Uniqueness results for stokes equations and their consequences in linear and nonlinear control problems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 1  (1996), p. 267-302
@article{COCV_1996__1__267_0,
     author = {Fabre, Caroline},
     title = {Uniqueness results for stokes equations and their consequences in linear and nonlinear control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {1},
     year = {1996},
     pages = {267-302},
     zbl = {0872.93039},
     mrnumber = {1418484},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1996__1__267_0}
}
Fabre, Caroline. Uniqueness results for stokes equations and their consequences in linear and nonlinear control problems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 1 (1996) , pp. 267-302. http://www.numdam.org/item/COCV_1996__1__267_0/

[1] J.-M. Coron: On the controllability of 2-D incompressible Navier Stokes equations with the Navier slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, www.emath.fr/cocv/, 1, 1996, 35-75. | Numdam | MR 1393067 | Zbl 0872.93040

[2] C. Fabre, J.-P. Puel and E. Zuazua: Approximate controllability of the semilinear heat equation, Proc. of the Royal Soc. of Edinburgh, 125A, 1995, 31-61. | MR 1318622 | Zbl 0818.93032

[3] C. Fabre and G. Lebeau: Prolongement unique des solutions de l'équation de Stokes, Comm. Part. Diff. Eq., 21, 1996, 573-596. | MR 1387461 | Zbl 0849.35098

[4] E. Fernandez-Cara and J. Real: On a conjecture due to J.-L. Lions, Non Linear Analysis, Theory, Methods and Applications, 1995. | Zbl 0844.35082

[5] A. Fursikov et O. Imanuvilov: Controllability of evolution equations, Lecture note series 34, Res. Inst. Math, GARC, Seoul National University, 1996. | MR 1406566 | Zbl 0862.49004

[6] L. Hörmander: Linear Partial Differential Operators, Tome 3, Springer-Verlag, 1985. | MR 404822

[7] G. Lebeau and L. Robbiano: Contrôle exact de l'équation de la chaleur, Comm. Part. Diff. Eq., 20, 1995, 335-356. | MR 1312710 | Zbl 0819.35071

[8] J.-L. Lions: Remarks on approximate controllability, J. Analyse Math., 59, 1992, 103-116. | MR 1226954 | Zbl 0806.35101

[9] X. Saint Raymond: Elementary introduction to the theory of pseudodifferentiel operators. Studies in advance math, 1991. | MR 1211419 | Zbl 0847.47035

[10] D. Robert: Autour de l'approximation semi-classique. Progress in Math. n° 68, Birkhauser, 1987. | MR 897108 | Zbl 0621.35001

[11] J.-C. Saut and B. Scheurer: Unique continuation for some evolution equations, Journal Differential Equations, 66, (1), 1987, 118-139. | MR 871574 | Zbl 0631.35044

[12] J.-C. Saut and R. Temam: Generic properties of Navier Stokes equations. Indiana Univ. Math. Journal 29, 1980, 427-445. | MR 570691 | Zbl 0445.76023

[13] L. Tartar: Topics in nonlinear analysis. Publications mathématiques d'Orsay, 78.13. | Zbl 0395.00008

[14] E. Zuazua: Exact boundary controllability for the semilinear wave equation. Nonlinear differential equations and their applications, H. Brezis and J.-L. Lions Eds., Séminaire du Collège de France 1987-1988, vol X, Research Notes in Mathematics, Pitman, p. 357-391, 1991. | MR 1131832 | Zbl 0731.93011

[15] J.-L. Lions and E. Zuazua: A generic uniqueness result for the Stokes System and its control theoretical consequences. In the volume Partial Differential Equations and Applications, P. Marcellini, G. Talenti and E. Visentini eds., Marcel-Dekker Inc., LNPAS # 177, 221-235, 1996. | MR 1371594 | Zbl 0852.35112