@article{COCV_1998__3__361_0, author = {Casas, E. and Kavian, O. and Puel, J.-P.}, title = {Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {361--380}, publisher = {EDP-Sciences}, volume = {3}, year = {1998}, mrnumber = {1660947}, zbl = {0911.49003}, language = {en}, url = {http://www.numdam.org/item/COCV_1998__3__361_0/} }
TY - JOUR AU - Casas, E. AU - Kavian, O. AU - Puel, J.-P. TI - Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1998 SP - 361 EP - 380 VL - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1998__3__361_0/ LA - en ID - COCV_1998__3__361_0 ER -
%0 Journal Article %A Casas, E. %A Kavian, O. %A Puel, J.-P. %T Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity %J ESAIM: Control, Optimisation and Calculus of Variations %D 1998 %P 361-380 %V 3 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1998__3__361_0/ %G en %F COCV_1998__3__361_0
Casas, E.; Kavian, O.; Puel, J.-P. Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 361-380. http://www.numdam.org/item/COCV_1998__3__361_0/
[1] On the number of solutions of nonlinear equations in ordered Banach spaces. J. Func. Anal., 11 1972, 346-384. | MR | Zbl
:[2] Almost everywhere convergence of the gradients of solutions to elliptic and parabolie equationsNonlinear Anal., Theory, Methods, Appl., 19 1992, 581-597. | MR | Zbl
, :[3] An introduction to the study of stellar structures. Dover Publishing Inc., 1985. | MR | Zbl
:[4] Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rational Mech. Anal., 58 1975, 207-218. | MR | Zbl
, :[5] Diffusion and heat transfer in chemical kinetics. Second edition, Plenum Press, 1969.
:[6] Quelques résultats sur le problème -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 289-292. | MR | Zbl
, , :[7] Some problems in the theory of quasi-linear equations. Uspekhi Mat. Nauk, (N.S.), 14 (86), 1959, 87-158 (in russian); Amer. Math. Soc. Transl, (Ser. 2), 29, 1963, 289-292. | MR
:[8] Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe. Comm. PDE, 5 (8), 1980, 791-836. | MR | Zbl
, :[9] Solution singulière radiale de -∆u = λeu. C. R. Acad. Sci. Paris, 307, série I, 1988, 379-382. | MR | Zbl
, :[10] Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21 1972, 979-1000. | MR | Zbl
:[11] Sur l'unicité du problème de cauchy et le prolongement unique pour des équations elliptiques à coefficients non localement bornés. J. Diff. Eq., 43 1982, 28-43. | MR | Zbl
, :[12] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, 15 1965, 189-258. | Numdam | MR | Zbl
: