn Trtp (om0

Suppose now that k, < k¢, then 2k, + 1 < 2k¢, and the first non zero term to consider in the expansion of

oy +1 Uy AP alzo)
&

powers of € above is € . Hence the result follows as soon as AFeqa(zg) < 0.

Suppose that k, 2 kf > 2 and AFs (xg) > 0. Then the first non zero term in the expansion of powers of e

above is (—1 + )‘ 3"6 llo;c’( f"(fo){ff,?) + which is strictly negative. The result follows.

3. SOME SPECIFIC EXAMPLES
We present in this section some concrete situations where the results of the preceding section can apply:

Proposition 3.1. Assume that Q is a bounded ball of center 0 and radius v > 0. Suppose that one of of the
three following situations occurs:

- k#(0) =1 and a(0) <0,
- kr(0) > 2, kq(0) < kp(0) and AFaa(0) < 0,
- k¢(0) > ko(0) and AFs(0) > 0.

Then there exists a radial solution to the relazed problem (1.11).

Proposition 3.2. Assume that a =0 and f is not constant and positive somewhere. Suppose that there exists
zo € Q on which f achieves its mazimum, and that A*s f(zo) > 0. (necessarily ks > 1). Then, there exists a
solution to the problem

—div o + a(x)sign u= flu|* ~%u

o.Vu=|Vu|
u is not identically zero, —o.nu = |u| on 9€.

Proposition 3.3. Assume that Q is a solid torus of R>, obtained by rotation around the z-axis, let s be the
orthogonal symmetry with respect to the (z,y) plane, and let H = |G, s]; Let also a and f be smooth on Q, f
being positive somewhere, a being such that (1.1) is satisfied. Then the problem
—div o + a(x)sign u= flu|'" "2u
o.Vu=|Vu|
u is not identically zero, —o.nu = |u| on 99

possesses a nonnegative G-invariant solution w € BV (), and a nodal solution G-invariant and s-antisymmetrical
solution u € BV (), whose zero set is exactly the intersection of Q0 with the (x,y) plane.
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Proposition 3.4. Let Q be an annulus of R™ centered at 0, and a < 0 a real number such that (1.1) is satisfied.
Then problem (1.11) has a solution which satisfies:

—div o + a(x)sign u= XS flu|'" ~2u
o.Vu=|Vu]
u is not identically zero, —o.nu = |u| on 99

which is radial, and nonnegative. Moreover, this problem possesses infinitely many nodal solutions.

Proof of Proposition 3.4. Let G = O(R™). Since for every & # 0, cardOg(x) = oo, one gets by Theorem 1

that (1.11) possesses a nonnegative radial solution. For the second assertion of the Theorem, let P be some

hyperplan of R™ such that 0 € P, and let Dp be the orthogonal complement of P, 0 € Dp. We denote by

Gp the group of rotations around Dp and by sp the orthogonal symmetry with respect to P. In order to

verify the sufficient condition (1.37) in Theorem 2, we distinguish two cases: either o € Dp N Q and then
1

cardOg (xg) = cardOq(xo) = 2. Then the assumptions on a and f and Proposition 3.1 imply that A% < #;1)
If xo € DpNQ, cardOg(zo) = oo and condition (1.37) is once more verified. By Theorem 2, one gets the existence
of a nodal solution up € BV (Q2). In particular, the properties of symmetry of up imply that up, # up, (in the

sense of distributions for example). Since P is arbitrary, this proves the second part of the proposition.

4. THE ANALOGOUS OF POHOZAEV IDENTITY

Theorem. Let ) be a bounded open set of R™ which is piecewise C'. Let g be a continuous function from
R into R, and let G be its antiderivative which satisfies G(0) = 0. Suppose that u € I/VlQOcl Q) NWy () is a
solution to the problem:

—dive = g(u)
u =0 sur 9f)
o.Vu=|Vu]
u >0 on Q.

Then

(n—=1) /|Vu|—n/G

In particular, one cannot conclude that u =0 in the case where g(u) = ul

Proof. Let g be in C*([0, oo[) such that ¢ =1 on |0, 1], and ¢ = 0 for [¢| > 2. Let j € N, and ¢, is defined
211V (@)l = =

on RY by ¢;(x) = <p0(|x|) Then
o (1] ) ' c.
- < — @
(2] < Sl
with C' some constant independent of j.
Let us multiply the equation by (z; — 2} )p;u ;. One obtains after integrating by parts on the right hand side:

[ st —adgiui= = [ G w=ade) = = [ Gle; = [ G -

since G(0) = 0 and w = 0 on 9. The last integral tends to zero when j goes to infinity. We now treat the
integral on the left hand side:

/ —dive(z; — 2} )pju,; = / iU iP5 —l—/ ort k(T — T )pj — / o.f(z; — T} )pju;.
Q Q Q a0

lz]
= |o
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By integrating by parts once more, one obtains

[ 2:0vu)@ — i) + /|Vu|<xi—x:>wj

= [ 19l - [ 19l 5y + |1Vl — )i,

L/’Ukunk(xi—-wﬁ)wj
Q

One can remark that the integrals fQ |Vu|(z; — x7)e;,: and fQ oiuipj,; tend to zero when j goes to infinity.

By passing to the limit when j goes to infinity, summing over i, using fQ |Vu| = fQ u'” and the fact that since
u = 0 on 0f), Vu is parallel to 77 on 02, one finally gets the identity:

(n—l)/Q|Vu| = —n/QG(u)

When g(u) = u'"~', one obtains:

(n—1)/ﬂ|vu|=1”—*/ﬂu1*:(n—1)/9|vu|.

We have no contradiction as it was the case for the equations

—div (|Vu|P"2Vu) = u? !

ue Wy N Wil (Q)

with p > 1.
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