A separation theorem for expected value and feared value discrete time control
ESAIM: Control, Optimisation and Calculus of Variations, Volume 1 (1996), pp. 191-206.
@article{COCV_1996__1__191_0,
     author = {Bernhard, Pierre},
     title = {A separation theorem for expected value and feared value discrete time control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {191--206},
     publisher = {SMAI (Soci\'et\'e de math\'ematiques appliqu\'ees et industrielles)},
     address = {Paris},
     volume = {1},
     year = {1996},
     mrnumber = {1401447},
     zbl = {0878.93062},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1996__1__191_0/}
}
TY  - JOUR
AU  - Bernhard, Pierre
TI  - A separation theorem for expected value and feared value discrete time control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1996
SP  - 191
EP  - 206
VL  - 1
PB  - SMAI (Société de mathématiques appliquées et industrielles)
PP  - Paris
UR  - http://www.numdam.org/item/COCV_1996__1__191_0/
LA  - en
ID  - COCV_1996__1__191_0
ER  - 
%0 Journal Article
%A Bernhard, Pierre
%T A separation theorem for expected value and feared value discrete time control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1996
%P 191-206
%V 1
%I SMAI (Société de mathématiques appliquées et industrielles)
%C Paris
%U http://www.numdam.org/item/COCV_1996__1__191_0/
%G en
%F COCV_1996__1__191_0
Bernhard, Pierre. A separation theorem for expected value and feared value discrete time control. ESAIM: Control, Optimisation and Calculus of Variations, Volume 1 (1996), pp. 191-206. http://www.numdam.org/item/COCV_1996__1__191_0/

[1] M. Akian: Density of idempotent measures and large deviations, Research Report 2534, INRIA, 1995.

[2] M. Akian, J-P. Quadrat and M. Viot: Bellman Processes, l1th International Conference on Systems Analysis and Optimization, Sophia Antipolis, France, 1994. | Zbl

[3] F. Baccelli, G. Cohen, J-P. Quadrat, G-J. Olsder: Synchronization and Linearity, Wiley, Chichester, U.K., 1992. | MR | Zbl

[4] T. Ba&Amp;#X015F;Ar and P. Bernhard: H∞ Optimal Control and Related Minimax Design Problems a Game Theory Approach, second edition, Birkhauser, Boston, 1995. | MR

[5] J.A. Ball and J.W. Helton: H∞-Control for Nonlinear Plants: Connections with Differential Games, 28th CDC, Tampa, Fla, 1989.

[6] J.A. Ball, J.W. Helton and M.L. Walker: H∞-Control For Nonlinear Systems with Output Feedback, IEEE Trans. Automatic Control, AC-38, 1993, 546-559. | MR | Zbl

[7] P. Bernhard: Sketch of a Theory of Nonlinear Partial Information Min-Max Control, Research Report 2020, INRIA, 1993.

[8] P. Bernhard: A Discrete Time Min-max Certainty Equivalence Principle, Systems and Control Letters, 24, 1995, 229-234. | MR | Zbl

[9] P. Bernhard: Expected Values, Feared Values and Optimal Control, in G-J. Olsder ed. : New Trends in Dynamic Games and Applications, Birkhauser, 1995. | MR | Zbl

[10] P. Bernhard and G. Bellec: On the Evaluation of Worst Case Design, with an Application to the Quadratic Synthesis Technique, 3rd IFAC symposium on Sensitivity, Adaptivity and Optimality, Ischia, Italy, 1973. | MR

[11] P. Bernhard and A. Rapaport: Min-max Certainty Equivalence Principle and Differential Games, revised version of a paper presented at the Workshop on Robust Controller Design and Differential Games, UCSB, Santa Barbara, 1993, submitted for publication. | Zbl

[12] G. Choquet: Theory of capacities, Annales de l'Institut Fourier, Grenoble, 5, 1955, 131-295. | Numdam | MR | Zbl

[13] G. Didinsky, T. Ba&Amp;#X015F;Ar and P. Bernhard: Structural Properties of Minimax Policies for a Class of Differential Games Arising in Nonlinear H∞-control, Systems and Control Letters, 21, 1993, 433-441. | MR | Zbl

[14] P. Del Moral: Résolution particulaire des problèmes d'estimation et d'optimisation non linéaires, PhD dissertation, Université Paul Sabatier, Toulouse, 1994.

[15] P. Del Moral: Maslov Optimization Theory, Russian Journal of Mathematical Physics, to appear.

[16] A. Isidori: Feedbak Control of Nonlinear Systems, 1st ECC, Grenoble, 1991.

[17] A. Isidori and A. Astolfi: Disturbance Attenuation and H∞ Control via Measurement Feedback in Nonlinear Systems, IEEE Trans. on Automatic Control, AC 37, 1992, 1283-1293. | MR | Zbl

[18] M. James: On the Certainty Equivalence Principle and the Optimal Control of Partially Observed Dynamic Games, IEEE Trans. on Automatic Control, AC 39, 1994, 2321-2324. | MR | Zbl

[19] M.R. James and J.S. Baras: Partially Observed Differential Games, Infinite Dimensional HJI Equations, and Nonlinear H∞ Control, to appear. | Zbl

[20] M.R. James, J.S. Barras and R.J. Elliott: Output Feedback Risk Sensitive Control and Differential Games for Continuous Time Nonlinear Systems, 32nd CDC, San Antonio, 1993.

[21] M.R. James, J.S. Barras and R.J. Elliott: Risk Sensitive Control and Dynamic Games for Partially Observed Discrete Time Nonlinear Systems, IEEE Trans. on Automatic Control, AC-39, 1994, 780-792. | MR | Zbl

[22] V.N. Kolokolstov and V.P. Maslov: The general form of the endomorphisms in the space of continuous functions with values in a numerical cominutative semiring (with the operation ⊕ = max), Soviet Math. Dokl., 36, 1988, 55-59. | MR | Zbl

[23] V. Maslov: Méthodes opératorielles, Éditions MIR, Moscow, 1987. | MR | Zbl

[24] V. Maslov and S.N. Samborskii: Idempotent analysis, Advances in Soviet Mathematics, 13, AMS, Providence, 1992. | MR | Zbl

[25] J-P. Quadrat: Théorèmes asymptotiques en programmation dynamique, Compte Rendus de l'Académie des Sciences, 311, 1990, 745-748. | MR | Zbl

[26] A. Rapaport and P. Bernhard: Un jeu de poursuite-evasion avec connaissance imparfaite des coordonnées, International Symposium on Differential Games and Applications, St Jovite, 1994.

[27] A.J. Van Der Schaft: Nonlinear State Space H∞ Control Theory, ECC 1993, Gronin-gen.

[28] M. Viot: Chaines de Markov dans ℝ min+, META2 seminar, INRIA, 1992, unpublished.

[29] P. Whittle: Risk sensitive linear quadratic gaussian control, Advances in Applied Probability, 13, 1981, 764-777. | MR | Zbl