Approximation of control problems involving ordinary and impulsive controls
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999) , pp. 159-176.
@article{COCV_1999__4__159_0,
     author = {Camilli, Fabio and Falcone, Maurizio},
     title = {Approximation of control problems involving ordinary and impulsive controls},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {159--176},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     zbl = {0929.49018},
     mrnumber = {1816510},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1999__4__159_0/}
}
Camilli, Fabio; Falcone, Maurizio. Approximation of control problems involving ordinary and impulsive controls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999) , pp. 159-176. http://www.numdam.org/item/COCV_1999__4__159_0/

[1] M. Bardi and I. Capuzzo Dolcetta, Viscosity solutions of Bellman equation and optimal deterministic control theory. Birkhäuser, Boston ( 1997). | MR 1484411 | Zbl 0890.49011

[2] M. Bardi and M. Falcone, An approximation scheme for the minimum time function. SIAM J. Control Optim. 28 ( 1990) 950-965. | MR 1051632 | Zbl 0723.49024

[3] G. Barles, Deterministic Impulse control problems. SIAM J. Control Optim. 23 ( 1985) 419-432. | MR 784578 | Zbl 0571.49020

[4] G. Barles and P. Souganidis, Convergence of approximation scheme for fully nonlinear second order equations. Asymptotic Anal. 4 ( 1991) 271-283. | MR 1115933 | Zbl 0729.65077

[5] E. Barron, R. Jensen and J.L. Menaldi, Optimal control and differential games with measures. Nonlinear Anal. TMA 21 ( 1993) 241-268. | MR 1237586 | Zbl 0799.90139

[6] A. Bensoussan and J.L. Lions, Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris ( 1984). | MR 756234

[7] Aldo Bressan, Hyperimpulsive motions and controllizable coordinates for Lagrangean systems. Atti Accad. Naz. Lincei, Mem Cl. Sc. Fis. Mat. Natur. 19 ( 1991). | MR 1163634

[8] A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields. J. Optim. Th. et Appl. 71 ( 1991) 67-83. | MR 1131450 | Zbl 0793.49014

[9] F. Camilli and M. Falcone, Approximation of optimal control problems with state constraints: estimates and applications, in Nonsmooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN, 1993) Springer, New York ( 1996) 23-57. | MR 1411705 | Zbl 0860.65055

[10] I. Capuzzo Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation. Ann. Inst. H.Poincaré Anal. Nonlin. 6 ( 1989) 161-184. | Numdam | MR 1019113 | Zbl 0674.49028

[11] I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of Bellman equation of deterministic control theory. Appl. Math. Optim. 11 ( 1984) 161-181. | MR 743925 | Zbl 0553.49024

[12] M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equation. Trans. Amer. Math. Soc. 282 ( 1984) 487-502. | MR 732102 | Zbl 0543.35011

[13] C. W. Clark, F.H. Clarke and G.R. Munro, The optimal exploitation of renewable resource stocks. Econometrica 48 ( 1979) 25-47. | Zbl 0396.90026

[14] J.R. Dorroh and G. Ferreyra, Optimal advertising in exponentially decaying markets. J. Optim. Th. et Appl. 79 ( 1993) 219-236. | MR 1252135 | Zbl 0797.90055

[15]J.R. Dorroh and G. Ferreyra, A multistate multicontrol problem with unbounded controls. SIAM J. Control Optim. 32 ( 1994) 1322-1331. | MR 1288253 | Zbl 0823.90073

[16] M. Falcone, A numerical approach to the infinite horizon problem. Appl. Math. et Optim. 15 ( 1987) 1-13 and 23 ( 1991) 213-214. | MR 866164 | Zbl 0715.49023

[17] M. Falcone, Numerical solution of Dynamic Programming equations, Appendix to M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston ( 1997).

[18] W. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag ( 1992). | MR 2179357 | Zbl 0773.60070

[19] H. Kushner and P. Dupuis, Numerical methods for stochastic control problems in continuous time. Springer-Verlag ( 1992). | MR 1217486 | Zbl 0754.65068

[20] J.P. Marec, Optimal space trajectories. Elsevier ( 1979). | Zbl 0435.70029

[21] B.M. Miller, Generalized solutions of nonlinear optimization problems with impulse control I, II. Automat. Remote Control 55 ( 1995).

[22] B.M. Miller, Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34 ( 1996) 199-225. | MR 1372911 | Zbl 0843.49021

[23] M. Motta and F. Rampazzo, Space-time trajectories of nonlinear system driven by ordinary and impulsive controls. Differential and Integral Equations 8 ( 1995) 269-288. | MR 1296124 | Zbl 0925.93383

[24] F. Rampazzo, On the Riemannian Structure of a Lagrangian system and the problem of adding time-dependent constraints as controls. Eur. J. Mech. A/Solids 10 ( 1991) 405-431. | MR 1129328 | Zbl 0769.70020

[25] E. Rouy, Numerical approximation of viscosity solutions of first-order Hamilton-Jacobi equations with Neumann type boundary conditions. Math. Meth. Appl. Sci. 2 ( 1992) 357-374. | MR 1181342 | Zbl 0764.65052

[26] P. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Diff. Eq. 57 1-43. | MR 803085 | Zbl 0536.70020