@article{COCV_1996__1__207_0, author = {Gr\"une, Lars}, title = {Discrete feedback stabilization of semilinear control systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {207--224}, publisher = {SMAI (Soci\'et\'e de math\'ematiques appliqu\'ees et industrielles)}, address = {Paris}, volume = {1}, year = {1996}, mrnumber = {1405041}, zbl = {0867.93071}, language = {en}, url = {http://www.numdam.org/item/COCV_1996__1__207_0/} }
TY - JOUR AU - Grüne, Lars TI - Discrete feedback stabilization of semilinear control systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1996 SP - 207 EP - 224 VL - 1 PB - SMAI (Société de mathématiques appliquées et industrielles) PP - Paris UR - http://www.numdam.org/item/COCV_1996__1__207_0/ LA - en ID - COCV_1996__1__207_0 ER -
%0 Journal Article %A Grüne, Lars %T Discrete feedback stabilization of semilinear control systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 1996 %P 207-224 %V 1 %I SMAI (Société de mathématiques appliquées et industrielles) %C Paris %U http://www.numdam.org/item/COCV_1996__1__207_0/ %G en %F COCV_1996__1__207_0
Grüne, Lars. Discrete feedback stabilization of semilinear control systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 1 (1996), pp. 207-224. http://www.numdam.org/item/COCV_1996__1__207_0/
[1] Local Stabilizability of Nonlinear Control Systems, World Scientific, Singapore, 1992. | MR | Zbl
:[2] Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, R.W. Brockett, R.S. Millman, and H.J. Sussmann, eds., 181-191, Birkhäuser, Boston, 1983. | MR | Zbl
:[3] Discrete dynamic programming and viscosity solutions of the Bellman equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (supplément), 1989, 161-184. | Numdam | MR | Zbl
and :[4] Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11, 1984, 161-181. | MR | Zbl
and :[5] Stabilization of nonlinear systems: A bilinear approach, Math. Control Signals Syst., 6, 1993, 224-246. | MR | Zbl
, , and :[6] Asymptotic controllability and feedback stabilization, in Proc. Conf. on Information Sciences and Systems (CISS 96), Princeton, NJ, 1996. To appear, full version submitted.
, , , and :[7] Control of bursting in boundary layer models, Appl. Mech. Rev., 47, 1994, 139-143.
, , and :[8] Linear control semigroups acting on projective space, J. Dyn. Differ. Equations, 5, 1993, 495-528. | MR | Zbl
and :[9] Maximal and minimal Lyapunov exponents of bilinear control systems, J. Differ. Equations, 101, 1993, 232-275. | MR | Zbl
and ,[10] Asymptotic null controllability of bilinear systems, in Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications Vol. 32, Warsaw, 1995, 139-148. | MR | Zbl
and ,[11] A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15, 1987, 1-13. Corrigenda, ibid. 23, 1991, 213-214. | MR | Zbl
:[12] Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67, 1994, 315-344. | MR | Zbl
and :[13] An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math., 1996. To appear. | MR | Zbl
:[14] Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 1996. To appear. | MR | Zbl
,[15] On stabilizing feedback attitude control, J. Optimization Theory Appl., 31, 1980, 373-384. | MR | Zbl
:[16] On the synthesis of stabilizing feedback control via Lie algebraic methods, SIAM J. Control Optim., 18, 1980, 352-361. | MR | Zbl
,[17] Nonlinear Control systems: An Introduction, Springer Verlag, Berlin, 1989. | MR | Zbl
:[18] Game-Theoretical Control Problems, Springer Verlag, New York, 1988. | Zbl
and :[19] Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982. | MR | Zbl
:[20] Nonlinear regulation: The piecewise linear approach, IEEE Trans. Autom. Control, AC-26, 1981, 346-358. | MR | Zbl
:[21] Feedback stabilization using two-hidden-layer nets, IEEE Trans. Neural Networks, 3, 1992, 981-990.
:[22] Maximal Lyapunov exponents and rotation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71, 1993, 549-567. | MR | Zbl
and :[23] Introduction to Numerical Analysis, Springer Verlag, New York, 1980. | MR | Zbl
and :