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ON SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
INVOLVING THE “1”-LAPLACIAN AND CRITICAL SOBOLEV EXPONENT

Françoise Demengel
1

Abstract. Let Ω be a smooth bounded domain in Rn, n > 1, let a and f be continuous functions on
Ω̄, 1? = n

n−1
. We are concerned here with the existence of solution in BV (Ω), positive or not, to the

problem:

8<
:

−div σ + a(x)sign u= f |u|1?−2u
σ.∇u= |∇u| in Ω

u is not identically zero,−σ.n(u) = |u| on ∂Ω.

This problem is closely related to the extremal functions for the problem of the best constant of W 1,1(Ω)

into L
N
N−1 (Ω).

Résumé. On s’intéresse aux solutions dans BV (Ω), non identiquement nulles au problème

−div(σ + a(x)sign u = f |u|1
?−2u

σ.∇u = |∇u|
−σ.~nu = |u| sur ∂Ω

(où Ω est un ouvert borné régulier de RN .)
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Introduction

Let Ω be a bounded open subset of Rn, whose boundary is piecewise C1, let a and f be smooth (at least
continuous on Ω̄), f being positive somewhere, a being such that there exists some constant c > 0 such that for
all u ∈W 1,1

0 (Ω),

|∇u|L1(Ω) +
∫

Ω

a|u| ≥ c||u||W1,1(Ω). (1.1)

We look for u ∈W 1,1
0 (Ω), which satisfies:
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1 Université de Cergy-Pontoise, Département de Mathématiques, Site de Saint-Martin, 2 avenue Adolphe Chauvain,
95302 Cergy-Pontoise Cedex, France; e-mail: Francoise.DEMENGEL@math.u-cergy.fr

c© EDP Sciences, SMAI 1999



668 F. DEMENGEL


−div σ + a(x) sign u= f |u|1?−2u

σ ∈ L∞(Ω,Rn),
σ.∇u= |∇u|

u is not identically zero, u= 0 on ∂Ω

(1.2)

where 1? = n
n−1 is the critical Sobolev exponent for the embedding of W 1,1(Ω) into Lq(Ω), and sign u denotes

some L1 function defined as:
sign u u = |u|. (1.3)

Later we shall impose to u in (1.2) to be non negative, and we shall replace sign u by sign+ u defined as

sign+ u.u = u+.

In order to find solutions to (1.2) one can consider the following minimisation problem

inf
{u∈W1,1

0 (Ω),
R
Ω f |u|1

?=1}

∫
Ω

|∇u|+
∫

Ω

a(x)|u|. (1.4)

We denote by λ(Ω, a, f) the value of this infimum. Indeed, if v ∈ W 1,1
0 (Ω) realizes the minimum defined in

(1.4), it is a non trivial solution of
−div σ + a(x) sign v = λ(Ω, a, f)f |v|1?−2v

σ ∈ L∞(Ω,Rn),
σ.∇v = |∇v|

v = 0 on ∂Ω

then u = (λ(Ω, a, f))
1

n−1 v satisfies (1.2).

In a previous paper [6] (see also [13]), we were concerned with the existence of solutions u ∈W 1,p(Ω), positive
or not, to the problem {

−div (|∇u|p−2∇u) + a(x)|u|p−2u= f |u|p?−2u
u is not identically zero , u= 0 on ∂Ω

(1.5)

where p ∈]1, n[, p? = np
n−p , and a and f are two smooth functions on Ω, f is positive somewhere and a is such

that there exists some constant C such that∫
Ω

|∇u|p + a|u|p ≥ C||u||W1,p(Ω).

Let us note that the expression |∇u|p−2∇u makes sense when p > 1 , as the function σ such that σ.∇u = |∇u|p
belongs to Lp/p

−1
(Ω). To obtain solutions, we introduced the variational problem

λp(Ω, a, f) = inf
{u∈W1,p

0 (Ω),
R
Ω f |u|p

?=1}

∫
Ω

|∇u|p +
∫

Ω

a(x)|u|p

and we proved by using a method of concentration that there exists a non zero solution, as soon as

λp(Ω, a, f) sup
{x,f(x)>0}

f(x)1− pnK(n, p)p < 1,

where K(n, p) denotes the inverse of the best constant for the embedding from W 1,p(Ω) into Lp
?

(Ω). Since
the method employed in [6] cannot be applied to our problem, we shall approximate it by a problem analogous
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to (1.5), with a right hand side f |u|1?−2u, and let p tend to 1. Of course, passing to the limit when p → 1
will lead us to consider BV (Ω) in place of W 1,1(Ω), and to define several things, as σ.∇u when ∇u is only a
measure and σ ∈ L∞(Ω), and to give sense to the trace of u on the boundary of ∂Ω when u is only in BV (Ω).
As the “limit” will be obtained by weak convergence in BV (Ω), we shall be led to overcome the lack of the
weak continuity of the trace map by introducing the concept of “relaxed problem”: these problems are used
in the theory of minimal surfaces and plasticity, and with a slightly different meaning, in the theory of weakly
harmonic functions. Here the relaxed problem is defined as:

inf
{u∈BV (Ω),

R
Ω f |u|1

?=1}

{∫
Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u|
}

(1.6)

and we shall see later that it has the same infimum as (1.4).
As an illustration of what may occur, let us consider the problem of the best constant for the Sobolev

embedding of W 1,1(Ω) into L1?(Ω), which corresponds to the case where a = 0 and f = 1. Let us define

λ(Ω, 0, 1) = inf
{u∈W1,1

0 (Ω),
R
Ω |u|1

?=1}

∫
Ω

|∇u|.

We have

(λ(Ω, 0, 1))−1 = K(n, 1,Ω) = sup
{u∈W1,1

0 (Ω)}


(∫

Ω |u|1
?) 1

1?∫
Ω
|∇u|

 · (1.7)

This problem has been studied by many authors (see [1, 14], also [4] and others...). They proved that for any
open set Ω of Rn, K(n, 1,Ω) = K(n, 1,Rn) (= K(n, 1) for simplicity in the sequel) and that the infimum is never
achieved onW 1,1(Ω), but in some sense, it is achieved onBV (Ω), since every characteristic function of ball whose
closure is included in Ω realizes this supremum. As a consequence, λ(Ω, 0, 1) = n1−1/n|Sn−1|

1
n = K(n, 1)−1. To

be more correct, the characteristic functions of balls are solutions of (1.8) defined as:

inf
{u∈BV (Ω), u=0 on ∂Ω,

R
Ω |u|1

?=1}

{∫
Ω

|∇u|
}

(1.8)

and also of its relaxed form:

inf
{u∈BV (Ω),

R
Ω |u|1

?=1}

{∫
Ω

|∇u|+
∫
∂Ω

|u|
}
·

This infimum has also the value K(n, 1)−1, as one can see by using approximation of functions in BV (Ω) by
regular functions for a topology related to the narrow convergence of bounded measures, which will be precised
later.

In order to give sense to equations (1.2), when u is only in BV (Ω), we need to define σ.∇u when σ ∈
L∞(Ω,Rn) and u ∈ BV (Ω) (this is possible as soon as div σ ∈ Ln(Ω)):

Suppose that ϕ ∈ D(Ω), that u ∈ BV (Ω), σ ∈ L∞(Ω) and div σ ∈ Ln(Ω), and define

〈σ.∇u, ϕ〉 = −
∫

Ω

div σuϕ−
∫

Ω

σ.∇ϕu.

Then
|〈σ.∇u, ϕ〉| ≤ |σ|∞〈|∇u|, |ϕ|〉· (1.9)

In particular, σ.∇u is a bounded measure on Ω which is absolutely continuous with respect to |∇u|.
We now give the results of this paper: for simplicity in the sequel we drop the terms Ω, a, and f in the

definition of λ(Ω, a, f). Moreover, we assume that Ω is invariant under some subgroup G of the orthogonal
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group on Rn, O(Rn), as well as a and f . Since every G-invariant function is also G-invariant one can assume
that G is compact. We denote by OG(x) the orbit of x under G, and we are looking for a solution of (1.2)
which is G-invariant. Of course, whenever Ω does not present any symmetries, one must take G = Id and
OG(x) = {x}. The result is the following:

Theorem 1. Assume that Ω is invariant under some group G of isometries of Rn, as well as a and f , that f
is positive somewhere, that a satisfies (1.1). Define

λ(G) = inf
{u∈W1,1

0 (Ω), u is G−invariant,
R
Ω f |u|1

?=1}

{∫
Ω

|∇u|+
∫

Ω

a|u|
}
· (1.10)

Then, if for all x ∈ Ω̄, λ(G)f(x)
n−1
n K(n, 1) (CardOG(x))

−1
n < 1, there exists a solution to the relaxed problem:

λ(G) = inf
{u∈BV (Ω),u is G−invariant

R
Ω f |u|1

?=1}

{∫
Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u|
}
· (1.11)

Moreover this solution verifies the P.D.E.
−divσ + a(x) sign u= λ(G)f |u|1?−2u
σ ∈ L∞(Ω,Rn)), σ.∇u = |∇u|

σ.n(u) = −|u| on ∂Ω
u 6= 0, u is G− invariant.

(1.12)

Finally, we have another theorem which gives sufficient conditions when Ω is invariant under some symmetries,
to get nodal solutions (i.e. which change sign): we assume now that G is some subgroup of O(Rn) and s is
some involution, such that G and s commute weakly: (s(OG(x)) = OG(s(x)) for all x ∈ Ω. We then have the
following result.

Theorem 2. Suppose that G is some subgroup of O(Rn), that s is an involution such that s and G commute
weakly. Let H = [G, s] be the group generated by G and s. Assume that Ω, a and f are invariant under H, that
a and f are continuous, f being positive somewhere and a satisfying (1.1). Define

λsG = inf
{u∈W1,1

0 (Ω),u is G−invariant u◦s=−u}

{∫
Ω

|∇u|+
∫

Ω

a|u|
}

then, if for all x ∈ Ω
(cardOH(x))

−1
n f(x)

n−1
n λsG K(n, 1) < 1,

then there exists u ∈ BV (Ω) which is a solution of the relaxed problem

inf
{u∈BV (Ω),u is G−invariant ,u◦s=−u}

{∫
Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u|
}
· (1.13)

Moreover u solves the partial differential equation:
−divσ + a(x) sign u= λsGf |u|1

?−2u
σ ∈ L∞(Ω,Rn), σ.∇u = |∇u|.

σ.n(u) = −|u| on ∂Ω
u is G− invariant, u ◦ s = −u.

(1.14)

The plan of this paper is as follows: in the first section, we give an existence theorem for (1.11) and (1.12),
by using both the theory of concentration compactness and the method employed in [6]. The solution belongs
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to BV (Ω), satisfies (1.11) but not necessarily the condition u = 0 on ∂Ω. Let us point out that we have no
regularity result on u. This will probably be a difficult task, which will be the object of a future work.

In the second section, we use test functions to prove that the sufficient condition proposed previously can
be traduced by very simple conditions on a and f and their derivatives on a point x0 ∈ Ω where f achieves its
maximum and then to conclude to the existence of a solution.

In the third section, we give specific examples.

1. Existence’s theorems

1.1. Preliminary results on BV functions

Let us recall the definition of the space

BV (Ω) =
{
u ∈ L1(Ω),∇u ∈M1(Ω)

}
(1.15)

where Ω is an open set of Rn, M1(Ω) denotes the space of bounded measures on Ω, i.e. the dual space of Cb(Ω),
the space of continuous bounded functions on Ω. Of course, endowed with the norm

||u|| = |u|L1(Ω) + |∇u|M1(Ω),

BV (Ω) is a Banach space. The main results about BV (Ω) that we need to know here are the following: (the
interested reader can consult Giusti [8] for more complete results on BV functions.)

- BV (Ω) is continuously embedded in Lq(Ω), for q ≤ n
n−1 = 1?, and these embeddings are compact for

q < n
n−1 = 1?.

Other topologies than the topology of the norm introduced above, are of importance:

- The weak topology, which can be defined as follows:

un ⇀ u in BV (Ω) weakly
if {

un→ u in L1(Ω)
∇un⇀ ∇u in M1(Ω) vaguely.

- The narrow topology, defined by
un→ u in L1(Ω)
∇un⇀ ∇u in M1(Ω) weakly∫

Ω

|∇un|→
∫

Ω |∇u|.
(1.16)

Let us note that the third condition in (1.16), jointed to the first one, implies the second one and also the
vague convergence of |∇un| towards |∇u|.

- There exists a map from BV (Ω) into L1(∂Ω), which is linear and continuous for the strong topology and
coincides with the restriction on the boundary for functions in BV (Ω)∩C(Ω̄). This map is not continuous
for the weak topology, but it is continuous for the narrow topology. (cf. [5])

- There exists some density result of W 1,1(Ω)∩C∞(Ω) into BV (Ω) for the narrow topology defined above:
For u ∈ BV (Ω), there exists um ∈W 1,1(Ω) ∩ C∞(Ω), such that

um→ u ∈ Lq(Ω), ∀q ≤ n

n− 1∫
Ω

|∇um| →
∫

Ω

|∇u|
um = u on ∂Ω.

(1.17)
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Another density result is the following:
Suppose that Ω is an open set in Rn whose boundary is piecewise C1, and that u ∈ BV (Ω). Then, there exists
a sequence un ∈ C1

c (Ω), such that  un⇀ u in BV (Ω) weakly∫
Ω

|∇un|→
∫

Ω

|∇u|+
∫
∂Ω

|u|. (1.17 bis)

As a corollary of this result, one obtains that the inequality in (1.1) can be extended to functions of BV (Ω) in
the following manner: There exists some constant C > 0 such that for all u ∈ BV (Ω)∫

Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u| ≥ C||u||BV (Ω).

The proof of this approximation result is postponed in the fifth step in part II, since it is a key ingredient to
prove that

inf(1.11) = inf(1.10).
We shall also need a generalization of Green’s formula, which gives some sense to σ.∇u when σ ∈ L∞(Ω) and
u ∈ BV (Ω), as soon as div σ ∈ Ln(Ω). (This result has already been announced in the introduction.)

Proposition 1. Suppose that σ ∈ L∞(Ω,Rn), div σ ∈ Ln(Ω), and u ∈ BV (Ω). Then there exists a distribution,
denoted as σ.∇u, which is defined as follows:

〈σ · ∇u, ϕ〉 = −
∫

Ω

u(div) σϕ−
∫

Ω

uσ.∇ϕ (1.18)

for ϕ ∈ C∞(Ω).
The distribution σ.∇u is a bounded measure which satisfies:

|σ.∇u| ≤ |σ|∞|∇u|. (1.19)

In addition, if ϕ ∈ C(Ω̄) ∩ C1(Ω), the following Green’s Formula holds

〈∇u · σ, ϕ〉 = −
∫

Ω

u(div σ)ϕ −
∫

Ω

σ · ∇ϕu+
∫
∂Ω

σ.~nuϕ.

- Suppose that U ∈ BV (RN ), and define for u ∈ BV (Ω) the function ũ as

ũ =
{
u in Ω
U in RN − Ω.

Then ũ ∈ BV (RN ) and
∇ũ = ∇uχΩ +∇Uχ{RN−Ω} + (U − u)|Ωδ∂Ω

where U|Ω and u|Ω denote the trace of U and u on ∂Ω. (cf. [8, 15, 16]), δ∂Ω denotes the uniform Dirac measure
on ∂Ω and ~n is the unit outer normal to ∂Ω. Moreover, one can define the measure σ ·∇ũ on Ω̄ by the formula

(σ · ∇ũ) = (σ · ∇u)χΩ + σ.~n(U − u)δ∂Ω

and σ · ∇ũ is absolutely continuous with respect to |∇ũ|, with the inequality

|σ · ∇ũ| ≤ |σ|∞|∇ũ|.

We end this section by enouncing a lemma which is classical in the theory of BV -functions:
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Lemma 1. Assume that Ω is an open set of Rn, n ≥ 2, and that u ∈ BV (Ω). Then, if x0 ∈ Ω, |∇u|({x0}) = 0.

Remark. Lemma 1 is a mere consequence of a stronger result which says that |∇u|(A) = 0 as soon as the
(n-1)-Hausdorff measure of A is zero.

A proof of this stronger result can be found in [8]. We give here an elementary one.

Proof of Lemma 1. We must prove that

lim
r→0

∫
C(x0,r)

|∇u| = 0

where C(x0, r) denotes the open n-cube ]x0 − r, x0 + r[n. We write

|∇u|(C(x0, r)) =
∫
{C(x0,r)∩{xn>0}}

|∇u|+
∫
{C(x0,r)∩{xn<0}}

|∇u|+
∫
{C(x0,r)∩{xn=0}}

|[u]|(x′, 0)dx′

where [u] denotes the jump of the trace of u on the hyperplan xn = 0. Since it belongs to L1(Ω ∩ {xn = 0}),
one has

lim
r→0

∫
C(x0,r)∩{xn=0}

|[u]|(x′, 0)dx′ = 0.

On another hand, |∇u| being a bounded measure on Ω

limr→0

∫
C(x0,r)∩{xn>0}

|∇u| ≤ limr→0

∫
Ω∩{r>xn>0}

|∇u| = 0

and
limr→0

∫
C(x0,r)∩{−r<xn<0}

|∇u| ≤ limr→0

∫
C(x0,r)∩{xn<0}

|∇u| = 0.

This yields the desired conclusion.

1.2. Proof of Theorem 1

A first step when one tries to prove Theorem 1 consists in approximating (1.11) with the following minimiza-
tion problem

λε(G) = inf
{u∈W1,1+ε

0 (Ω),u◦τ=u,∀τ∈G,
R
Ω f(x)|u|1?=1}

{∫
Ω

|∇u|1+ε +
∫

Ω

a(x)|u|1+ε

}
, (1.20)

where ε is some positif parameter. This problem can be solved by classical methods in the calculus of variations,
since 1? is strictly less than the critical power for the embedding of W 1,1+ε(Ω) into Lq(Ω). Let us note that a
solution of (1.20) verifies: ∀ϕ ∈ D(Ω,R) such that ϕ ◦ τ = ϕ,∀τ ∈ G,

−
∫

Ω

div σεϕ+
∫

Ω

a|uε|ε−1uεϕ = λε(G)
∫

Ω

f |uε|1
?−2uεϕ. (1.21)

In order to prove that equation (1.21) may be extended to every ϕ ∈ D(Ω) , suppose by contradiction that
there exists ϕ ∈ D(Ω) such that

−
∫

Ω

div σεϕ+
∫

Ω

a|uε|ε−1uεϕ− λε(G)
∫

Ω

f |uε|1
?−2uεϕ = α > 0. (1.22)

Then for all τ ∈ G,

−
∫

Ω

div σεϕ ◦ τ +
∫

Ω

a|uε|ε−1uεϕ ◦ τ − λε(G)
∫

Ω

f |uε|1
?−2uεϕ ◦ τ = α.
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Using the existence of a Haar measure dµ on G, the G-invariance of Ω, a and f , and integrating this with
respect to the Haar measure dµ on G one obtains

−
∫

Ω

div σεϕG +
∫

Ω

a|uε|ε−1uεϕG − λε(G)
∫

Ω

f |uε|1
?−2uεϕG = α

where ϕG =
R
G
ϕ◦τdµ(τ)R
G
dµ(τ)

. Since ϕG is G-invariant and compactly supported in Ω, one obtains a contradiction
with (1.21).

As a consequence, uε is a non trivial solution of
−divσε + a(x)|uε|ε−1uε = λεf(x)|uε|1

?−2uε in Ω
σε = |∇uε|ε−1∇uε
uε ∈W 1,1+ε

0 (Ω).
(1.23)

Second step
Proposition 2.

limε→0λε(G) = λ̄ ≤ λ(G).
Proof. Let Iε(v) =

∫
Ω |∇v|1+ε +

∫
Ω a(x)|v|1+ε, and let δ > 0 be given and v ∈ C∞c (Ω) be G-invariant, such that∫

Ω
f |v|1? = 1 and

∫
Ω
|∇v|+

∫
Ω
a(x)|v| ≤ λ+ δ. For ε small enough, |Iε(v)− I0(v)| < δ, hence

limε→0λε(G) ≤ λ(G) + δ

δ being arbitrary, we get limε→0λε ≤ λ.
Let now uε be a solution of (1.20). Then, it is bounded in W 1,1+ε(Ω). Therefore, we may extract from it a

subsequence, still denoted uε, such that

uε → u in Lp(Ω), for all p < 1?

∇uε ⇀ ∇u in M1(Ω) weakly
uε ⇀ u in L1?(Ω) weakly

(the second assertion is a consequence of Hölder’s inequality∫
|∇uε| ≤

(∫
|∇uε|1+ε

) 1
1+ε

(mes(Ω))
ε

1+ε ).

We need now to recall a result of concentration compactness, which is a consequence of Lions’ concentration
compactness theory [11]:

Proposition 3. 1) Suppose that Ω is an open bounded set in RN and that uε is bounded in W 1,1+ε(Ω), then
if uε → u ∈ BV (Ω) weakly, there exists two nonnegative bounded measures on Ω, ν and µ, a numerable set
(xi)i∈N ∈ Ω̄, and some numbers νi ≥ 0 , µi ≥ 0, such that

|∇uε|1+ε ⇀ µ ≥ |∇u|+
∑
i

µiδxi in M1(Ω) weakly (1.24)

|uε|1
?

⇀ |u|1? +
∑
i

νiδxi in M1(Ω) weakly (1.25)

where δxi denotes the Dirac mass on xi. Moreover

νi ≤ K(n, 1)µ
1

1?

i . (1.26)
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2) If uε is bounded in W 1,1+ε(Rn) and if the functions uε have their support included in some fixed compact
set K the conclusion is the same with µ ∈ M1(Rn), ν ∈ M1(Rn) with support in K, and the points xi belong
to K.
Remark. If uε is G-invariant for all ε, so are the measures µ and ν, and so is the set {xi}.
Proof. It suffices to prove that |∇uε| is bounded in W 1,1(Ω) and has a limit (up to subsequences) less than the
limit of |∇uε|1+ε, and to use the results of Lions ([11], see also [5]). For that aim, let ϕ ∈ D(Ω), ϕ ≥ 0. By
Hölder’s inequality we have: ∫

|∇uε|ϕ ≤
(∫
|∇uε|1+εϕ

) 1
1+ε
(∫

(ϕ)
) ε

1+ε

.

Since the last integral on the right tends to 1, we obtain the conclusion.

Third step: We obtain σ = ” ∇u|∇u|” as the weak limit of σε = |∇uε|ε−1∇uε.

Let σε = |∇uε|ε−1∇uε. Then σε belongs to L
1+ε
ε (Ω). Let us prove that σε ⇀ σ ∈ Lq(Ω) weakly for some

σ ∈ Lq(Ω), for a subsequence, and for all q < ∞. For that aim, let ε < ε′, then 1+ε′

ε′ < 1+ε
ε , and by Hölder’s

inequality, ∫
Ω

|σε|
1+ε′
ε′ ≤

(∫
Ω

|σε|
1+ε
ε

) ε(1+ε′)
ε′(1+ε)

(mes(Ω))1− ε(1+ε′)
ε′(1+ε) ,

since ε(1+ε′)
ε′(1+ε) ∈]0, 1[. By passing to the limit when ε goes to 0, one obtains that σε tends to σ weakly in

Lq(Ω), ∀q <∞. Moreover , for all ε′ > 0, we have

|σ|
L

1+ 1
ε′
≤ mes Ω.

We need to prove that |σ|∞ ≤ 1. For that aim, let η be in D(Ω,Rn). Then∣∣∣∣∫
Ω

σ.η

∣∣∣∣≤ limε→0|
∫

Ω

σε.η| ≤ limε→0

∫
Ω

|∇uε|ε|η| ≤ limε→0

(∫
Ω

|∇uε|1+ε

) ε
1+ε
(∫

Ω

η1+ε

) 1
1+ε

≤ limε→0(C)
ε

1+ε

(∫
Ω

η1+ε

) 1
1+ε

≤
∫

Ω

|η|.

This implies that |σ| ≤ 1. On the other hand, by passing to the limit in (1.23), one gets:

−div σ + a sign u = λ̄f |u|1?−2u (1.27)

and u is G-invariant, as the limit almost everywhere of G-invariant functions.

Fourth step: Extension of uε outside Ω and convergence towards a solution of (1.11).
Let ũε be the extension of uε by 0 in Rn − Ω̄. Then ũε ∈ W 1,1+ε(Rn), since uε = 0 on ∂Ω, and (ũε) is

bounded in W 1,1(Rn). Then, one may extract from it a subsequence, still denoted (ũε) such that

ũε→ v in Lk(Rn), ∀k < n

n− 1
ũε⇀v in L1?(Rn)

with v = 0 outside of Ω. We denote by u the restriction of v to Ω. In addition:

∇ũε⇀∇v in M1(Rn)
σε = |∇uε|ε−1∇uε ⇀ σ in Lq(Ω) ∀q <∞.
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Moreover there exists two nonnegative measures µ and ν, with support in Ω̄, a numerable set {xi} in Ω̄, and
some reals µi and νi, such that

|∇ũε|1+ε⇀µ ≥ |∇v|+
∑
i

µiδxi

|ũε|1
?

⇀ν = |u|1? +
∑
i

νiδxi .

Multiplying (1.23) by ũεϕ where ϕ ∈ D(Rn), and integrating by parts, one obtains:∫
Ω̄

σε.∇(ũεϕ) +
∫

Ω

a(x)|ũε|1+εϕ = λε(G)
∫

Ω

f |ũε|1
?

ϕ

or equivalently ∫
Rn

|∇(ũε)|1+εϕ+
∫

Rn

σεũε∇ϕ+
∫

Rn

a(x)|ũε|1+εϕ = λε(G)
∫

Rn

f |ũε|1
?

ϕ.

By assuming that ε < 1
n−1 , σε tends weakly towards σ in Ln+α(Ω) for some α > 0, and then, since ũε tends

strongly towards v in every Lq, q < n
n−1 , one obtains that

∫
Rn σεũε · ∇ϕ tends to

∫
Rn σv · ∇ϕ. By passing to

the limit in the last equation above, one obtains

〈µ, ϕ〉 +
∫

Ω

σu∇ϕ+
∫

Ω

a|u|ϕ= λ̄

(∫
Ω

f |v|1?ϕ+
∑
i

νiϕ(xi)f(xi)

)
= λ̄〈ν, fϕ〉· (1.28)

Using generalised Green’s Formula in Proposition 1 and (1.27) one obtains that∫
Ω

σu.∇ϕ= −
∫

Ω

divσuϕ−
∫

Ω

σ.∇uϕ +
∫
∂Ω

σ.~n(u)ϕ

= λ̄

∫
Ω

f |v|1?ϕ−
∫

Ω

a(x)|u|ϕ−
∫

Ω

σ · ∇vϕ.
(1.29)

Subtracting (1.29) from (1.28), one gets for ϕ ∈ D(Ω̄)

〈µ, ϕ〉 −
∫

Ω

σ.∇vϕ = λ̄
∑
i

νif(xi)ϕ(xi). (1.30)

Let now h be a |∇v|-measurable function and µ⊥ be a measure orthogonal to |∇u|, such that, according to the
Radon-Nikodym decomposition, one has

µ = h|∇v|+ µ⊥. (1.31)
By Lemma 1 and the analogous of (1.24) in 2) of Proposition 3, one has

h|∇v| ≥ |∇v| (1.32)

and
µ⊥ ≥

∑
i

µiδxi . (1.33)

Using (1.32) and (1.33) in equation (1.30) one gets that

h|∇v| = σ.∇v on Ω̄ (1.34)
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and
µ⊥ =

∑
i

µiδxi = λ̄
∑
i

νif(xi)δxi . (1.35)

From (1.35), one gets that as soon as f(xi) < 0, then µi = νi = 0. Using (1.34), |σ| ≤ 1 and Proposition 1, one
obtains that in the sense of measures

|σ.∇v| ≤ |∇v| on Ω̄
and then

σ.∇v = |∇v|
on Ω̄, and h = 1, |∇v|-almost everywhere. Using this in equation (1.28) with ϕ = 1 one gets that∫

Ω

|∇v|+
∫
∂Ω

|v|+
∫

Ω

a|v| ≤ λ̄
∫

Ω

f |v|1? . (1.36)

By the remark done about the 1-coercivity of a, we deduce that
∫

Ω
f |v|1? ≥ 0, and replacing this in the equation

1 =
∫

Ω

f |v|1? +
∑
i

νif(xi),

one obtains that
∑
i νif(xi) ∈ [0, 1] for all i. This implies that for all i,

(f(xi)νi) ≤
1

CardOG(xi)
·

Indeed, if CardOG(xi) <∞, suppose by contradiction that there exists i ∈N such that (f(xi)νi) > 1
CardOG(xi)

.
Then, summing over the orbit of xi one obtains a contradiction with

1 <

 ∑
xj /∈OG(xi)

f(xj)νj +
∑

xk∈OG(xi)

f(xk)νk +
∫

Ω

f |v|1?
 ≤ lim

ε→0

∫
Ω

f |uε|1? = 1.

Using this inequality one obtains also that CardOG(xi) = ∞ implies that νi = 0. We now write, using
proposition 2, the assumption λ(G)f(x)

n−1
n K(n, 1)CardOG(x)

−1
n < 1 for all x ∈ Ω̄, and (1.26):

µi ≤ λ(G)f(xi)
1

1? f(xi)1− 1
1? ν

1− 1
1?

i ν
1

1?
i ≤ λ(G)(cardOG(xi))−1+ 1

1? f(xi)
1

1? ν
1

1?
i

≤ λ(G)(cardOG(xi))−1+ 1
1? f(xi)

1
1?K(n, 1)µi < cµi

where c ∈]0, 1[. This implies that µi = 0, for all i and then νi = 0 for all i. Consequently, limε→0 |ũε|1
?

= |v|1?

and σ.∇v = |∇v|, on Ω ∪ ∂Ω. This condition can be splitted in the two equations{
σ.∇u= |∇u| in Ω,
σ.~nu= −|u| on Ω.

Then u is a solution of (1.12), if we are able to prove that u is not identically zero. In fact, since for all i, νi = 0,
we get from the previous computations that

f |ũε|1
?

⇀ f |v|1?

vaguely on Rn, and then ∫
Rn

f |ũε|1
?

= 1→
∫

Rn

f |v|1? = 1.
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As a consequence, u cannot be zero, and ∫
Ω

f |u|1? = 1.

Moreover, the convergence of |∇ũε| is tight on Ω̄, which means that∫
Ω

|∇uε| →
∫

Ω

|∇u|+
∫
∂Ω

|u|.

Fifth step: u is a solution of (1.11).
Let us recall the relaxed form of (1.10), for which we shall prove the existence of a solution.

inf
{u∈BV (Ω),u is G−invariant,

R
Ω f |u|1

?=1}

{∫
Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a(x)|u|
}
· (1.11)

As we already mentioned it before, this problem makes sense, because of the embedding of BV (Ω) into L
n
n−1 (Ω),

and due to the existence of a trace map from BV (Ω) into L1(∂Ω). We must prove first that

inf(1.11) = inf(1.10).

First, it is obvious that
inf(1.11) ≤ inf(1.10).

For the reverse inequality, let u be in BV (Ω). Since Ω is piecewise C1, there exists a covering of Ω by a relatively
compact set Ω0 and a finite number of balls, B(xj , δ), 1 ≤ j ≤ k, xj ∈ Ω, such that Ω ∩ B(xj , δ) is starshaped
with respect to xj , for all j. Let ϕj be a partition of unity subordinate to this covering. We have

u = ϕ0u+
j=k∑
j=1

ϕju.

We always denote by v the extension of u by zero outside Ω. Let λ be close to 1, λ > 1, such that the functions

(ϕjv)λ(x) = ϕjv(xj + λ(x− xj))}

have compact support in

Ωλ =
{
x ∈ Ω, d(x, ∂Ω) > d(xj , ∂Ω)

(
λ− 1
λ

)}
(Ωλ ⊂ Ω.) Moreover, it is not difficult to see that

lim
λ→1

∫
Rn

|∇(ϕjv)λ| =
∫

Ω

|∇(ϕjv)|+
∫
∂Ω

|ϕjv|.

Let now ε be less than the distance of the support of (ϕjv)λ to ∂Ω. The functions ρε ? (ϕjv)λ (where ρε are
standard mollifiers) are C∞ and have compact support. Moreover

lim
ε→0

∣∣||ρε ? (ϕjv)λ||BV (Ω) − ||(ϕjv)λ||BV (Ω)

∣∣ = 0.

Let us define
uε,λ = ρε ? (ϕ0v) +

∑
j≥1

ρε ? (ϕjv)

for λ close to 1 and ε small enough. We have

lim
ε→0

∫
Ω

f |uε,λ|1
?

= 1,
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and then the function
vε,λ =

uε,λ(∫
fu1?

ε,λ

)n−1
n

is in D(Ω) and satisfies ∫
Ω

|∇vε,λ|+
∫

Ω

a|vε,λ| →
∫

Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u|.

Finally, let µ be the Haar measure on G and let

vGε,λ =

∫
G
vε,λ ◦ σdµ(τ)
|G| ·

Then

lim
∫

Ω

|∇vGε,λ|+
∫

Ω

a|vGε,λ| →
∫

Ω

|∇u|+
∫
∂Ω

|u|+
∫

Ω

a|u|

and vGε,λ = 0 on ∂Ω, is G-invariant, and verifies
∫

Ω
f |vGε,λ|1

?

= 1, which yields the desired result.
We prove now that the limit u in the two previous steps is a solution of (1.11). For that aim, let us recall

that
∫

Ω
f |v|1? = 1. By lower semi-continuity, we get:

λ(G) =
∫

Rn

|∇v|+
∫

Ω

a(x)|v| ≤ lim
ε→0

∫
Rn

|∇ũε|1+ε +
∫

Ω

a(x)|ũε|1+ε = lim
ε→0

λε(G).

Using the fact that ∫
Rn

|∇v| =
∫

Ω∪∂Ω

|∇v| =
∫

Ω

|∇u|+
∫
∂Ω

|u|,

one obtains that u is a solution of the relaxed problem.

1.3. Existence of nonnegative solutions

We consider the same problem as previously, with the additional assumption that u is nonnegative. So we
are looking for a non trivial solution of

−div σ + a sign+ u= λ(G)fu1?−1

σ.∇u= |∇u|
u is nonnegative and G− invariant

σ ∈ L∞(Ω,Rn), σ.n(−u) = u on ∂Ω,

where λ(G) has been defined in the previous section and sign+u has been defined in the introduction.
As in the previous section, we shall find u as a nonnegative solution to the relaxed problem (1.11). To solve

this problem, we follow the arguments in the proof of Theorem 1. First, there exists a nonnegative solution to
problem (1.20), since if uε ∈W 1,1(Ω), so is |uε|, and

|∇|uε|| = |∇uε|.

Let then uε be a solution of (1.20) which is non negative, then σε = |∇uε|ε−1∇uε verifies−div σε + auεε = λε(G)fu1?−1
ε

σε.∇uε = |∇uε|
uε ≥ 0, uε = 0 on ∂Ω.
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Defining ũε as in the proof of Theorem 1, one sees that ũε is bounded in W 1,1+ε(Rn) and σε is bounded in
L

1+ε
ε (Ω), and then, by extracting subsequences, one obtains

ũε → v

in BV (Rn), v = 0 outside of Ω, and σε ⇀ σ in every Lq(Ω), for all q < ∞, with |σ| ≤ 1. By passing to the
limit, one gets 

−div σ + asign+ u= λ(G)fu1?−1

u≥ 0
σ.∇u= |∇u| in Ω

τ.~n(−u) = u on ∂Ω.
As in the proof of Theorem 1, one obtains in the same time that∫

Ω

fu1? = 1,

and arguing as in the previous section, one can show that u is a nonnegative solution to the relaxed problem
(1.11).

1.4. Existence of nodal solutions

We are now under the assumptions of Theorem 2:

Theorem 2. Let Ω be a bounded open set of Rn whose boundary is piecewise C1. Let s be an involution of Rn,
and G a subgroup of O(Rn), such that G and s commute weakly, i.e. OG(s(x)) = s(OG(x)). Let H = [G, s]
be the subgroup generated by G and s. We assume that Ω is invariant under H as well as f and a, and that a
verifies the assumption of coercivity (1.1), that f is positive somewhere. Define

λsG = inf
{u∈W1,1(Ω),u◦τ=u, for all τ∈G,u◦s=−u,

R
Ω f |u|1

?=1}

{∫
Ω

|∇u|+
∫

Ω

a|u|
}
· (1.37)

Assume that for all x ∈ Ω̄,

(CardOH(x))
−1
n f(x)

1
1? λsGK(n, 1) < 1. (1.38)

Then there exists some function u ∈ BV (Ω) which is G-invariant and s-antisymmetrical such that
−div σ + a sign u= λsGf |u|1

?−2u
σ ∈ L∞(Ω,Rn))), σ.∇u = |∇u|

σ.~nu= −|u|
u is G− invariant and u ◦ s = −u.

(1.39)

Proof. The proof of Theorem 2 follows both [6] and the proof of Theorem 1. We consider the following partial
differential equation: 

−divσε + a(x)|u|ε−1uε = λsε(G) f(x)|u|1?−2uε in Ω
u is G− invariant, u ◦ s = −u.

σε = |∇uε|ε−1∇uε
uε ∈W 1,1+ε

0 (Ω),

(1.40)

where

λsε(G) = inf
{uε ∈W1,1+ε

0 (Ω), u◦τ=u,∀τ∈G,u◦s=−u
R
Ω, f |u|1

?=1}

{∫
Ω

|∇u|1+ε +
∫

Ω

a(x)|u|1+ε

}
· (1.41)
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This problem possesses a solution that we denote by uε, which satisfies the following equation: ∀ϕ ∈ D(Ω,R)
such that ϕ ◦ τ = ϕ,∀τ ∈ G, and ϕ ◦ s = −ϕ

−
∫

Ω

div σεϕ+
∫

Ω

a|uε|ε−1uεϕ = λε(G)
∫

Ω

f |uε|1
?−2uεϕ. (1.42)

In order to prove that equation (1.42) may be extended to every ϕ ∈ D(Ω), suppose by contradiction that there
exists ϕ ∈ D(Ω) such that

−
∫

Ω

div σεϕ+
∫

Ω

a|uε|ε−1uεϕ− λsε(G)
∫

Ω

f |uε|1
?−2uεϕ = α > 0

and define
ϕsG = ϕG − ϕG ◦ s

where ϕG has been defined in the proof of Theorem 1. Then ϕsG is G-invariant and s-antisymmetrical. By using
the H-invariance of Ω, a and f , and integrating over Ω with respect to the Haar measure dµ on Ω one obtains

−
∫

Ω

div σεϕsG +
∫

Ω

a|uε|ε−1uεϕ
s
G − λε(G)

∫
Ω

f |uε|1
?−2uεϕ

s
G = 2α

from which we get a contradiction.
Finally, one obtains that uε is a solution of (1.40). Now, it is not difficult to see that limε→0λ

s
ε(G) = λ̄s ≤

λs(G), as we did in Section 1.2.

Let ũε be the extension of uε by 0 outside of Ω. Then ũε ∈W 1,1+ε(Rn) and is bounded in W 1,1(Rn). Then,
up to a subsequence, it converges weakly to some v ∈ BV (Rn). By the compactness of the embedding from
W 1,1(Rn) into Lk(Rn) for all k < 1?, one may assume that ũε tends to v almost everywhere. As a consequence,
v ◦ τ = u, ∀τ ∈ G, and v ◦ s = −v, i.e. v is G-invariant and s-antisymmetrical. One can prove as we did for
Theorem 1 that σε tends to some function σ in every Lq(Ω) weakly, for every q < ∞, such that σ ∈ L∞(Ω).
Moreover |σ| ≤ 1, and (v, σ) verifies the P.D.E

−div σ + a sign v = λ̄s|v|1?−2v.

Multiplying this equation by vφ where φ ∈ D(Ω), one has:∫
Ω

σ.∇vφ+
∫

Ω

σv.∇φ+
∫

Ω

a|v|φ = λ̄s
∫

Ω

f |v|1? (1.43)

and multiplying (1.40) by ũεφ one has∫
Ω

|∇ũε|1+εφ+
∫

Ω

σũε.∇φ+
∫

Ω

a|ũε|1+εφ = λ̄s
∫

Ω

f |ũε|1
?

. (1.44)

Using Proposition 3, one can assume that there exist two nonnegative and H-invariant measures µ and ν on Ω̄,
a numerable set (xi) ⊂ Ω̄ also H-invariant, and some non-negative reals µi and νi, such that for all ϕ ∈ D(Rn),
one has (by passing to the limit in (1.44))

〈µ, ϕ〉 −
∫

Rn

σ.∇vϕ = λ̄s〈ν, fϕ〉· (1.45)

Substracting (1.43) from (1.45), one obtains∫
Rn

|∇v|ϕ −
∫

Rn

σ.∇vϕ +
∑
i

µiϕ(xi) = λ̄s
∑
i

νiϕ(xi)f(xi).
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In addition σ verifies:
−div σ + a sign v = λ̄sf |v|1?−2v

in Ω. We must prove that under the assumption (1.38) in Theorem 2, µi= νi = 0. For that aim, let h be a
|∇v|-measurable function and µ⊥ be a measure orthogonal to |∇u|, such that, according to the Radon-Nikodym
decomposition, one has

µ = h|∇v|+ µ⊥.

By Lemma 1 and the analogous of (1.34) in 2) of Proposition 3, one has

h|∇v| ≥ |∇v| (1.46)

and
µ⊥ ≥

∑
i

µiδxi . (1.47)

Using (1.46) and (1.47) in equation (1.45) one gets that

h|∇v| = σ.∇v onΩ̄ (1.48)

and
µ⊥ =

∑
i

µiδxi = λ̄
∑
i

νif(xi)δxi . (1.49)

From (1.49), one gets that as soon as f(xi) < 0, then µi = νi = 0. From (1.47), using |σ| ≤ 1 and Proposition 1,
one obtains that in the sense of measures

|σ.∇v| ≤ |∇v| on Ω

and then
σ.∇v = |∇v|

on Ω̄, and h = 1, |∇v|-almost everywhere. Using this in equation (1.45) with ϕ = 1 one gets that∫
Ω

|∇v|+
∫
∂Ω

|v|+
∫

Ω

a|v| = λ̄

∫
Ω

f |v|1? . (1.50)

By the 1-coercivity of a, one obtains that
∫

Ω
f |v|1? ≥ 0, and replacing this in the equation

1 =
∫

Ω

f |v|1? +
∑
i

νif(xi),

we derive that
∑
i νif(xi) ∈ [0, 1] for all i. This implies that for all i,

(f(xi)νi) ≤
1

CardOH (xi)
·

Indeed, if CardOH (xi) <∞, suppose by contradiction that there exists i ∈ N such that (f(xi)νi) > 1
CardOH(xi)

.
Then, summing over the orbit of xi one obtains a contradiction with

1 <

 ∑
xj /∈OH(xi)

f(xj)νj +
∑

xk∈OH(xi)

f(xk)νk +
∫

Ω

f |v|1?
 ≤ lim

ε→0

∫
Ω

f |uε|1? = 1.
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Using this inequality one obtains also that as soon as CardOH(xi) = ∞, νi = 0. We now write, using
Proposition 1 and the assumption λsGf(x)

n−1
n K(n, 1)CardOH(x)

−1
n < 1 for all x ∈ Ω̄:

µi ≤ λ̄sf(xi)νi = λ̄sf(xi)
1

1? f(xi)1− 1
1? ν

1− 1
1?

i ν
1

1?

i ≤ λsG(cardOH(xi)−1+ 1
1? f(xi)

1
1? ν

1
1?

i

≤ λsG(cardOH (xi)−1+ 1
1? f(xi)

1
1?K(n, 1)µi ≤ cµi

where c < 1.
This implies that for all i, µi = νi = 0, and one concludes as in the previous section.

2. Estimates and test functions

Theorem 4. Suppose that Ω is a bounded open set of Rn whose boundary is piecewise C1, that a and f are
two smooth functions on Ω̄, a being 1-coercive and f being positive somewhere, and that x0 ∈ Ω is such that
f(x0) > 0. Define

kf = inf{k ≥ 1,∆kf(x) 6= 0}1 (II.1)

ka = inf{k ≥ 0,∆ka(x0) 6= 0}· (II.2)
Then
i) if ka < kf , and ∆kaa(x0) < 0,

λ(Ω, a, f))f(x0)
1

1?K(n, 1)−1+ 1
1? < 1.

ii) If ka ≥ kf ≥ 2 and ∆kf f(x0) > 0 then

λ(Ω, a, f))f(x0)
1

1?K(n, 1)−1+ 1
1? < 1.

iii) If kf = 1 and a(x0) < 0,
λ(Ω, a, f))f(x0)

1
1?K(n, 1)−1+ 1

1? < 1.
Proof. Let uε be the characteristic function of the ball of center x0 and radius ε, where ε is choosen small enough
such that d(x0, ∂Ω) < ε. The ratio ∫

|∇uε|
(|B(x0, ε)|

n−1
n )

has value K(n, 1). Let us define J(uε) =
R
Ω |∇uε|+

R
B(x0,ε)

auε

(
R
B(x0,ε)

fu1?
ε )

n−1
n

. We shall prove, developing a and f around x0,

that for ε small, J(vε) < 1

K(n,1)f(x0)1− 1
n

. We write for every J ∈ N

∫
B(x0,ε)

a(x)dx =
∑
|j|≤J

Dja(x0)
j!

∫
B(x0,ε)

xjdx+ o(εn+J)

where j = (j1, ..jn), |j| = j1 + ..jn, Dj = ∂|j|

∂
j1
1 ∂jnn

and xj = xj11 x
j2
2 ..x

jn
n Arguing as in [6], Lemma 6, one has for

all J and K ∫
B(x0,ε)

a(x)dx= |Sn−1|
∑
j≤J

εn+2j ∆ja(x0)
j!

αn,j +O(εn+2J ),

∫
B(x0,ε)

f(x)dx= |Sn−1|
∑
k≤K

εn+2kαn,k
∆kf(x0)

k!
+O(εn+2K),

1∆k denotes the k-iterate of the Laplacian.
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where

αn,j =
Γ(j + 1

2 )Γ(1
2 )n−1

Γ(j + n
2 + 1)

·

One obtains ∫
|∇uε|+

∫
B(x0,ε)

auε(∫
B(x0,ε)

f
)n−1

n

=
n1− 1

n |Sn−1|
1
n

f(x0)1− 1
n

1 +
∑
j≤J

ε1+2j αn,j
j!

∆ja(x0)
|Sn−1|

+O
(
ε2+2J

)
1 +

∑
k≤K

nε2kαn,k∆kf(x0)
|Sn−1|k!f(x0))1/n−1

+O
(
ε2K+1

)−1+ 1
n

.

Suppose now that ka < kf , then 2ka + 1 < 2kf , and the first non zero term to consider in the expansion of

powers of ε above is ε2ka+1 αn,ka∆kaa(x0)
k! . Hence the result follows as soon as ∆kaa(x0) < 0.

Suppose that ka ≥ kf ≥ 2 and ∆kf (x0) > 0. Then the first non zero term in the expansion of powers of ε

above is (−1 + 1
n ) nε2kαn,k∆kf(x0)

|Sn−1|k!f(x0))1/n−1 which is strictly negative. The result follows.

3. Some specific examples

We present in this section some concrete situations where the results of the preceding section can apply:

Proposition 3.1. Assume that Ω is a bounded ball of center 0 and radius r > 0. Suppose that one of of the
three following situations occurs:

- kf (0) = 1 and a(0) < 0,
- kf (0) ≥ 2, ka(0) < kf (0) and ∆kaa(0) < 0,
- kf (0) ≥ ka(0) and ∆kf (0) > 0.

Then there exists a radial solution to the relaxed problem (1.11).

Proposition 3.2. Assume that a = 0 and f is not constant and positive somewhere. Suppose that there exists
x0 ∈ Ω on which f achieves its maximum, and that ∆kf f(x0) > 0. (necessarily kf > 1). Then, there exists a
solution to the problem

−div σ + a(x)sign u= f |u|1?−2u
σ.∇u= |∇u|

u is not identically zero,−σ.nu = |u| on ∂Ω.

Proposition 3.3. Assume that Ω is a solid torus of R3, obtained by rotation around the z-axis, let s be the
orthogonal symmetry with respect to the (x,y) plane, and let H = [G, s]; Let also a and f be smooth on Ω̄, f
being positive somewhere, a being such that (1.1) is satisfied. Then the problem −div σ + a(x)sign u= f |u|1?−2u

σ.∇u= |∇u|
u is not identically zero,−σ.nu = |u| on ∂Ω

possesses a nonnegative G-invariant solution u ∈ BV (Ω), and a nodal solution G-invariant and s-antisymmetrical
solution u ∈ BV (Ω), whose zero set is exactly the intersection of Ω with the (x, y) plane.
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Proposition 3.4. Let Ω be an annulus of Rn centered at 0, and a < 0 a real number such that (1.1) is satisfied.
Then problem (1.11) has a solution which satisfies: −div σ + a(x)sign u= λGs f |u|1

?−2u
σ.∇u= |∇u|

u is not identically zero,−σ.nu = |u| on ∂Ω

which is radial, and nonnegative. Moreover, this problem possesses infinitely many nodal solutions.

Proof of Proposition 3.4. Let G = O(Rn). Since for every x 6= 0, cardOG(x) = ∞, one gets by Theorem 1
that (1.11) possesses a nonnegative radial solution. For the second assertion of the Theorem, let P be some
hyperplan of Rn such that 0 ∈ P , and let DP be the orthogonal complement of P , 0 ∈ DP . We denote by
GP the group of rotations around DP and by sP the orthogonal symmetry with respect to P . In order to
verify the sufficient condition (1.37) in Theorem 2, we distinguish two cases: either x0 ∈ DP ∩ Ω and then

cardOH (x0) = cardOG(x0) = 2. Then the assumptions on a and f and Proposition 3.1 imply that λsG < 2
1
n

K(n,1) .
If x0 ∈ DP∩Ω, cardOG(x0) =∞ and condition (1.37) is once more verified. By Theorem 2, one gets the existence
of a nodal solution uP ∈ BV (Ω). In particular, the properties of symmetry of uP imply that uP1 6= uP2 (in the
sense of distributions for example). Since P is arbitrary, this proves the second part of the proposition.

4. The analogous of Pohoz̈aev identity

Theorem. Let Ω be a bounded open set of Rn which is piecewise C1. Let g be a continuous function from
R into R, and let G be its antiderivative which satisfies G(0) = 0. Suppose that u ∈ W 2,1

loc (Ω) ∩W 1,1
0 (Ω) is a

solution to the problem: 
−divσ = g(u)

u= 0 sur ∂Ω
σ.∇u= |∇u|

u≥ 0 on Ω.

Then

(n− 1)
∫

Ω

|∇u| = n

∫
Ω

G(u).

In particular, one cannot conclude that u = 0 in the case where g(u) = u1?−1.

Proof. Let ϕ0 be in C∞([0,∞[) such that ϕ0 = 1 on ]0, 1[, and ϕ = 0 for |t| ≥ 2. Let j ∈ N, and ϕj is defined
on RN by ϕj(x) = ϕ0( |x|j ). Then

|x||∇ϕj(x)| ≤ |x|
j

∣∣∣∣ϕ′0( |x|j
)∣∣∣∣ ≤ C

j
||ϕ′0||∞

with C some constant independent of j.
Let us multiply the equation by (xi−x?i )ϕju,i. One obtains after integrating by parts on the right hand side:∫

Ω

g(u)(xi − x?i )ϕju,i = −
∫

Ω

G(u)∂i ((x− x?i )ϕj) = −
∫

Ω

G(u)ϕj −
∫

Ω

G(u)(xi − x?i )ϕj,i

since G(0) = 0 and u = 0 on ∂Ω. The last integral tends to zero when j goes to infinity. We now treat the
integral on the left hand side:∫

Ω

−divσ(xi − x?i )ϕju,i =
∫

Ω

σiu,iϕj,i +
∫

Ω

σku,ik(xi − x?i )ϕj −
∫
∂Ω

σ.~n(xi − x?i )ϕju,i.
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By integrating by parts once more, one obtains∫
Ω

σku,ik(xi − x?i )ϕj =
∫

Ω

∂i(|∇u|)(xi − x?i )ϕj +
∫
∂Ω

|∇u|(xi − x?i )~niϕj

= −
∫

Ω

|∇u|ϕj −
∫

Ω

|∇u|(xi − x?i )ϕj,i +
∫
∂Ω

|∇u|(xi − x?i )~niϕj .

One can remark that the integrals
∫

Ω |∇u|(xi − x?i )ϕj,i and
∫

Ω σiu,iϕj,i tend to zero when j goes to infinity.
By passing to the limit when j goes to infinity, summing over i, using

∫
Ω |∇u| =

∫
Ω u

1? and the fact that since
u = 0 on ∂Ω, ∇u is parallel to ~n on ∂Ω, one finally gets the identity:

(n− 1)
∫

Ω

|∇u| = −n
∫

Ω

G(u).

When g(u) = u1?−1, one obtains:

(n− 1)
∫

Ω

|∇u| = n

1?

∫
Ω

u1? = (n− 1)
∫

Ω

|∇u|.

We have no contradiction as it was the case for the equations

−div (|∇u|p−2∇u) = up
?−1

u ∈W 1,p
0 ∩W 2,p

loc (Ω)
with p > 1.
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