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APPROXIMATE CONTROLLABILITY FOR A LINEAR MODEL
OF FLUID STRUCTURE INTERACTION ∗

Axel Osses
1

and Jean-Pierre Puel
2

Abstract. We consider a linear model of interaction between a viscous incompressible fluid and a
thin elastic structure located on a part of the fluid domain boundary, the other part being rigid.
After having given an existence and uniqueness result for the direct problem, we study the question
of approximate controllability for this system when the control acts as a normal force applied to the
structure. The case of an analytic boundary has been studied by Lions and Zuazua in [9] where, in
particular, a counterexample is given when the fluid domain is a ball. We prove a result of approximate
controllability in the 2d-case when the rigid and the elastic parts of the boundary make a rectangular
corner and if the control acts on the whole elastic structure.

Résumé. Nous considérons un modèle linéaire d’interaction entre un fluide visqueux incompressible
et une structure élastique mince située sur une partie de la frontière du domaine fluide, l’autre partie
de la frontière étant rigide. Après avoir donné un résultat d’existence et d’unicité pour le problème
direct, nous étudions la question de la contrôlabilité approchée pour ce système lorsque le contrôle agit
comme une force normale appliquée à la structure. Le cas d’une frontière analytique a été étudié par
Lions et Zuazua dans [9] où, en particulier, un contre exemple est donné lorsque le domaine fluide est
une boule. Nous montrons un résultat de contrôlabilité approchée dans le cas 2d quand les parties
rigide et élastique de la frontière forment un angle droit et si le contrôle agit sur toute la structure
élastique.
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1. Introduction

We consider a viscous incompressible fluid contained in a domain Ω of RN (N = 2 or 3), the boundary of
which, denoted by Γ, is made of two parts: a rigid part ΓR and a part ΓE which is a thin elastic structure
(membrane or shell). We consider a possibility of action (or control) on this system via a force h acting on a
part γ of ΓE , normal to the boundary.
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The movements of the fluid and of the elastic part of the boundary are coupled and therefore, the force h has
an effect on the fluid motion. We are interested here in studying this effect for some simplified models. More
specifically, we study the question of approximate controllability for the fluid velocity (and for the deformation of
the elastic structure) under the action of control h, in the case where the fluid motion is described by the Stokes
system coupled with a linear elastodynamic model for the elastic boundary ΓE . The question of approximate
controllability means the following: given any neighborhood of any triple (zd, ϕd, ψd) representing the desired
fluid velocity, structure displacement and structure velocity in a convenient space (which will be made precise
later on), can we choose h in a suitable space such that, at final time T , the triple (y(T ), w(T ), ∂w(T )

∂t ) of the
fluid velocity, structure displacement and structure velocity, lies in the given neighborhood.

Very few results are known on these questions, even for simple models. The answers seem to depend strongly
on the geometry or regularity of the domain. In [9], Lions and Zuazua give a counterexample to approximate
controllability when Ω is a ball. In a previous work [11], we proved that when Ω is a 2d-rectangle and γ = ΓE
is the union of two opposite sides, then we have approximate controllability. Here, we show that in the 2d-case,
when γ = ΓE and the joint between ΓE and ΓR contains an exact rectangular corner (which includes the
previous case) then again we have approximate controllability.

Of course these results are very specific and partial for a problem which has a lot of practical interest in
its general setting. When the fluid motion is governed by Navier-Stokes equations and the elastic structure
displacement by nonlinear elastodynamic equations, we have, at the moment, no result at all.

An interesting question is also to consider our linear system in the case where the control is performed via the
action of piezoelectric patches on the elastic part of the boundary, and to study what part of the fluid velocity
one can control by this mean. Again, this problem is completely open at the moment.

Our article is organized as follows:
in Section 2 we give the precise model that we consider (in a general geometry) with a correct mathematical
setting and we give the standard preliminary results;
in Section 3 we give our precise result and we give a first step of the proof following [7] and pointing out
the main difficulties and open questions.
in Section 4 we prove an auxiliary result on unique continuation for an eigenvalue problem and this will
complete the proof of our approximate controllability result.

2. Mathematical model and preliminary results

We consider a bounded connected open set Ω of RN (N = 2 or 3) with boundary Γ = ΓR ∪ ΓE where ΓR
and ΓE are two non-empty relatively open subsets of Γ. For simplicity, we assume that each of ΓR and ΓE
is regular, the joint between them being either smooth or convex corners. We denote by n the outward unit
normal vector at a point of Γ and by τ (if N = 2) or (τ1, τ2) (if N = 3) the unit tangent vector(s) (orthogonal
if N = 3) which generate the tangent (plane) to Γ.

In Ω we have an incompressible viscous fluid with viscosity ν > 0. Velocity y and pressure p of the fluid
satisfy the Stokes system. On the rigid part of the boundary denoted by ΓR, the fluid satisfies the no-slip
boundary conditions.

We denote by σ(y, p) the stress tensor

σij(y, p) = −pδij + 2νeij(y) (2.1)

where

eij =
1
2

(
∂yi
∂xj

+
∂yj
∂xi

)
· (2.2)

The elastic part of the boundary, denoted by ΓE , can be an elastic membrane or shell (arch). In order to
simplify the presentation, we take here the case of a shell (arch) that we suppose clamped on its edges. We
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only consider the deflection w of the structure (displacement normal to ΓE) which is then a function of time t
with values in H2

0 (ΓE) The stored elastic energy is represented by a quadratic form b(w,w) associated with a
symmetric bilinear form b(w, w̃) and a fourth order differential operator Bw such that

∀w, w̃ ∈ H2
0 (ΓE), b(w, w̃) =

∫
ΓE

Bw · w̃ dΓ. (2.3)

We assume a coercivity hypothesis on b, i.e.

∃α > 0, ∀w ∈ H2
0 (ΓE), b(w,w) ≥ α ‖w‖2H2

0 (ΓE) . (2.4)

The control variable h is a density of force, normal to ΓE , acting on a non-empty open part γ of ΓE and we
write χγ for the characteristic function of γ.

Coupling between the fluid motion and the elastic structure displacement is performed via continuity of
(normal) velocities and the normal force σ(y, p)n ·n induced by the fluid on ΓE . Let us notice that σ(y, p)n ·n
is defined, as the pressure, up to the addition of a constant in the space variable (which may depend on time).

We then obtain a full set of equations describing the motion of our system, complemented by initial condition.

∂y
∂t
− ν∆y +∇p = 0 in Ω× (0, T ) (2.5a)

div y = 0 in Ω× (0, T ) (2.5b)
y = 0 on ΓR × (0, T ) (2.5c)

y · τ = 0 (or y · τ i = 0, i = 1, 2) on ΓE × (0, T ) (2.5d)

y · n =
∂w

∂t
on ΓE × (0, T ) (2.5e)

y(0) = y0 in Ω (2.5f)

∂2w

∂t2
+ Bw = −σ(y, p)n · n + h · χγ on ΓE × (0, T ) (2.6a)

w(t) ∈ H2
0 (ΓE) a.e. in (0, T ) (2.6b)

w(0) = w0,
∂w

∂t
(0) = w1 in ΓE . (2.6c)

We now have to give a precise mathematical formulation of problem (2.5–2.6) and an existence result for the
direct problem.

We define the spaces

V = {z ∈ H1(Ω)N , div z = 0, z = 0 on ΓR,
z · τ = 0 on ΓE (or z · τ i = 0, i = 1, 2 on ΓE)}

H = {z ∈ L2(Ω)N , div z = 0, z · n = 0 on ΓR}
X = {(z, ϕ, ψ) ∈ V ×H2

0 (ΓE)× L2(ΓE), z · n = ψ on ΓE}·

Notice that when (z, ϕ, ψ) ∈ X , as a consequence of the fact that div z = 0 in Ω we have∫
ΓE

ψ dΓ = 0.
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Therefore X is a subset of V ×H2
0 (ΓE)× L2

0(ΓE), where

L2
0(ΓE) =

{
ψ ∈ L2(ΓE),

∫
ΓE

ψ dΓ = 0
}
·

Because of (2.4), we can suppose that H2
0 (ΓE) is equipped with the scalar product b(w, w̃).

Let A be the unbounded operator in H ×H2
0 (ΓE)× L2

0(ΓE) defined as follows:

D(A) = {(z, ϕ, ψ) ∈ X, ∃q ∈ L2(Ω), −ν∆z +∇q ∈ L2(Ω)N , (2.7)
σ(z, q)n · n ∈ L2(ΓE), Bϕ ∈ L2(ΓE), ψ ∈ H2

0 (ΓE)},

∀(z, ϕ, ψ) ∈ D(A), A

 z
ϕ
ψ

 =

 −ν∆z +∇q
−ψ

σ(z, q)n · n + Bϕ

 . (2.8)

Notice that when z ∈ V and −ν∆z +∇q ∈ L2(Ω)N , then as in [8] one can define σ(z, q)n ·n, up to a constant,
in H−

1
2 (Γ).

Lemma 2.1. The operator A is maximal monotone.

Proof. For λ > 0 and ε > 0, we consider the bilinear form

aλ,ε[(z, ϕ, ψ), (z̃, ϕ̃, ψ̃)] = ν

∫
Ω

∇z · ∇z̃ dx+ λ

∫
Ω

z · z̃ dx+ λ b(ϕ, ϕ̃) + ε b(ψ, ψ̃) + λ

∫
ΓE

ψ · ψ̃ dΓ

on the space
Y = {(z, ϕ, ψ) ∈ X, ψ ∈ H2

0 (ΓE)}·
For every (f , g, k) ∈ H ×H2

0 (ΓE)× L2
0(ΓE), there exists a unique (zε, ϕε, ψε) ∈ Y such that

aλ,ε[(zε, ϕε, ψε), (z̃, ϕ̃, ψ̃)] = (f , z̃)H + b(g, ϕ̃) +
∫

ΓE

kψ̃ dΓ, ∀(z̃, ϕ̃, ψ̃) ∈ Y. (2.9)

Moreover, (zε, ϕε, ψε) ∈ D(A).
In fact, this corresponds to solving the regularized problem

Aε

 zε

ϕε

ψε

+ λ

 zε

ϕε

ψε

 =

 f
g
k

 , (2.10)

where

Aε = A +

 0 0 0
0 0 0
0 0 εB

 .

Now letting ε tend to 0 it is easy to see that

(zε, ϕε, ψε) ⇀ (z, ϕ, ψ) in X-weakly,

with ψε ⇀ ψ in H2
0 (ΓE)-weakly, (z, ϕ, ψ) ∈ D(A), and (z, ϕ, ψ) satisfies

A

 z
ϕ
ψ

+ λ

 z
ϕ
ψ

 =

 f
g
k

 .
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This, together with the fact that A is positive, completes the proof of Lemma 2.1.

We now consider the following problem

d

dt

 y
w
η

+ A

 y
w
η

 =

 0
0
hχγ

 (2.11a)

y(0) = y0, w(0) = w0, η(0) = w1. (2.11b)

Theorem 2.2. If y0 ∈ H, w0 ∈ H2
0 (ΓE), w1 ∈ L2

0(ΓE) and if h belongs to L1(0, T ;L2(γ)), there exists a unique
solution (y, w, η) of (2.11) with

(y, w, η) ∈ C([0, T ];H ×H2
0 (ΓE)× L2

0(ΓE)),
y ∈ L2(0, T ;V ),
y · n = η on ΓE × (0, T ).

Moreover η = ∂w
∂t and (y, w) is solution (in a weak sense) of (2.5–2.6).

Proof. From Lemma 2.1 we see (cf. [4] or [12]) that D(A) is dense in H×H2
0 (ΓE)×L2

0(ΓE)N , that A is generator
of a continuous semigroup of contractions and therefore, if (y0, w0, w1) ∈ D(A) and h ∈ D(]0, T [;L2(γ)), there
exists a unique solution (y, w, η) of (2.11) with (y, w, η) ∈ C([0, T ]; D(A)) and η = ∂w

∂t .
Moreover, multiplying (2.11) by (y, w, η) in H×H1

0 (ΓE)×L2
0(ΓE), using (2.7–2.8), we obtain (with the usual

convention of summation for repeated indices)

1
2
d

dt
|y|2H +

1
2
d

dt
|η|2L2(ΓE) +

1
2
d

dt
b(w,w) + 2ν

∫
Ω

eij(y)eij(y)dx

−
∫

Γ

σ(y, p)n · y dΓ +
∫

ΓE

σ(y, p)n · nη dΓ =
∫
γ

hη dΓ. (2.12)

Using the definition of the space X and the second equation in (2.11a) we have y = 0 on ΓR × (0, T ), y · τ = 0
(or y · τi = 0, i = 1, 2) on ΓE × (0, T ) and y · n = η = ∂w

∂t on ΓE × (0, T ). From equality (2.12) we then obtain
the following energy estimate:

1
2
d

dt
|y|2H +

1
2
d

dt

∣∣∣∣∂w∂t
∣∣∣∣2
L2(ΓE)

+
1
2
d

dt
b(w,w) + 2ν

∫
Ω

|e(y)|2 dx =
∫
γ

h
∂w

∂t
dΓ. (2.13)

From the semigroup properties, or directly from the energy estimate above, we see that there exists C > 0 such
that

‖y‖2C([0,T ];H) +
∥∥∥∥∂w∂t

∥∥∥∥2

C([0,T ];L2(ΓE))

+ ‖w‖2C([0,T ];H2
0(ΓE)) + ‖y‖2L2(0,T ;V )

≤ C
(
|y0|2H + ‖w0‖2H2

0 (ΓE) + |w1|2L2
0(ΓE) + ‖h‖2L1(0,T ;L2(γ))

)
. (2.14)

Now if y0 ∈ H, w0 ∈ H2
0 (ΓE), w1 ∈ L2

0(ΓE) and h ∈ L1(0, T ;L2(γ)) we take approximation sequences
(yk0 , wk0 , wk1 ) ∈ D(A), hk ∈ D(]0, T [;L2(γ)) such that

(yk0 , w
k
0 , w

k
1 )→ (y0, w0, w1) in H ×H2

0 (ΓE)× L2
0(ΓE)

hk → h in L1(0, T ;L2(γ)).

For fixed k, there exists a unique solution (yk, wk, ηk) of (2.11).
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Using linearity of (2.11) and (2.14), it is easy to show that (yk, wk, ηk) is a Cauchy sequence in C([0, T ];H×
H2

0 (ΓE)×L2
0(ΓE)) and that yk is a Cauchy sequence in L2(0, T ;V ). Therefore (yk, wk, ηk) converges to (y, w, η)

in C([0, T ];H ×H2
0 (ΓE)× L2

0(ΓE)) and yk converges to y in L2(0, T ;V ).
It is easy to see that η = ∂w

∂t and y · n = η on ΓE × (0, T ).
In order to pass to the limit in the equation (2.11), the only difficulty is to pass to the limit in σ(yk , pk)n ·n.

We have:

yk → y in L2(0, T ;V )− ν∆yk +∇pk → −ν∆y +∇p in H−1(0, T ;V ).

Therefore, at least,

σ(yk , pk)n · n→ σ(y, p)n · n in H−1(0, T ;H−
1
2 (Γ))

and this completes the proof of Theorem 2.2.

Remark 2.3. Because div y = 0 in Ω, the solution (y, w, η) of (2.11) satisfies

∀t ∈ [0, T ],
∫

ΓE

η(t)dΓ = 0.

As η = ∂w
∂t we see that

∀t ∈ [0, T ],
∫

ΓE

w(t) dΓ =
∫

ΓE

w0 dΓ. (2.15)

3. Approximate controllability results

In [9], Lions and Zuazua considered the previous problem in the case of a domain Ω with analytic boundary
and γ = ΓE . They showed that approximate controllability is valid when the eigenvalues of the Dirichlet
problem in Ω are all simple and they gave a counterexample to approximate controllability when Ω is a ball.

Here, we want to study the case where Γ is not analytic (in particular when it contains a flat part) and
the situation is quite different. We give a positive result of approximate controllability when Ω has a special
geometry in dimension 2 and we point out the main difficulties in the general case.

Because of Remark 2.3, we introduce the following linear and affine subspaces:

W0 =
{
w ∈ H2

0 (ΓE),
∫

ΓE

w dΓ = 0
}

(3.1)

W = w0 +W0. (3.2)

Theorem 3.1. We suppose that N = 2 and that γ = ΓE (the control acts on the whole elastic structure).
Furthermore we assume that ΓR and ΓE are separately regular and that one junction point between ΓE and ΓR,
that we call A, is an exact rectangular corner, i.e. there exists a neighborhood U of A such that (ΓE ∩U) and
(ΓR ∩U) are two sides of a rectangular angle with vertex A.

Then problem (2.5–2.6) is approximately controllable in H × W × L2
0(ΓE), i.e. for every (y0, w0, w1) ∈

H ×H2
0 (ΓE)× L2

0(ΓE), the set of reachable states

R(T ) =
{(

y(T ), w(T ),
∂w

∂t
(T )
)
, h ∈ L1(0, T ;L2(γ))

}
(3.3)

is dense in H ×W × L2
0(ΓE).
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=γ

ΓR

EΓ
U

A

Figure 1. Shape of a domain satisfying conditions of Theorem 3.1.

Proof. (First part. Reduction to a unique continuation problem). In this section we give the first part of the
proof where we do not take into account the specific hypothesis of Theorem 3.1 in order to show the difficulties
arising in the general problem. In Section 4 we present the second and final part of this proof.

As we deal with a linear problem, using a simple translation, we only have to consider the case

y0 = 0; w0 = 0; w1 = 0,

and we then have to show that R(T ) is dense in H ×W0 × L2
0(ΓE). Because of Remark 2.3 we know that

R(T ) is a linear subspace of H × W0 × L2
0(ΓE). Therefore we have to prove that its orthogonal R(T )⊥ in

H ×W0 × L2
0(ΓE) is reduced to {0, 0, 0}.

Let (zT , ϕT , ψT ) ∈ R(T )⊥ and let us solve the backward adjoint problem

− d

dt

 z
ϕ
ψ

+ A∗

 z
ϕ
ψ

 = 0 (3.4a)

z(T ) = zT , ϕ(T ) = ϕT , ψ(T ) = ψT . (3.4b)

As the operator A is maximal monotone, so is A∗ [4] and therefore (3.4) has a unique solution

(z, ϕ, ψ) ∈ C([0, T ];H ×W0 × L2
0(ΓE))

with
z ∈ L2(0, T ;V ), z · n = ψ on ΓE × (0, T )

and
ψ =

∂ϕ

∂t
·

After an easy computation of A∗, (3.4) can be interpreted as the following system

−∂z
∂t
− ν∆z +∇q = 0 in Ω× (0, T ) (3.5a)

div z = 0 in Ω× (0, T ) (3.5b)
z = 0 on ΓR × (0, T ) (3.5c)

z · τ = 0 (or z · τ i = 0, i = 1, 2) on ΓE × (0, T ) (3.5d)

z · n = ψ =
∂ϕ

∂t
on ΓE × (0, T ) (3.5e)

z(T ) = zT in Ω, (3.5f)
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and

−∂ϕ
∂t

+ ψ = 0 on ΓE × (0, T ) (3.6a)

−∂ψ
∂t
−Bϕ+ σ(z, q)n · n = C on ΓE × (0, T ) (3.6b)

ϕ(t) ∈ H2
0 (ΓE) a.e. in (0, T ) (3.6c)

ϕ(T ) = ϕT , ψ(T ) = ψT on ΓE , (3.6d)

where C is a function from (0, T ) with values in R, since the left hand side in (3.6b) results orthogonal to
L2

0(ΓE). This implies also that for each t, C(t) is the same constant on all the connected components of ΓE .
We can eliminate ψ = ∂ϕ

∂t in (3.6) to obtain

∂2ϕ

∂t2
+ Bϕ− σ(z, q)n · n = C on ΓE × (0, T ) (3.7a)

ϕ(t) ∈ H2
0 (ΓE)N a.e. in (0, T ) (3.7b)

ϕ(T ) = ϕT ,
∂ϕ

∂t
(T ) = ψT on ΓE . (3.7c)

Moreover, for every solution of (3.4) and every solution of (2.11) we have

∀h ∈ L1(0, T ;L2(γ)), (3.8)

(y(T ), zT ) + b(w(T ), ϕT ) +
(
∂w

∂t
(T ), ψT

)
L2(ΓE)

=
∫ T

0

∫
γ

hψ dΓdt.

From (3.8), we see that (zT , ϕT , ψT ) ∈ R(T )⊥ is equivalent to∫ T

0

∫
γ

hψ dΓdt = 0, ∀h ∈ L1(0, T ;L2(γ)), (3.9)

or to

∂ϕ

∂t
= ψ = 0 on γ × (0, T ). (3.10)

Proving approximate controllability for the original problem is now equivalent to a unique continuation property,
namely to proving that (3.5, 3.7, 3.10) imply

zT = 0, ϕT = 0, ψT = 0.

The counterexample given in [9] when Ω is a ball shows that it is hopeless to prove the unique continuation
property by local methods in the neighborhood of a regular point of γ.

When γ 6= ΓE , (3.5, 3.7, 3.10) cannot be decoupled and it is a system of mixed type Stokes-Petrovskii. At
the moment, we do not know any method to try to prove the unique continuation property in this case and the
question is completely open.

When γ = ΓE , system (3.5, 3.7, 3.10) decouples. Because of (3.10) we have

∂ϕ

∂t
= 0 on ΓE × (0, T ), (3.11)

and therefore
z = 0 on Γ× (0, T ).
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From (3.5) z is then a solution of a Stokes system with homogeneous Dirichlet condition

−∂z
∂t
− ν∆z +∇q = 0 in Ω× (0, T ) (3.12a)

div z = 0 in Ω× (0, T ) (3.12b)
z = 0 on Γ× (0, T ) (3.12c)

z(T ) = zT in Ω. (3.12d)

Let us remark that as z ∈ C([0, T ];H) then we have zT · n = 0 on Γ.
Since the Stokes operator generates an analytic semigroup [12], z and ∇q are real analytic functions of t for

t < T with values in H2(Ω)N ∩H1
0 (Ω)N ×H1(Ω) under our regularity hypothesis on the domain.

Moreover, we can choose q such that ∫
Ω

q(t, x)dx = 0, t < T. (3.13)

This choice makes the function q itself a real analytic function of t for t < T (this can be verified using the
power expansion of ∇q and the Poincaré-Wirtinger inequality). Therefore, σ(z, q)n · n is also a real analytic
function of time t for t < T with values in H

1
2 (Γ) for example. This fact, together with condition (3.11) implies

that the function C in (3.7a) is a real analytic function from (0, T ) with values in R. Then we can take the time
derivative in (3.7a). Using the extra condition (3.11) we obtain

∂

∂t
σ(z, q)n · n = C0(t) on ΓE × (0, T ), (3.14)

where C0 = ∂C/∂t is also a real analytic function from (0, T ) with values in R. In other words, for each t,
C0(t) is a constant on ΓE , in fact, it is the same constant on all the connected components of ΓE . This will be
important since in order to avoid this constant, we will take the tangential gradient ∇τ in (3.14) to obtain

∇τ
∂

∂t
σ(z, q)n · n = 0 on ΓE × (0, T ). (3.15)

By analytic extension in time, we also have

∇τ
∂

∂t
σ(z, q)n · n = 0 on ΓE × (−∞, T ). (3.16)

On the other hand, we use the Fourier decomposition method for solving (3.12). Let

V0 = {z ∈ H1
0 (Ω)N , div z = 0}

and
H0 = {z ∈ L2(Ω)N , div z = 0, z · n = 0 on Γ},

endowed with the usual inner products and norms of H1
0 (Ω)N and L2(Ω)N respectively.

Let (zj)j≥1 be an orthonormal basis in H0 and orthogonal basis in V0 of eigenfunctions of the Stokes operator
associated with an increasing sequence of eigenvalues (λj)j≥1 (see [14]):

−ν∆zj +∇qj = λjzj in Ω (3.17a)
div zj = 0 in Ω (3.17b)

zj = 0 on Γ (3.17c)
(zj , zk)H0 = δjk, (zj , zk)V0 = 0 forj 6= k. (3.17d)
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In order that qj is completely defined, we take ∫
Ω

qj dx = 0.

We now take the decomposition of zT on this basis

zT =
∑
j≥1

ajzj . (3.18)

Then

z(t) =
∑
j≥1

aje
−λj(T−t)zj (3.19a)

q(t) =
∑
j≥1

aje
−λj(T−t)qj (3.19b)

σ(z, q)n · n =
∑
j≥1

aje
−λj(T−t)σ(zj , qj)n · n (3.19c)

and

∇τσ(z, q)n · n =
∑
j≥1

aje
−λj(T−t)∇τσ(zj , qj)n · n. (3.20)

All these series are uniformly converging in time for t ≤ T − δ, δ > 0.
Let us rewrite the eigenvalues by considering only distinct eigenvalues (with, possibly, multiplicity greater

that 1). We write (µk)k≥1 the strictly increasing sequence of eigenvalues of (3.12) and we define

zµk =
∑

j,λj=µk

ajzj (3.21)

qµk =
∑

j,λj=µk

ajqj , (3.22)

the projections of z and q over the eigenspace associated to µk. Then zµk = 0 if and only if aj = 0, ∀j, λj = µk,
and if zµk 6= 0, it is an eigenfunction of the Stokes operator associated to µk. We now have

∇τ [σ(z, q)n · n] =
∑
k≥1

e−µk(T−t)∇τ [σ(zµk , qµk)n · n]. (3.23)

As the eigenvalues µk are all distinct and positive, and due to the uniform convergence in time of the series,
condition (3.16) implies

∇τσ(zµk , qµk)n · n = 0 on ΓE ∀k ≥ 1. (3.24)

Therefore for every k ≥ 1, σ(zµk , qµk)n · n has to be constant on each connected component of ΓE . In fact,
because of the analyticity of σ(z, q)n ·n and from (3.14), for each K these constants have to be the same on all
of the connected components of ΓE , that is to say

∀k ≥ 0, ∃ck ∈ R, such that σ(zµk , qµk)n · n = ck on ΓE . (3.25)
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Indeed, if ck and c′k are two different constants on two different connected components of ΓE , by substracting
the corresponding associated series expansions of (3.14) on ΓE , and by using that C0 is the same in all the
conected components of ΓE , we obtain

0 =
∑
k≥1

µk(ck − c′k)e−µk(T−t), ∀t ∈ (−∞, T ), (3.26)

and this implies ck = c′k.
Now, as div zµk = 0 and zµk = 0 on Γ, we can notice that (see Appendix)

σ(zµk , qµk)n · n = −qµk on Γ. (3.27)

Summarizing the information, we have, for every k ≥ 1,

−ν∆zµk +∇qµk = µkzµk in Ω (3.28a)
div zµk = 0 in Ω (3.28b)

zµk = 0 on Γ (3.28c)

and

σ(zµk , qµk)n · n = −qµk = ck ∈ R on ΓE . (3.29)

In order to show that zT = 0 we have to show that (3.28) and (3.29) imply zµk = 0, ∀k ≥ 1, so that aj = 0,
∀j ≥ 1.

This corresponds to a unique continuation property for the eigenvalue problem which will be treated in the
next section.

Notice that up to now, among the specific hypothesis of Theorem 3.1, we have only used the hypothesis
γ = ΓE . The argument used to reduce the approximate controllability problem to a unique continuation one is
valid for general dimension N and for general geometries of Ω.

Let us assume for the moment that the unique continuation property for the eigenvalue problem is valid, i.e.
any solution zµk of (3.28) satisfying (3.29) must be 0.

Then zT = 0, z = 0 in Ω× (0, T ) and q(t) = c(t) in Ω× (0, T ), so that

σ(z, q)n · n = −c(t).

From (3.10) we have ψT = 0 and ϕ(t) = ϕT , for all t ≤ T . Now (3.7) gives

BϕT = −c(t) = −c ∈ R on ΓE
ϕT ∈ W0.

After multiplying by ϕT and integrating on ΓE the equation above, from definition (3.1) of W0 we easily deduce
that b(ϕT , ϕT ) = 0, thus the coercivity hypothesis (2.4) implies ϕT = 0.

Therefore the unique continuation property for the eigenvalue problem implies approximate controllability
for our original system (2.5, 2.6).

Remark 3.2. In the case γ = ΓE that we have considered, the system (3.5, 3.7, (3.10) is decoupled and
therefore the problem under consideration is equivalent to the study of the approximate controllability for the
Stokes system with boundary control acting on the normal component of the velocity on a part of the boundary.
Let us mention that the complementary problem of the approximate controllability of the Stokes system with
boundary control acting only on the tangential component of the velocity has been studied in [10].
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4. Unique continuation property for the eigenvalue problem

The second part of the proof of Theorem 3.1 is given in this section by proving Theorem 4.1, a unique
continuation result for (3.28–3.29) under the specific hypothesis of Theorem 3.1.

Let us consider the eigenvalue problem: find (z, q) ∈ V0 × L2(Ω) and

−ν∆z +∇q = µz in Ω (4.1a)
div z = 0 in Ω (4.1b)

z = 0 on Γ (4.1c)

with the additional condition

σ(z, q)n · n = −q = c ∈ R on ΓE . (4.2)

We want to prove that (4.1, 4.2) imply
z = 0 in Ω.

This is a unique continuation property for the eigenvalue problem.

Theorem 4.1. We suppose that N = 2, ΓR and ΓE are separately regular and one junction point between
ΓR and ΓE, that we call A, is an exact rectangular corner, i.e. there exists a neighborhood U of A such that
(ΓE ∩U) and (ΓR ∩U) are the two sides of a rectangular angle with vertex A.

Then any solution z of (4.1, 4.2) verifies z = 0 in Ω.

Proof. As div z = 0 and Ω is a 2d connected domain, we can introduce the stream function (cf. [14]). Let ψ
be such that z =

(
∂ψ
∂x2

,− ∂ψ
∂x1

)
. Condition z = 0 on Γ implies that ∇ψ = 0 on Γ, that is to say ∂ψ

∂n = 0 and ψ

constant on each connected component of Γ. We take the choice ψ = 0 on Γ. Moreover −∆ψ = ∂z2
∂x1
− ∂z1

∂x2
in

Ω. Therefore, it is easy to see that ψ is also the unique solution of the following biharmonic problem:

∆2ψ = −µ∆ψ in Ω (4.3a)
ψ = 0 on Γ (4.3b)

∂ψ

∂n
= 0 on Γ, (4.3c)

with an additional boundary condition. This condition can be formally obtained by taking the tangential
component of the trace on the boundary of equation (4.1a) and by using the supplementary condition (4.2). In
this way we obtain:

∂

∂n
∆ψ = 0 on ΓE . (4.4)

Without loss of generality, we can assume, taking Ox and Oy as rectangular axis, that A is the origin O, U is a
ball centered at the origin, (ΓE ∪U) is supported by Ox, (ΓR ∩U) is supported by Oy and Ω∩U is contained
in

{(x, y) ∈ R2, x > 0, y > 0}.
Let us write

Ũ = U ∩ {(x, y) ∈ R2, x > 0}
Γ̃R = {(x, y) ∈ R2, x = 0} ∩U
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Figure 2. Fig. 2. Extension by parity in the proof of Theorem 4.1.

and let us extend ψ by parity to Ũ by

ψ̃(x, y) =

{
ψ(x, y) if (x, y) ∈ Ũ, y ≥ 0
ψ(x,−y) if (x, y) ∈ Ũ, y < 0.

Then ∆ψ̃ is “continuous” across ΓE ∩U and because of (4.4) we have

∆2ψ̃ = −µ∆ψ̃ in Ũ (4.5a)

ψ̃ = 0 on Γ̃R (4.5b)
∂

∂n
ψ̃ = 0 on Γ̃R. (4.5c)

Therefore there exists a ball B(0, δ) such that ψ̃ is real analytic in B(0, δ) ∩ {(x, y) ∈ R2, x ≥ 0} (see [8], Vol.
III, p. 32, Th. 1.3).

Now we can expand ψ in power series of x and y in Ω ∩B(0, δ):

ψ(x, y) =
∑
i,j≥0

aijx
iyj. (4.6)

From (4.3) we obtain for each i, j ≥ 0:

(i+ 4)(i+ 3)(i+ 2)(i+ 1)ai+4,j + 2(i+ 2)(i+ 1)(j + 2)(j + 1)ai+2,j+2

+ (j + 4)(j + 3)(j + 2)(j + 1)ai,j+4 − µ [(i+ 2)(i+ 1)ai+2,j + (j + 2)(j + 1)ai,j+2] .
(4.7)

ai,0 = 0; ai,1 = 0 ∀i ≥ 0 (4.8)
a0,j = 0; a1,j = 0 ∀j ≥ 0. (4.9)

And (4.4) gives

ai,3 = 0 ∀i ≥ 0. (4.10)

From (4.7, 4.8) and (4.10) we easily deduce

ai,2k+1 = 0 ∀i ≥ 1,∀k ≥ 0. (4.11)
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Now, using (4.8, 4.9) and taking i = 0, j = 0, then i = 1, j = 0 in (4.7) we obtain

a2,2 = 0 (4.12)
a3,2 = 0. (4.13)

Let us assume the following recurrence hypothesis

a2k,2 = a2(k−1),4 = . . . = a2,2k = 0 (4.14)
a2k+1,2 = a2k−1,4 = . . . = a3,2k = 0. (4.15)

Notice that we have just shown in (4.12, 4.13) that (4.14, 4.15) are valid for k = 1. Let us show that we have

a2k+2,2 = a2k,4 = . . . = a2,2(k+1) = 0 (4.16)
a2k+3,2 = a2k+1,4 = . . . = a3,2(k+1) = 0. (4.17)

By multiplying both sides by i!j! we rewrite (4.7) as

(i+ 4)!j!ai+4,j + 2(i+ 2)!(j + 2)!ai+2,j+2 + i!(j + 4)!ai,j+4 (4.18)
= −µ [(i+ 2)!j!ai+2,j + i!(j + 2)!ai,j+2] ∀i, j ≥ 0.

We take successively in (4.18):

i = 2k, j = 0; i = 2(k − 1), j = 2; . . . ; i = 0, j = 2k.

Using (4.8, 4.9, 4.14) we obtain the following (k + 1)× (k+ 1) linear system (notice that all right hand sides of
(4.18) are zero):

Mk+1Ak+1 = 0,

where

Ak+1 =

 a2k+2,2

...
a2,2k+2


and

Mk+1 =



2(2k+2)!2! (2k)!4!

(2k+2)!2! 2(2k)!4! (2k−2)!6!

(2k)!4! 2(2k−2)!6! (2k−4)!8!

. . . . . . . . .
. . . . . . . . .

6!(2k−2)! 2·4!(2k)! 2!(2k+2)!

4!(2k)! 2·2!(2k+2)!


.

Then

detMk+1 = [(2k + 2)!2!][(2k)!4!] . . . [2!(2k + 2)!]∆k+1,
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where ∆k+1 is the following (k + 1)× (k + 1) determinant:

∆k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

. . . . . . . . .
. . . . . . . . .

1 2 1
1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is easy to see by induction that ∆k+1 = k + 2, since ∆k+1 = 2∆k −∆k−1 and ∆1 = 2. Therefore

Ak+1 =


0
...
0
...
0

 ,

which proves (4.16).
Now we take successively in (4.18):

i = 2k + 1, j = 0; i = 2k − 1, j = 2; . . . ; i = 1, j = 2k

and we obtain, using (4.8), (4.9) and (4.15):

Nk+1Bk+1 = 0,

where

Bk+1 =

 a2k+3,2

...
a3,2k+2


and

Nk+1 =



2(2k+3)!2! (2k+1)!4!

(2k+3)!2! 2(2k+1)!4! (2k−1)!6!

. . .
. . .

. . .
. . . . . . . . .

7!(2k−2)! 2·5!(2k)! 3!(2k+2)!

5!(2k)! 2·3!(2k+2)!


.

We have here
detNk+1 = [(2k + 3)!2!][(2k + 1)!4!] . . . [3!(2k + 2)!]∆k+1,

so that we obtain

Bk+1 =


0
...
0
...
0

 ,

which proves (4.17).
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Therefore, we have

ai,2k = 0 ∀i ≥ 0, ∀k ≥ 0, (4.19)

which, together with (4.11), proves that
ψ = 0 in Ω

and
z = 0, q = cte in Ω,

and the proof of Theorem 4.1 is complete.

5. Comments and conjectures

The previous proof uses all conditions (4.3) and (4.4) locally but in the neighborhood of a rectangular corner
Γ. In addition, it uses the real analyticity of ψ in that neighborhood.

As already mentioned, the counterexample in the case of a ball given in [9] shows that it is hopeless to use a
local argument in the neighborhood of a regular point of Γ.

The hypothesis saying that the junction between ΓE and ΓR is an exact rectangular corner seems purely
technical but at the moment we do not know how to extend the proof of Theorem 4.1 to other cases.

Extensions of results of [6] on singularities can perhaps be used to prove analyticity in the neighborhood of
convex corners. The 3d-case has to be treated directly on the Stokes system and the geometric conditions are
much more difficult to write.

Nevertheless, our conjecture is that Theorem 4.1 is valid if Γ is not analytic (a first step would be to prove
it when Γ has a convex corner).

A second conjecture would be that, when Γ is analytic, the only counterexample to uniqueness property above
is the case of a ball. The counterexample in which Ω is a ball corresponds to the existence of an eigenfunction
for the Stokes operator which induces a constant pressure on a part of the boundary. There is of course a strong
relation between our problem and the ones treated by Berenstein [1, 2], Beretta and Vogelius [3], Vogelius [15],
Williams [16] and others [5, 13] related to the Pompeiu problem.

6. Appendix

Proposition 6.1. Let Ω be a bounded connected open set in RN (N = 2 or 3) with Lipschitz boundary Γ and
unit exterior normal n. Let z ∈ H2(Ω)N ∩H1

0 (Ω)N with div z = 0. Then

(∇z)n · n = 0 on Γ. (6.1)

Proof. We take the standard notation of implicit summation of repeated indices. We do the proof for N = 2,
the proof for the case N = 3 is very similar. We will use the normal n = (n1, n2) and the tangent τ = (τ1, τ2) =
(−n2, n1) on Γ. We can prove the result for z ∈ H3(Ω)2 ∩H1

0 (Ω)2 and then use a density argument. We take a
test function φ ∈ H1(Ω)2. From div z = 0 it is clear that

0 =
∫

Ω

∂

∂xj

(
∂zi
∂xi

)
· φj dx

=
∫

Ω

∂

∂xi

(
∂zi
∂xj

)
· φj dx

=
∫

Γ

∂zi
∂xj

ni φj dΓ−
∫

Ω

∂zi
∂xj

∂φj
∂xi

dx

=
∫

Γ

(
∂zi
∂xj

ni nj

)
(φj nj) dΓ +

∫
Γ

(
∂zi
∂xj

ni τj

)
(φj τj) dΓ−

∫
Ω

∂zi
∂xj

∂φj
∂xi

dx.
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Since z = 0 on Γ we have ∂zi
∂xj

τj = 0 and then∫
Γ

(
∂zi
∂xj

ni nj

)
(φj nj) dΓ−

∫
Ω

∂zi
∂xj

∂φj
∂xi

dx = 0, ∀φ ∈ H1(Ω)2. (6.2)

Taking first a test function φ with divφ = 0 in Ω we obtain from (6.2) that∫
Γ

(
∂zi
∂xj

ni nj

)
g dΓ = 0, ∀g ∈ L2(Γ),

∫
Γ

g dΓ = 0,

that is to say

∂zi
∂xj

ni nj = c on Γ,

where c is a constant on Γ. Taking then φ(x) = x we obtain from (6.2) that

0 =
∫

Γ

(
∂zi
∂xj

ni nj

)
(xj nj) dΓ = c

∫
Γ

xj nj dΓ = cN meas(Ω),

and this implies c = 0.

References

[1] C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 (1980) 128–144.
[2] C. Berenstein, The Pompeiu problem, what’s new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and appli-

cations. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow:
Longman. Pitman Res. Notes Math. Ser. 347 (1996) 1–11.

[3] E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary
angles. Asymptotic Anal. 11 (1995) 289–315.
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