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0. Introduction

Nash functions are those real analytic functions which are algebraic over the
polynomials. So it is natural to think that they can separate the analytic components
of real algebraic varieties. A first step in this direction was the separation theorem
of Mostowski [Mo], which implies that Nash functions separate the connected
components of real algebraic varieties.

We must be a little careful in the formulation of the separation problem, since
real algebraic varieties may have analytic components which are not given by
global analytic equations. We will state a general algebraic form of the separation
problem, which amounts to consider the analytic components of the germ at the
real part of a complexification. Let M C R™ be a Nash manifold, /(M) the ring
of Nash functions on M and O( M) the ring of analytic functions on M.

Separation problem. Let p be a prime ideal of N(M). Is pO(M) a prime

ideal ?
We will denote by Sep( M) the property that the separation problem has a positive
answer for any prime ideal p of (M ). We will use the notation Sep, (M) when
we consider only prime ideals p of height 1.

The separation problem for height one prime ideals is related to a problem about
factorization of Nash functions.

Factorization problem. Given a Nash function f on M and an analytic fac-

torization f = fi f», do there exist Nash functions g1 and g, on M and positive

analytic functions @1 and @, such that p1¢3 = 1, f1 = @191 and f2 = p292?
We will denote by Fact(M) the property that the factorization problem has a
positive answer on M.

* Partially supported by DGICYT, PB92-0498-C02-02.
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The local separation problem has an affirmative answer. Let NV, (resp. O,) be
the ring of germs of Nash (resp. analytic) functions at a point z of M. If p is
a prime ideal of NV, then p(@,, is prime. This is an easy consequence of Artin’s
approximation theorem [Ar]. Unfortunately, there are difficulties to pass from local
to global results, due to the bad cohomological properties of Nash functions. If NVg
is the sheaf of Nash functions on R, then H!(R, NVR) # 0 [Hd]. Despite of this
lack of a good cohomology theory, some properties of Nash sheaves, related to the
separation problem, are expected.

Let A/ be the sheaf of Nash functions on M (we write A if we need to
emphasize M), and let O (or Opr) denote the sheaf of analytic functions on M.
We know that A is coherent as a sheaf of A-modules [Sh2, 1.6.6]. Hence, if a
sheaf of NV -ideals Z is locally generated by Nash functions, then Z is coherent.
Coherent sheaves of N -ideals seem to be interesting, but the concept of a coherent
sheaf of N -ideals is too wide for real algebraic geometry. For example, consider
M = R and 3(Z) the sheaf of germs of Nash functions vanishing on Z. Then
J(Z) is not generated by its global sections (the constant zero is the only global
section), and the global section of the quotient sheaf A/ /J(Z) which is O for even
integers and 1 for odd ones does not lift to a global Nash function. Clearly, the
sheaf J(Z) lacks some finiteness property. We call a sheaf of ideals Z of NV finite
if there exists a finite open semialgebraic covering {U;} of M such that for each ¢,
T|u, is generated by Nash functions on U;. Note that any finite sheaf of ideals of
N is coherent, and that the two notions coincide when M is compact. Here are the
main problems about finite sheaves of ideals of A/, which would play the role of
Cartan’s Theorems A and B to construct a good sheaf theory on Nash manifolds.

Global equations problem. Is every finite sheaf T of ideals of N generated
by global Nash functions?

Extension problem. For the same T as above, is the natural homomorphism
HM,N)— HY(M,N/T)

surjective?

We will denote by Glob( M) the property that the global equations problem has a
positive answer for any finite sheaf Z of ideals of NVjs. We will use the notation
Glob; (M) when we consider only locally principal finite sheaves 7 of ideals of
Nu, i.e. those for which every stalk 7, is principal. We will use the notation
Glob” (M) when we consider only finite sheaves of radical ideals of NVjs. Of
course, we will use Globj(M ) when we have both restrictions. For the extension
problem we use the corresponding notations Ext(M ), Ext,(M) Ext" (M) and
Ext(M).

In the last 20 years, several partial results concerning the problems we have
stated were obtained: see [Efl, Ef2, Sh2, Sh3, MoRa, Pe, TaTo]. Recently, all the
problems were given positive answers in the case of a compact Nash manifold
[CoRzSh]. The key point is to use Artin’s conjecture, which says that a regular
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morphism between noetherian rings is an inductive limit of smooth finite type
algebras. This result is applied to the morphism N (M) — O(M). This does
not apply to the non compact case, since O(M) is no more noetherian. For the
moment, we are not able to give a positive answer to these problems in the general
non compact case.

The aim of this paper is to prove, in the non compact case, the equivalences of
all these problems. Precisely, we have:

THEOREM 0.1. For any Nash manifold M, the properties Sep(M ), Glob™ (M),
Glob(M), Ext" (M), Ext(M) are all equivalent.

THEOREM 0.2. For any Nash manifold M, the properties Fact(M ), Sep,(M),
Globj(M), Glob; (M), Ext](M), Ext;(M) are all equivalent.

Several partial results in the direction of this equivalence appear in [Sh2]; this
kind of problem is also considered in [BaTo]. See also [RzSh] which relates
the separation problem with the problem whether a semialgebraic subset of M
described by global analytic inequalities may be described by the same number of
Nash inequalities.

Recently, R. Quarez [Qu] has shown that if a property known as the ‘idempo-
tency of the real spectrum’ holds, then it is possible to apply Artin’s conjecture in
the non compact case to the morphism N'(M)/I — HY(M,N/IN) where I is a
radical ideal of V' (M), getting a positive answer to the extension problem in this
particular case. The results of our paper show that this particular case imply all
properties of Theorem 0.1. Unfortunately, it appeared that there is up to now no
valid proof of this idempotency: see [Qu] for a clarification of the situation and a
proof under an assumption of normality.

The first section of the paper contains preliminary results about finite sheaves
of ideals of NV, and their zero-sets considered as complex germs. The second and
third sections are devoted respectively to the proofs of Theorems 0.1 and 0.2. The
fourth section contains some new partial positive answers to our problems.

1. Finite sheaves of A/ -ideals and their zero-sets

We want to associate to a finite ideal sheaf of A/ a zero-set which will be some
germ of complex analytic set at M, in a complexification of M, and characterize
these zero-sets.

A complexification of M may be constructed in the following way. Up to a
Nash diffeomorphism, we may suppose that M is a connected component of a non
singular real algebraic set V' C R™ ([Sh2, 1.5.3], [BoCoRo, 8.4.6]). Let W€ be the
Zariski closure of M in C™, and take for M€ some open semialgebraic subset of
the regular points of W¢ (we consider C™ = R?™ to define semialgebraic subsets
of C™), invariant under conjugation, and such that M¢ NR™ = M. This MCisa
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complex analytic manifold, and its dimension as complex analytic manifold is the
same as the dimension of M.

We will consider germs at M of complex analytic sets in M € (see for instance
[WhBr]), which we will call M-germs for short. We will mainly consider such
germs which are invariant under complex conjugation, which we will call invariant
M -germs. We will denote by ¢ the complex conjugation. An irreducible invariant
M-germ X is an M-germ such that there exists an irreducible M-germ Y with
X =Y Ug(Y).If X is an irreducible invariant M -germ of dimension p, and if Y’ is
an invariant M -germ contained in X, theneitherY = X ordimY < p (cf. [WhBr,
Prop. 5]). If X is an invariant M -germ, there exists a unique locally finite family
(X;) of irreducible invariant M -germs suchthat X = (J X; and X; ¢ X for¢ # j;
the X; are the irreducible invariant components of X (cf. [WhBr, Prop. 9]). We
call an invariant M -germ X finite if it has a finite number of irreducible invariant
components, and locally semialgebraic if the germ X, at each point z € M is
semialgebraic.

Let f be a Nash function on M. Then f extends uniquely to a semialgebraic
open neighborhood U of M in M. Denote by X( f) the invariant M -germ of the
zero set of f in U at M. We define in the same way X(fi,..., f,) for a finite
number of elements of A'(M); this invariant M -germ depends only on the ideal
I=(f1,...,fp)in N(M),and we denote it by X(I). We will call C-Nash M -germ
an invariant M -germ of the form X(I) for an ideal I of N (M), i.e. an invariant
M -germ defined by global Nash equations.

Now let Z be a finite sheaf of ideals of A. There is a finite semialgebraic
covering M = J¥_, U;, and for each i an ideal I; of N'(U;) such that Z|y, is
generated by I;. The germs X(1;) at U; and X(I;) at U; coincide along U; N U;,
and hence these germs may be glued together to give an invariant M -germ X(7).
Actually, there is a semialgebraic neighborhood U of M in M€, and an invariant
semialgebraic complex analytic set X* in U, whose germ at M is X(Z). We call
X* a semialgebraic realization of the M-germ X(Z) (in U). An invariant M -germ
having such a semialgebraic realization will be called an invariant semialgebraic
M-germ. We can also define X(Z) if Z is a coherent sheaf of ideals of A this
M -germ is locally semialgebraic, but in this case there may be no semialgebraic
realization (remember Z in R).

We will have also to consider the zero sets not only as M -germs, but also as
plain subsets of M. So we have to introduce another notation for these. If I is an
ideal of V(M ), we denote by I~!(0) the set of those z € M such that f(z) = 0 for
all f € I. We call I~1(0) a Nash set. Correspondingly, if Z is a coherent sheaf of
ideals of A/, we denote by Z~1(0) the set of those € M such that Z,, is different
from MN. We have of course Z~1(0) = X(Z) N M.

A Nash function f € N(M) vanishes on an M-germ X if X C X(f), and
we define J(X) to be the sheaf of germs of Nash functions vanishing on X. It is
clearly a sheaf of radical ideals of V.
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LEMMA 1.1 Let T be a finite sheaf of ideals of N'. Then VZIisa finite sheaf of
ideals of N, and 3(x(T)) = VT.
If X is a C-Nash M -germ, then 3(X) is generated by its global sections.
Proof. There is a finite covering of M by semialgebraic open subsets U; such
that 7|y, is generated by an ideal I; of A'(U;). Then, since N is ind-étale over
N (U;) for any z in U;, we know that /TN, = /LN, = /. So /I, generates
Z|y;. This proves that V7 is finite. Using Riickert’s Nullstellensatz [GuRo], and
the fact that O, is faithfully flat over A, forany z € M, we getthat 3(%(Z)) = V7.
If X = X(I) where I is an ideal of A/(M), then by the preceding arguments
3(X) = VIN, which shows the last part of the Lemma. O

LEMMA 1.2 Let T be a finite sheaf of ideals of N'. Then X(I) has a finite number
of irreducible invariant components, which have semialgebraic realizations.

Proof. Let X* be a semialgebraic realization of X(Z). Let U be a sufficiently
small open invariant semialgebraic neighborhood of M in MC. Let {X 1} denote
the family of germs at M of the closures of the connected components of Reg X *N
U, where Reg X™* denotes the regular point set of the complex analytic set X™*.
Note that Reg X* is semialgebraic. Then {X;} = {X} U ¢(X})} is the family of
irreducible invariant components of X(Z). This assertion proves the Lemma, and
now we are going to prove the assertion.

We obtain U in the following way. Let K be a finite simplicial complex and =
a semialgebraic homeomorphism from a union ¢ of some open simplices of K to
M€ such that 7~!(M) and 7~!(Reg X *) are unions of some open simplices of K.
By subdividing K, we may assume that if the vertices of a closed simplex o € K
are all contained in the adherence of 7~!( M) then so is o. Let V denote the union
of the open simplices o of K suchthato C Q and@ N7~ !(M) # 0, and set

Z=Vnr (RegX*) and U =n(V).

Then U is an open semialgebraic neighborhood of M in M€, and U N 7(Z) =
U N X* is a semialgebraic complex analytic set in U. Let Zy, ..., Z; denote the
connected components of Z, and set

X =Unn(Z), j=1,...,k

ThenUNX* = U;-‘=1 X" and each X" is a semialgebraic complex analytic set in
U. It remains to prove that the germ X7 of X* at M is irreducible as an M -germ.

Assume the M-germ X J' were not irreducible. Then there would be an open
neighborhood U’ C U of M in M€ and at least two connected components Y; and
Y, of U' NReg XJ'-* suchthat Y; N M # 0, i = 1,2. In other words, there would be
no path in U’ N Reg X ]’-* joining a point of Y; with a point of Y>. We can assume
that U’ N 7(o) is connected for every open simplex o. Since Z; is connected, we
have a path ¢ C Reg X J'~* joining a point y; € Y; with a point y, € Y>. The path ¢
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decomposes into finitely many others ¢1, . . ., ¢, such that for some open simplices
o1,...,05 we have ¢; C m(0;) C Reg X}™. Now, since every 7(o0;) is adherent to
M, we can deform the path ¢; into a path

i cU'nr(o;) CU' NReg X}™.

Clearly, this can be done so that ¢}, . ..., ¢} build up a new path ¢’ C U'NReg X/*
still joining y; and y,, which is a contradiction. |

We record here a result using the proof of the preceding Lemma that will be
useful in the proof of Proposition 3.4.

LEMMA 1.3 Let T be a finite sheaf of radical ideals of N such that X(Z) is an
irreducible invariant M -germ. Let (€;) be a finite covering of M by semialgebraic
open sets, such that for each j the restricted sheaf T|q , is generated by an ideal
I of N(8;). Let p; C N(;) and pj» C N(Qj1) be minimal prime divisors of I;
and I respectively. Then there is a finite sequence p; = Pjo,Pji,--.,9j, = Pjr,
where each y;, is a minimal prime divisor of I;,, such that, forr = 1,...,s, the
extensions of the ideals p;,_, and p;, to N (;,_, N Q;,) have a common minimal
prime divisor.

Proof. We perform the construction of the proof of Lemma 1.2, from which we
borrow the notations. We can ask moreover that the triangulation K is compatible
with the covering (2;. Let V; denote the union of open simplices o of K such that
o CQandoNn1(Q;) #0,and let Z; = V; n m~!(Reg X*). These Z;’s cover
Z. If o is a simplex contained in Z;, then the germ of 7(o) at §2; is contained in
the §2;-germ of zeroes of a unique minimal prime divisor of I;, which we denote
by pj(o). Also, if o is contained in V; N Vs, then the germ of 7(o) at ; N Qs is
contained in the Q; N2 ;s-germ of zeroes of a unique minimal prime divisor p; ;:(o)
of the extension to A'(Q; N Q) of I; (which is the same as the extension of I}/);
moreover p; j+(o) is a common minimal prime divisor of the extensions of p;(o)
and p;s(o). Now choose two simplices ¢ C Z; and o' C Z;» such that p;(0) = p;
and p;:(0’) = p;r, and which are contained in the same connected component of
Z, this is possible because, by the irreducibility of X(Z), Z is either connected or
the union of two connected components exchanged by conjugation. Then there is
a piecewise linear path joining o to ¢’ inside Z and going successively through the
simplices ¢ = 09,01,...,05 = o’. Choose ;, such that o, is contained in Z;,,
and set p;, = p;, (o,). Now it is enough to understand that since o,_ is a face of
o, or vice-versa, we have p;__, 5 (o,-1) = pj,_,.i.(07). o

LEMMA 1.4 Let X be an irreducible invariant M -germ, which is locally semial-
gebraic. Then there is an ideal I of N (M) such that X is an irreducible invariant
component of X(I), and dim X = dimX(I). Hence X has a semialgebraic real-
ization.
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Proof. We can suppose that M is a connected component of a non singular real
algebraic set W C R™, and that M€ is an open semialgebraic set of the Zariski
closure W€ of W in C™. Let X* be a locally semialgebraic complex analytic set
in an open neighborhood of M in M€ whose germ at M is X . We can assume that
Reg X* is either connected or the union of two connected components exchanged
by the conjugation ¢. Let Z* denote the Zariski closure of Reg X* in C™; it is
an algebraic set, defined and irreducible over R, contained in WC. We first prove
that the dimension of Z* is equal to dim X* = m’ (these dimensions are complex
dimensions).

Suppose that dim Z* = d > m'. Let 0 € Reg X*. After a linear change of
coordinates, the restriction ¢|z+ of the projection

¢:C™ 3 (21, .y 2m) = (21,0 oy Zry1) € C™ H1
is surjective. Indeed, after a linear change the projection
Z*35 (21, 2m) — (21,...,24) € C

is finite, and consequently surjective. Since |z« is the composition of this surjection
with

cts (Z1y--52d) = (215, Zmi1) € Cm'“,

it is surjective. Moreover, the linear change can be chosen to have a small open
semialgebraic neighborhood U of 0 in C™ such that ¢|x+ny: X*NU — ¢(U) is
proper, and moreover X * N U is semialgebraic. Then ¢( X *N U) is a semialgebraic
complex analytic set in g(U) of dimension m’. We will prove in the following
Lemma 1.5 that the Zariski closure of ¢(X* N U) in C™*! has dimension m/.
Then we have a nonzero complex polynomial function ) on c'Hl vanishing on
g(X*NU). Clearly P = @ o ¢ vanishes on X* N U and, hence, on Reg X* and
also on Z*. Since ¢(Z*) = C™*!, then Q must be zero: here is the contradic-
tion.

Let Z be the invariant M-germ of Z*, and let I C N(M) be the ideal of
Nash functions vanishing on Z. It contains the restrictions to M of the real poly-
nomial equations of Z*, and hence Z = X(I). Let {Z;} be the finite family
of irreducible invariant components of Z. Since X is irreducible invariant, con-
tained in Z and of the same dimension as Z, it must be equal to one of
the Z;’s. |
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Finally, we prove the Lemma quoted above. Although this is not new ([An],
[Kn], [FoLoRa]), we include the (easy) proof for the convenience of the reader.

LEMMA 1.5 LetY be a semialgebraic complex analytic subset, of complex dimen-
sion m’, of an open subset of C™*1. Then the dimension of the Zariski closure of
Y in C™'*lism!.

Proof. The set RegY is semialgebraic, has a finite number of connected com-
ponents which are semialgebraic, and its adherence is Y. Hence we can retreat
to the case where Y is smooth and connected, and from that to the case where
Y is the graph of a complex analytic function ¢ : W — C where W is an open
neighborhood of 0 in C"", and moreover Y is semialgebraic.

Writing z = (21,...,2m') = (21 + Y1,..., Ty + iYmy), We may describe ¢
by a pair of real functions

‘p(z) = <P1($1,3/1a---,93m',?/m') + i902(x17y1,---,$m’,ym’)-

Then ¢ and ¢, are Nash functionson W. Set W” = WN(Rx{0} xRx {0} x---),
i.e. W is the real part of W. Clearly ¢;|wr, ¢ = 1,2, are Nash functions. Let
W' be a small open semialgebraic neighborhood of W in C™ . Then we have
complexifications (¢;|wr)C of @;|w+ on W, which are the restrictions to W’ of
branches of algebraic functions. Since

elwr = (1lwr) +i(2lwr),

@|w: is the restriction to W’ of one branch of an algebraic function, and hence the
dimension of the Zariski closure of the graph of ¢ is m'. o

Let us sum up what we know: if 7 is a finite ideal sheaf of AV, then X(Z) is a
finite semialgebraic invariant M -germ; if X is an irreducible locally semialgebraic
invariant M-germ, then it is an irreducible invariant component of X(I) for some
ideal I of N (M) and it is semialgebraic. What we have to show now is clear: that
an irreducible invariant component of X(I) is of the form X(Z) for some finite
ideal sheaf Z of N. The finiteness is the point here, since we do not suppose M
compact. The following Proposition 1.7 will be the tool to get finiteness. It is very
close in spirit to [EkTn, Prop. 5.2.2], and we will follow the lines of the proof
of this proposition. Since the preprint [EkTn] has not yet been published, we will
repeat for the convenience of the reader some of its arguments. The first proof of
this result was given to us by R. Huber, using his work on isoalgebraic functions
[Hr].

The formulation and the proof of 1.7 make use of the real spectrum,; this seems
difficult to avoid. We recall a few facts about the real spectrum, which will be
useful in the sequel. We associate to M a space M, the real spectrum of N (M),

which is a compactification of M. A point a of M is identified with a ultrafilter
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of semialgebraic subsets of M, which we denote by &. We may consider M
as a subset of M, identifying a point x € M with the principal ultrafilter of
semialgebraic subsets of M generated by z. To a semialgebraic subset S of M is
associated the subset § C M of those o’s such that § € &. A point & of the real
spectrum defines a prime ideal p of A'( M) whose elements are the Nash functions
f € N(M) such that {z € M; f(z) = 0} € @, and an ordering of the quotient
field of N'(M)/p such that the image of f € N (M) is strictly positive if and only
if {x € M; f(z) > 0} € &; these two data determine .. We denote by () the
real closure of this ordered field, and by supp(c) (the support of «) the zero set of p
in M. The topology on M is generated by the U’s, for U open semialgebraic subset
of M. It induces the usual topology on M. With this topology, M is compact (not
Hausdorff).

Let d be the dimension of the support of a. We can choose a Nash chart with
domain a semialgebraic open subset U of M, and Nash coordinates in this chart

(z1,..., Tdyl1,. ., t.) which are restrictions of global Nash functions on M, such
that « € U, supp(a) N U consists of non singular points of supp(«) and is given
by t; = -+ = t, = 0. The ultrafilter @ is generated by the semialgebraic open

subsets S of supp(a) N U such that & € § [BoCoRo, 9.6.10]. The field () is
canonically isomorphic (as AV (M )-algebra) to the inductive limit of the rings of
Nash functions /\/supp(a)nU(S )onsuch S.

We can define the ring Nz, of germs of Nash functions on M at : it is the
inductive limit of the rings NV3s(£2) for  semialgebraic open subset of M such
that « € (. It is an henselian local ring with residue field (), and ind-étale over
N (M) [BoCoRo, 8.8.3]. The choice of a Nash chart as above gives an isomor-
phism from Ny, onto the ring k(a)[[t1, ... ,t]]ag Of series which are algebraic
over the polynomials; this is the henselisation of the localisation of k(a)[t1,. .., te]
at the maximal ideal (%1,...,%.). For this ring we have the preparation and
division theorems [BoCoRo, 8.2.7 and 8.2.9], and also Artin’s approximation
theorem [Ar].

LEMMA 1.6 Let p be a prime ideal of Nas . Then there exists an open semialge-
braic subset U of M, a € U, such that, if ¢ = p N N'(U), we have gNar o = p.
Moreover, if Uy is an open semialgebraic subset of M, ﬁl S o, and if I is an ideal
of N(Uy) such that INyr o = p, then there is a smaller open semialgebraic subset
Uy CUNU Uy 3 a, such that IN(Us) = gN(Us) = p N N(U2).

Proof. Setqp = p N N(M). We know that qoNare = pNp2 N ---Np,, where
p2,. .., P, are prime ideals which have all the same height as p and qo. Now choose
fiin p\p;, for i = 2,...,r. These f,,..., f, are Nash functions on some open
semialgebraic subset U of M, U 5 a. We set g = p N N(U). Then gNz 4 is the
intersection of p and some prime ideals among ps, ..., p.. Since f; € N4, it is
impossible that gAVas,, C p;. So we have gV, = P.
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Now let U; and [ be as in the statement of the Lemma. Let gq,...,9g5 be
generators of q, and hp,..., h; be generators of I. We can find ¢; ; and %;; in
Npofori=1,...,sand j = 1,...,¢ such that

t s
9i = > biihj; hi = bjigi-
J=1

=1

There is an open semialgebraic set U, C U N Uy, ﬁz 3 a, such that all the ¢; ; and
1;,; are Nash functions on Us. Then we have IN(U,) = gN(U>).

The ideal qV(U>) is the intersection of a finite number of prime ideals of
the same height as p and q. Let ¢ be such a prime ideal associated to gV (U3).
Since gNar,o = p, we have also tAr, = p Hence v = p N N(U2). This proves
qN(U2) -‘—‘pﬂN(Uz). O

PROPOSITION 1.7 Let p be a prime ideal of N« We can find an open semi-

algebraic subset U C M and a Nash submanifold S of U, a € S, such that, if
q=pNN(U), then for every O € S, gNur,0 is a prime ideal.

Proof. Since we are only interested in a neighborhood of o, we can suppose,
using a chart as above, that M is an open semialgebraic subset of R? x R®,
and that the support of a is R? x {0}. We note z = (z1,...,q) the variables
inR% and t = (t1,...,t.) the variables in R®. We identify NVjs , with the ring
k(@)[[t1, ..., t]]ag- Let e— k be the height of the prime ideal p in Vs .. Following
[GuRo, Chap. 3, A], we can perform a linear change of coordinates in %y,..., .,
to be in the situation we will now describe. Remark that this change of coordinates
has a finite number of coefficients in k(a), so that this may be viewed as a
linear change of coordinates ¢ with coefficients Nash functions in z, on an open
semialgebraic subset of R? x {0} whose tilda contains o Set#’ = (ty,...,1;) and
N = k(a)[[t']]ag (here N is the sheaf of Nash functions on R? x R¥ x {0}).
Then:

1. pn N, = {0}.

2. N, /p is integral over V..

3. The field of fractions of NV, /p is generated over the field of fractions of A, by
the image of {x41.

As in [GuRo], it follows that:

4. p contains distinguished polynomials P = P; in N/[tx41], irreducible of
degree s, P, in N.[tr42],..., Pe—k in N.[t.]. These polynomials are the
minimal polynomials, over the field of fractions of M, of the classes modulo
poftkyr,tet2,...,Le respectively.

5. Let £ be the discriminant of P; it is an element of A/, different from 0.

6. The ideal p contains also Q2 = &tgy2 — Ra, ..., Qe—k = Ete — Re_i where,
fori =2,...,e — k, R; belongs to N [tx41] and deg R; < s.
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The following consequences are also essentially in [GuRo]. Nevertheless we give
the arguments. Set

ﬁ
1

e—k
sup (Z(degP,- - 1),degP2,...,degPe_k) ,
=2

I
Then:
7. Foreveryi = 2,...,e—kwehave{” P; € I.Indeed the polynomial £” P;(R;/£)
in M, [tx+1] is divisible by P since its image in NV, /p is null, and then the Taylor
expansion
R; 1,,_,0'P (R
" Pi(tgyi) = ETP; Y oer=l t [ l

i>1 k+1

(Pa QZa .. ~7Qe—k) C N(i[tk+17- --,te]-

shows the assertion.
8. For any 7’ > r, we have

p=(INua:€)

The inclusion from right to leftis clear. If f is in p, it can be divided successively
by P, Ps,..., P._k, and so f is congruent modulo (P, P, ..., Pe_p )Ny toa
polynomial of total degree not greater than r in t 2, . . . , ., with coefficients in
N [ti+1].- By 7,to provethat{” f € I, we can suppose that f is this polynomial.
Then £ f is congruent modulo (@2, ..., Qk) to a g in p N N [tx+1]. This g is
divisible by P.

Since P is irreducible, there is no equality P = AB in N/[tx+1] where A and
B are monic polynomials of degree ¢ and s — q respectively, with 0 < ¢ < s. Set

P = ti+1 -I-Ps—ltZ:_l] +"'+P0>

-1

A: tZ+1+aq—1tZ+1+"'+a07 aq:17

- —g-1
B = tz_'_l{ + bs—q—lt:;+(i +---+ bO, bs—q =1
The coefficients p; are in V7, hence they are roots of polynomials E; (%1, . .., tx, u;)
in the indeterminate u;, with coefficients in k(a)[t1, ..., tx]. Since E; has a finite
number of roots in the fraction field of N, there is a u such that any root in
N! of E; which coincides with p; till order p (i.e. modulo (t1,...,%)*1) is
equal to p;. Consider the system of 2s polynomial equations in the 2s variables
Us_Ty. -y U0ylg—1s-- - 5 B0D5—g—1, ..., Do, With coefficients in k(a)[t1,..., k]:

Ej(tl,...,tk,’u]')IO and uj:Zaibj_,-, forj=0,...,s—1.

We know that it has no solution in A}, with u; coinciding with p; tillorder u. Hence,
by Artin’s approximation theorem [Ar, Th. 6.1], there is an integer v > p such
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that the truncated system at order v (i.e. considered modulo (i, .. ., tk)"‘H) has no
solution with u; coinciding with p; till order u. This translates into the fact that a
polynomial system with coefficients in () and indeterminates u (the coefficients
of the series u; for the terms of order > u and < v), g, b (the coefficients of the
series a; and b; for the terms of order < v) has no solution in x(a). Let us call
&, (u, a, b) the equations of this system. The real Nullstellensatz translates the fact
that the system (@ (x, a,b) = 0), has no solution in the real closed field () to
an identity

1+ A](y_, a, b)z + -t Am(y’-’ a, Q)2 = Z A)\(ﬁa a, Q)q)/\(ﬁ7 a, Q)v (*q)
A

where A; and Ay are polynomials with coefficients in k(). There is such an
identity () for each ¢ with0 < ¢ < s.

Choose an open semialgebraic subset U of M with U > a, such that all the
coefficients of the polynomials P, Py, ..., Pe—k,Q2,...,Q.-k (hence also &) are
Nash functions defined on U’ = UN(R? xR¥ x{0}).Let I' C N'(U")[tk+1,- - te)
be the ideal generated by (P, Q2,...,Q.-k). By 7, we can choose U so small that
&Py,...,6" Py are allin I'. Set ¢ = (I'NV(U) : £%7) in N(U). By flatness of
Nt o over N(U) and by 8, we know that gV, = p, and by Lemma 1.6 we can
suppose, possibly shrinking U, that ¢ = p N N (U).

Choose S, an open semialgebraic subset of U N (R? x {0}) such that § 5 «, in
order that all the coefficients of the polynomials A;, Ay and @) for all identities
(*4) are Nash functions defined over 5. We can also suppose that the non-leading
coefficients of P, P»,..., P._; vanishon 5.

Let O be a point of S; we can suppose that O is the origin of coordinates. Then
N0 may be identified with R[[z, t]]aig. We want to show that gNVz,0 is a prime
ideal. Set NV, = R[[z,t]]aig. We still call by the same names the images of P; in
Nb[teqi]fori=1,...,e — k, of £ in N, of R; in N [tg41] fori =2,...,e—k,
and of Q; = £tgqs — R; for i = 2,...,e — k. Since the identities (*4) hold in
R{[z]]aig[u, a, ], it follows (going backwards in the arguments above) that P = Py
is irreducible in NV} [tk+1]. Let us sum up the situation:

9. P; € N{[tk+i] are all distinguished polynomials fori = 1,...,e — k.
10. P = P, is irreducible of degree s.
11. £ is an element of N, different from 0.
12. Q; = Etgi — R; where R; € N)[ti4i] has degree < s, fori =2,..., k.
13. €' P, ..., £ Po_y are in the ideal I'NY[txs1, .. ., te]

To continue we need:

LEMMA 1.8 The properties 9, 11, 12, 13 imply that the canonical homomorphism

Olte+1]/(P) = Numo/(P,Qa,...,Qc—k)
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is an injection and that, for any f € Ny o, £ f is congruent to an element of

N [tk+1] modulo (P, Qo, ..., Qe—k).
Proof. We first want to prove that if g is a polynomial in MV} [tx41] such that

g= OIP + ®2Q2 -+ Oe—er——lm

with ©; € N0, then P divides g in NJ[tx+1]. Dividing successively by
P._j,..., Py, P (thanks to 9), we can write

=GP+ G+ -+ Ge—p Pk + H)Q2+ -+ HeQe—r,

where H; € Nj[tk+1,-..,te), and by uniqueness of division we can moreover
]
suppose that G; € Nj[tkt1,-..,te]. By 13, we get

frg = F]P + F2Q2 + -+ Fe—er—lﬁ

where I'; € Nj[tkt1,...,t]. Substituting R;/¢ for t4; and multiplying by an
appropriate power of £, we find that P divides £” g in N} [tr41] with 7/ > 7, and
since P is monic it divides g.

Now we prove the second assertion. Dividing f successively by Pe_, ..., P, P
we find that f is congruent modulo (P, P, ..., P._i) toapolynomialintg, ..., t.
of total degree < r, with coefficients in NV} [¢x+1]. Hence, using 13, we may suppose
that f is this polynomial. Then, by 12, £” f is congruent modulo (Q)2, ..., Q%) to
an element of V) [tx+1]. O

Now we finish the proof that gVj,o is a prime ideal. By flatness of Ms,0 over
N'(U[tk41s- - - te], we know that kb € gNag o if and only if

527'h S (Pa QZ, .. -7Qe—k)NM,O-

Now, let fg € gNum,0. By the Lemma above, we may suppose that £ f and £"g
are in M) [tk+1], and that their product is divisible by P in this ring. Since P is
irreducible and N} [t;+1] factorial, one of £ f and £”g is divisible by P. Hence
either f or g belongs to gNVz,0. a

LEMMA 1.9 Let I be an ideal of N(M), and let Y be an irreducible invariant
component of X(I). Let T = 3(Y') be the sheaf of germs of Nash functions vanishing
onY. Then T is a finite sheaf of radical ideals, and ¥(T) =

If I is a prime ideal of N(M) and Y1,...,Y; are the irreducible invariant
components of X(I), then IN = 3(Y1)n---N3(Y).

Proof. Without loss of generality we can suppose that [ is a prime ideal. We
want to show that 7 is finite. Taking into account the compactness of the real
spectrum M it is sufficient to show that for every a € M there is a semialgebraic
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open subset U of M with a € U, such that Z | is generated by Nash functions on
U.Let

INMo=p1 0Ny

be the decomposition of TNz . into prime ideals. Let X* ¢ M Chea semialgebraic
realization of X(I). We can suppose, as in the proof of 1.2 that we have a finite
simplicial complex K, a semialgebraic homeomorphism 7 from the union V' of
some open simplices of K onto an open semialgebraic subset of M€, and an open
simplex o contained in V' such that:

1. V is the union of all open simplices 7 of K such that o is contained in the
closure of 7.

2. The intersections of 7(V) with M, X*, Reg(X*) are all unions of images
under 7 of open simplices contained in V. 5

3.8¢t S = 7w(o)and U = n(V)N M. Then @ € S and S and U satisfy the
property of Proposition 1.7, for py,..., k.

Now set q; = p; N N(U). Since q;N; is prime for any z € S, so is q; 0, and
the germ X(q;), is irreducible as invariant germ at z. Let us prove that X(q;)
is irreducible as invariant germ at U. Suppose that Y; and Y, are two distinct
irreducible invariant components of X(q; ). The dimension of Y; and Y is the same
as the dimension of X(q; ). Since o is in the closure of any open simplex of V, both
Y} and Y, contain S. Hence, for any « in S, we must have X (q;); = Y1, = Yo 0,
against the assumption that Y; and Y; are different.

So the germ of Y at U is the union of some of the X (q;)’s, and Z |y is generated
by the intersection J of the corresponding g;’s. Indeed, clearly J generates a
subsheaf of radical ideals of V'|yy and by the complex Nullstellensatz (Lemma 1.1),
JN|y =TIlv.

The fact that X(Z) =Y is clear from the proof, as well as the last assertion of
the lemma. O

We gather what we know in the following result.

THEOREM 1.10 The assignment T — X(Z) defines a bijection from the set of
finite sheaves of radical ideals of N onto the set of finite semialgebraic invariant
M -germs (which are the same as finite locally semialgebraic invariant M -germs).

Proof. Lemmas 1.2, 1.4, 1.9 show that the assignment Z — X(Z) is a well-
defined surjection from the set of finite sheaves of radical ideals of A onto the set
of finite locally semialgebraic invariant M -germs. The injectivity comes from the
complex Nullstellensatz 1.1. a

We close the section with a remark about another possible choice for the notion
of finiteness for a sheaf of ideals of A/. Say that a coherent sheaf of ideals Z of N/
is weakly finite when there is no nontrivial infinite decomposition Z = (", Z; into



SEPARATION, FACTORIZATION AND FINITE SHEAVES ON NASH MANIFOLDS 45

coherent sheaves of ideals of A (nontrivial means that for each i, 7 # ﬂ#i ;).
As the terminology suggests, any finite sheaf of ideals is weakly finite. Moreover,
for a radical sheaf of ideals, the notions of finiteness and weak finiteness coincide.
The proofs of these assertions require some work. We do not know whether it is
always the case that a weakly finite sheaf of ideals of A is finite.

2. Equivalence of separation, global equations, and extension

We prove in this section Theorem 0.1. We first devote some work to the extension
problem, studying the global sections of a quotient of A by a finite ideal sheaf.

We will use in Proposition 2.2 and Lemmas 2.4, 2.5, 2.6, the ck topology on
spaces of Cck semialgebraic maps (for k£ a positive integer). See [Sh2, II.1] for
the definition of this topology and its properties. We mainly use the facts that a
C* semialgebraic map between Nash manifolds may be approximated by Nash
ones, and that the diffeomorphisms form an open subset for this topology. All this
without compactness assumptions on the Nash manifolds involved.

We begin by a construction which will be used in the following results. Let Z
be a finite sheaf of ideals of AV, and let ¢ be a global section of the quotient sheaf
N/Z.Set X = X(Z), M1 = M x R, and let p: M; — M be the projection. We
associate to ¢ a coherent sheaf Z () of ideals of Myy,. Let (2o, %) be a point in
M, and let ®,, be an element of N ,,, whose image in Naf o/ Tz, 1S g, Take
Z() (wo,to) to be the ideal of Ny, (g, 1,) generated by t — &, and Zy,.

LEMMA 2.1 The invariant My-germ X = X(Z()) is finite. If T is a finite sheaf
of radical ideals, then Z() is a finite sheaf of radical ideals of N, .

Proof. An analytic extension of ¢ to M is possible by Cartan’s Theorem B.
Let ® be such an extension, and ®C an analytic complexification of ® defined
on a neighborhood of M in MC. Then X is the intersection of the invari-
ant M;-germ of the graph of ®C and the invariant M;-germ of X x C. Hence
the numbers of irreducible invariant components of X and X coincide, and X,
is finite. It is also clearly locally semialgebraic. So by Theorem 1.10 there is an
unique finite sheaf Z; of radical ideals of A such that X(Z;) = X;. If 7 is
radical, then clearly Z(¢) is radical, so by the complex Nullstellensatz we get
=1 (99) a

We do not know whether Z(¢) is finite in general, without the hypothesis that
7 is radical. It can be proved when Z~1(0) is a finite number of points, or when
X(Z) has complex dimension 1.

Now we see why the study of Z(¢) is important for the problem of extending

@:

PROPOSITION 2.2 If Z() is generated by its global sections, then there exists
a global Nash function F on M whose image in HY(M,N |T) is . Actually, it
is sufficient that there exists a semialgebraic open neighborhood U of X1 N M,
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such that T(p)|u is generated by its sections on U. Moreover, I is generated by its
global sections.

Proof. Suppose that Z(¢)|y is generated by the Nash functions fi, ..., fx in
N (U). We claim that for every (zg,tp) € X1 N M; we can write

gz'fz'(xo,to) =1- q):z:oa (mOd ZzoNMl,(zo,to)),
for some ¢ and a unit g; in My, (z,1)- Fix (2o, to). We have
fiworto) = hi(t — @4,), (mod ZZONMh(xo,to))7 1<igk,

for some h; € N, My ,(zo,to)- 1t suffices to prove that at least one of the &;’s is a unit.
We have also

t— Q:1!:() = Z,ujfj,(zo,to),
J

forsome p; € N, M\, (z0,t)- HHENCce we get ahomogeneous system mod Tz, My, (zo,to)
0 = (hip1) f1,(zote) T+ (hitti = 1) fiwo,to) +** + + (Biktk) fi, (zo,t0)
1 <@gk,

whose determinant has the form
(=1)F 4+ Mbq + -+ 4+ Aehg,

for some \; € N, M, (zo,to)- Lherefore, if no h; were a unit, we would conclude
fiiwoto) =05 (MOod Lo N, (z0,10))y 1 < E<K,

and, consequently, Z(¢)(zy,t) = ZeoNM,(zo,to)- This is impossible, which shows

our claim.
It follows that the sets

Q = {(2,1) € Us (@) (1) = (fie,t)) + LeNmty (o)}
= {(m7t) elU;t-9, € (fi(:l:,t)) + Z:vNMl,(:z:,t)}’ =1, s Ky

cover X1 N M;. Clearly each 2; is open in M;. Moreover, it is semialgebraic
because f; is regular with respect to ¢ at every point of {2; N X1, and, hence,

i = (@ (M\X)NU)U {(x,t) ex\nuU; %J%(w,t) # 0}

U{(z,t) € (p (X N M)NU\Xy; fi(z,t) # 0}.
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From this we see in addition that after shrinking {2; we can assume f; regular
with respect to ¢ on 2;. Hence fi_l (0) N Q; is the graph of a Nash function F; on
V; = p(f71(0) N Q;). These V; cover M N X;. On €;, the function f; is equal to
the product of ¢ — F; by an invertible function. Hence, for each z in V;, the class
of F; ; modulo Z; is ¢,. On Vy = M\ X, we can take Fy = 0.

Using a partition of unity we paste the F;’s as follows. Let (p;) be a C!
semialgebraic partition of unity subordinated to the covering (V;). The function
h = Y, pi(t — F;) is C'! semialgebraic on Mj, and it is is regular with respect to
t. Since the function t — F; is in the ideal generated by (f1,.. ., sz in NV (V; X R),
there exist C'! semialgebraic functions h; on M such that b = Y7, h; f;. Let h

be a Nash approximation of /; for 1 < j < k. Then the function h* = Zle R} fjis
a Nash approximation of h. Choose the approximation so strong that ~* is regular
with respect to ¢. Then the zero set (h*)~!(0) is the graph of a Nash function F on
M, and h* is equal to the product of ¢ — F' by an invertible Nash function on M;.
Since for any (zg,tp) € X1 N M the germ of k* is divisible by t — &, modulo
ZooNM, (wo,to)» We know that the germs Fy, and @, are equal modulo Z,,. Hence
F is the Nash function we are looking for.

The last assertion of the proposition comes from the fact that 7 is generated by
the global Nash functions f; o (Idps, F) forc =1,..., k. a

At this point, one could be tempted to conclude that ‘global equations’ implies
‘extension’. But Proposition 2.2 only says that Glob™ (M) implies Ext"(M ), and
we want to have the implication between these two properties for the same manifold.
So there is still work to do.

COROLLARY 2.3 Let T be a finite sheaf of radical ideals of N, and let © be a
global section of the quotient sheaf N' | I. Then there exists a finite covering of M
by semialgebraic open sets U;, and for each i a Nash function F; € N (U;), such
that for each x in U;, the class of F; ; modulo 1 is .

In other words, any global section of A/Z lifts to sections of N over a finite
semialgebraic covering of M.

Proof. We know from Lemma 2.1 that the sheaf Z( ) is finite. We can cover M,
with finitely many semialgebraic open sets W; such that Z(¢)|w; is generated by
Nash functions on W;. We choose semialgebraic open subsets U; of M covering
M such that W; is a neighborhood of X N (U; x R). Then Z(@)|(v;xr)nw; is
generated by Nash functions on (U; x R) N W;. We apply Proposition 2.2 to
each U;. a

For the following three Lemmas, we have a finite sheaf Z of radical ideals of
N, with which we perform the construction of X.

LEMMA 2.4 Letq: My — M beaNashmap very closeto pinthe C' topology, and
q€ a complexification of q. Then for any sufficiently small invariant semialgebraic
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neighborhood W of My in M IC and semialgebraic realization X of X1 in W, the
germ of qC(X ) at M is a semialgebraic invariant M -germ.

Proof. We know from Corollary 2.3 that there is an invariant semialgebraic
neighborhood U of M in M€, a semialgebraic C! function ¥ from U to C,
equivariant under conjugation, and a semialgebraic realization X * of X in U, such
that the graph of the restriction ¥|x+ is a semialgebraic realization X} of X;.
Indeed, consider the extensions F'C of the Nash functions of Corollary 2.3 to some
semialgebraic invariant neighborhoods ViC of V; in M€, and glue them together
using some C'! semialgebraic equivariant partition of unity subordinate to the ViC’s.
We consider the graph map y = (Idy,¥): U — U x C.

We can choose ¢ so close to p that (see [Sh2]):

— ¢ o v|a is a semialgebraic C! diffeomorphism from M to itself,

— at each point z of M, the differential of ¢€ o « is an R-linear automorphism
from the tangent space T.,( M ) to the tangent space Ty(z,9(2)) (M O,

— the Nash map 7 : M; — M, defined by 7(z,t) = (¢(z,t),t) for (z,t) € M,
is a diffeomorphism.

Then, possibly shrinking U, we can suppose that ¢€ o is a semialgebraic C' equiv-
ariant diffeomorphism from U to another invariant semialgebraic neighborhood U’
of M in M. Moreover we can suppose that we have W and W' invariant semial-
gebraic neighborhoods of M; in M ]C such that 7 complexifies to a diffeomorphism
7C: W — W', p¢(W) = U, and W contains the graph T of ¥ : U — C. Then
7C(T) is the graph of a C'! equivariant semialgebraic function from U’ to C. Recall
that X = I' N (p€)~1(X*), and set Y;* = 7¢(X}). Then Y}* is a closed subset of
7C(T), hence the restriction of p€ from Y;* to U’ is proper. On the other hand, Y*
is a complex analytic subset of W', hence pC(Y7*) = ¢C(X7}) is a complex analytic
subset of U'. O

LEMMA 2.5 We can find a finite number of Nash maps qi,...,qx from M to
M, arbitrarily close to p in the C' topology, such that for any small invariant
semialgebraic neighborhood W of M, in M lc and realization X{ of X1 in W, the
germ at My of N;(¢€) ™1 (g€ (X7})) is equal to X;.

Proof. We know, according to Lemma 2.4, that the germ at M; of ();(¢€) ™! x
(¢€(X7)) is a semialgebraic invariant M;-germ. So, by an easy Noetherian induc-
tion, it is sufficient to see that if Y is a semialgebraic irreducible invariant M;-germ
which is not contained in X, then we can find a Nash map ¢: M; — M arbitrarily
close to p in the C'! topology such that for any small invariant semialgebraic neigh-
borhood W of My in M IC and realization X} of X1 in W, Y is not contained in the
germ of (¢€)~1(¢€(X7})). Let Y* be a semialgebraic realization of Y and choose
a real analytic curve vy:[—1,1] — ME with v((0,1]) C Y*\ X} and 4(0) € M;.
It is sufficient to choose ¢ such that, for small W where q is defined

¢“(r((0, 1) W) & ¢(X7).
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This can be done since there exists a v such that for any ¢ whose v-jet at y(0)
belongs to some dense subset, the condition is satisfied. O

LEMMA 2.6 Suppose that Glob" (M) holds. Then the M;-germ X is a Nash
M-germ.

Proof. Consider a finite number of Nash maps ¢, . .., g M1 — M sufficiently
close to p. According to Lemma 2.4, we find an invariant semialgebraic neighbor-
hood W of Mj in M and a realization X} of X; in W so that the germ of each
¢€(X7) is a semialgebraic invariant M-germ, hence of the form %(Z) for some
finite sheaf of radical ideals Z of A by Theorem 1.10. So if GlobT(M ) holds, the
germ of ¢(X}) at M, and consequently the germ Y; of (¢€)~!(¢¢ (X] )) at M,
is a Nash germ. Since, according to Lemma 2.5, we can choose ¢y, ..., gk so that
YiNn---nY; = Xy, we are done. O

PROPOSITION 2.7 If Glob™ (M) holds, then Ext" (M) holds.

Proof. Let T be a finite sheaf of radical ideals of NV, and let ¢ be a global
section of the quotient sheaf A//Z. The Lemma 2.6 tells us that the sheaf of ideals
Z(p) = 3(X,)is generated by a finite number of global Nash functions ( fi, ..., fi)
on Mj. Then we apply Proposition 2.2.

PROPOSITION 2.8 If Ext" (M) holds, then Sep(M ) holds.

Proof. Let p be a prime ideal of V(M ). By way of contradiction, assume that
pO(M) is not prime. Then X(p) is not an irreducible invariant M -germ, and hence
by Lemma 1.9 there are finite sheaves of radical ideals of Nz, Z; and Z5, such that
pN = I; N T, and

dim}.‘(Il) = dim x(ZZ) > dimx(\/l} + Iz).

Let J be the ideal of Nash functions on M vanishing on X(+/Z; + Z;). By 1.4 we
have dim X(J) < dim X(Z;). Hence there exists a Nash function f on M whose
complexification has a germ at M which vanishes on X(+/Z; + Z) but not on
%(Z)). Let f denote the image of f in HO(M, (Z; + T2)/T1) = HO(M,Z,/oN).
Regard f as an element of H(M, N /pN). Then, by Ext"(M), there exists a
Nash function F on M whose image in H(M, N /pN) is f. Clearly, the germ
at M of a complexification of F' vanishes on X¥(Z;) and does not vanish on
X(Z;). In the same way, we obtain a Nash function G on M whose complexifi-
cation has a germ at M which vanishes on X(Z;) and does not vanish on X(Z,).
Then neither F nor G belong to p, while F'G does, which contradicts the prime-
ness of p. |

PROPOSITION 2.9 If Sep(M) holds, then Glob™ (M) holds.

Proof. Let X(I) = X1 U ---U X, be the decomposition into irreducible in-
variant components. Set Z; = 3(X;) for i = 1,...,p. We know that Z; is a
finite sheaf of radical ideals of V. Suppose that each Z; is generated by the ideal
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I; = H%(M,I,) of its global sections, and let I = /I; - - - I,. Since X(IN) =
X(Z), we have IN = T and hence 7 is generated by its global sections. So it is
sufficient to consider the case where X(Z) is an irreducible invariant M -germ. Then
we know that there is a prime ideal p of N(M) such that X(Z) is an irreducible
invariant component of X(p). Since, by Sep(M ), X(p) is irreducible as invariant
M -germ, we have that X(Z) = X(p), and hence Z = p/ is generated by its global
sections. O

Up to now, we have proved the equivalence of Sep(M ), Glob"(M) and
Ext"(M). The properties Glob(M) and Ext(M) are obviously stronger than
Glob" (M) and Ext”( M) respectively. So, to complete the proof of Theorem 0.1,
we just have to see:

PROPOSITION 2.10 If the conjunction of Glob” (M) and Ext" (M) holds, then
Glob(M) and Ext(M ) hold.

The argument, which can be considered as standard, is detailed in [CoRzSh] in
the compact case, and can be used word for word (with ‘finite’ instead of ‘coher-
ent’) here. So, we do not repeat it. Actually, the following result is proved as an
intermediate step:

Let T be a finite sheaf of ideals of Ny. Suppose that global equations and
extension hold for all finite sheaves of ideals T' of N such that VI C T
Then both hold also for T.

Using this, we get a more precise version of Proposition 2.10.

PROPOSITION 2.11 If both global equations and extension hold for all finite
sheaves of radical ideals of Ny whose stalks are everywhere of height > r, then
they hold for all finite sheaves of ideals of Ny whose stalks are everywhere of
height > r.

Proof. If it is not the case, consider the non empty family of finite sheaves
J of radical ideals of As whose stalks are everywhere of height > 7 such that
there exists a finite sheaf of ideals 7 with 7 = +/Z, for which global equations or
extension do not hold. All those 7’s are generated by their global sections, hence
by noetherianity we have a maximal element in this family, which we will denote
by J. If 7' is a finite sheaf of ideals containing .7, either 7' = J or v/Z' strictly
contains 7. In both cases, global equations and extension hold for Z’. Hence, by the
result quoted above, both hold also for any finite sheaf of ideals Z with VvVI=J.
This contradicts the choice of 7. a

It is possible to generalize Glob(M ) and Ext(M) to sheaves of A/-modules.
We have first to discuss what are the appropriate sheaves of A'-modules. We have
already seen, concerning sheaves of ideals, that the coherent ones are not good
enough. We had to consider finite sheaves of ideals. We can of course define in
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a similar way finite sheaves of N'-modules. Let F be a sheaf of A'-modules. We
will say that F is finite when there is a finite covering of M by semialgebraic open
subsets U;, such that each restriction F |y, is generated (as M |y;-module) by a finite
number of sections of F over U;. Thus, a finite sheaf of M -modules is coherent, but
when M is not compact there are coherent sheaves of A/-modules which are not
finite. Still, these finite sheaves of A-modules are not the good choice. Hubbard
([Hd] or [BoCoRo, 12.7.9]) has given the example of a Nash line bundle over R,
which is trivial over the two intervals | — 0o, 1{ and ] — 1, 400, and does not have
any global nonzero Nash section. Hence, the sheaf of Nash sections of this bundle
is finite, but it is surely not generated by its global sections.

Thus, we have to define a special subcategory, as was already done in the
compact case in [CoRzSh]. This is related to the notion of ‘A-coherent’ sheaves,
and also to that of ‘strongly algebraic’ vector bundles, discussed in the context of
regular functions [To;BeTo].

A sheaf of V'-modules F is called strongly coherent if there is an exact sequence

NI S NP - F 0.

Of course, a strongly coherent sheaf is finite, and hence coherent.
Now, let F be a finitely generated A (M )-module. Since N (M) is noetherian,
there is an exact sequence

NM)Y - N(M)P— F—0.

Let N ® N () F be the sheaf of N-modules generated by F. We get the exact
sequence of sheaves

Nq—>Np—>N®N(M)F—>O.

Hence, the assignment: F — N ® ~(p) F defines a functor from the category of
finitely generated AV (M )-modules to the category of strongly coherent sheaves of
N-modules.

The idea that the category of strongly coherent sheaves of A -modules is the
good one for sheaf theory in the Nash case is clearly supported by the following
result.

PROPOSITION 2.12 Suppose that the equivalent properties of Theorem 0.1 hold.
Then:

(a) A finite subsheaf of a strongly coherent sheaf of N -modules is strongly coher-
ent.

(b) Strongly coherent sheaves of N -modules form an abelian subcategory of the
category of sheaves of N -modules.
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(c) The global sections functor HO(M, —) induces an equivalence of abelian
categories from strongly coherent sheaves of N -modules to finitely generated
N (M)-modules, with inverse functor N' ® n(nr) —

The derivation of these results is made exactly as for the compact case in [CoRzSh]
(see also [Sh2, 1.6.15]). Again, we will not repeat the arguments here.

3. Equivalence of factorization and the height 1 cases of the other problems

The proof that Sep,(M ), Globj(M) and Ext{(M) are equivalent is the same as
the proof we have done for the equivalence without the index 1. Remark that a
finite sheaf of radical ideals Z is locally principal if and only if X(Z) has complex
codimension 1 in M€ at each point of ¥(Z) N M.

PROPOSITION 3.1 If Sep,(M) holds, then Fact(M ) holds.

Proof. For the proof, we can assume that M is connected. Let f be a Nash
functionon M and f = f; f> an analytic factorization. Since M (M) is a noetherian
normal domain, we have (f) = pJ’'---p;* where the p;’s are height one prime
ideals of V'( M), and the &;’s positive integers. We know by the separation property
that the extensions p;O( M) are prime. Let z € M be any point, and m; C O(M)
its maximal ideal; also, set A, = O(M )y, . Then, the ideal (f)A, is equal to
pl' - -pp* Ay, and, since A, is factorial, ( fi) A, is equal to a product pf L. -pf" A,
where 0 < Bi € e. Fix @ = 1,... k. Since p;O(M) is finitely generated, its
zero set Z in M is not empty. Thus, the localization B; = O(M),, coincides
with (Ag),,; for every @ € Z;. This shows on the one hand that B; is a discrete
valuation ring whose valuation we denote by v;, and on the other hand that the
exponent §3; of the factorization of f; A, coincides with v;( f1), hence it is the
same for all z € Z;. Furthermore, if z ¢ Z;, the exponent does not matter
because p; disappears in A Then a standard application of Cartan’s Theorem
B yields (f1)O(M) = p o pPk w*O(M). Choose a finite system of generators
of p; in N(M), and let F; be the sum of the squares of these generators. Then
p? = (F;), and hence there is a strictly positive analytic function G; on M such
that f2 = G F™' ... F Then g; = /G is a strictly positive analytic function
on M, and f1/¢g1 = 1 is a Nash function since it is analytic, and its square is a
Nash function. o

PROPOSITION 3.2 If Fact(M ) holds then Glob} (M) holds.

Proof. Let T be a finite sheaf of radical ideals of A such that all the ideals
I., x € M, are principal. We need to prove that X(Z) is a C-Nash M -germ. By
Lemmas 1.4 and 1.9 there exists a sheaf of A/-ideals J with the same properties
such that Z N J = Z.J is generated by global Nash functions fi, ..., fr and the
dimension of X(\/I + J) is smaller than dim M — 1. Let f denote the sum of
squares f7 + ---+ f7. Then f is a generator of (Z N J)? = 72 n J? = 1272
Let Q2 be a Steln open neighborhood of M in M€, and Z€ an extension of Z to
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Q such that 7€ keeps the properties of Z. Then by Cartan’s Theorem A we have
complex analytic functions g, g2, . .. on Q which generate ZC and are real-valued
on M. Let ¢, ¢, ... be sufficiently small positive real numbers, and let g denote
the restriction to M of 3%, ¢;g?. Then g is an analytic function on M and it is
a generator of Z2. In the same way we obtain an analytic function » on M which
is a generator of J2. Thus we have an analytic factorization f = ghf’ for some
positive analytic function f’. Since we assume Fact(M), we can replace g by a
Nash function, whose complexification has a zero set germ at M that coincides
with X(Z). Hence X(7) is a C-Nash M-germ. O

The reduction of the global equations and extension problems from the general
case to the radical one cannot be done for locally principal finite sheaves as for
finite sheaves (or coherent sheaves in the compact case). Proposition 2.11 does not
help here. So we have to produce a specific argument.

LEMMA 3.3 Let T be afinite sheaf of N -ideals such that all the ideals T., x € M,
are principal. Then there is a covering of M by finitely many semialgebraic open
subsets U; of M such that for each i, the restriction of the sheaf of ideals Ty, is
generated by a principal ideal of N'(U;).

Proof. We can find acovering of M by finitely many semialgebraic open subsets
U; such that the restriction Z|y, is generated by an ideal of V' (U;). Moreover, by
refining the covering, we can suppose that each U; is contractible. This implies
that all rings NV(U;) are factorial, see [BoCoRo, 12.7.17]. Hence we can suppose
that 7 is generated by an ideal of N (M), say I = (fi,..., fx), and that N(M) is
factorial.

For any = € M, the ideal Z, = IN; is principal, hence by descent, so is the
localization I, at the maximal ideal m, of z in (M ). Thus, the localization of
I at any maximal ideal of A'( M) is principal, and since A'( M) is factorial we find
that I is principal. a

PROPOSITION 3.4 Let T be a finite sheaf of N -ideals such that all the ideals

1., x € M, are principal. ThenT can be written as a finite product T = Hfﬂ I; @)
where o(1) is a positive integer, and each 1; is a finite sheaf of radical ideals such
that I, ; is principal for all x € M and X(1;) is an irreducible invariant M -germ.

Proof. Let X;, 1 < ¢ < k be the irreducible invariant components of X(7),
and set Z; = J(X;). Let z be a point of M. Then all the invariant irreducible
components of the germs X; ;. at 2 have complex codimension 1 and hence all the
T, ,’s are principal, since prime ideals of height 1 are principal in AV.

We can choose a covering of M by finitely many semialgebraic open subsets
U; such that:

— for each j, the restrictions to U; of the sheaves 7 and Z;, 1 < @ < k, are
respectively generated by the elements f; and fj;, 1 < i < k, of N(Uj;),
— all U; and all non empty intersections U; N U; are contractible.
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Indeed, the first condition may be realized by Lemma 3.3. Then, we get the second

by refining the covering using a semialgebraic triangulation compatible with the

first covering. Again, this condition implies that all the N'(U;)’s and N (U; N U;1)’s

are factorial domains. '
Now write a factorization in N (U;)

l]
2
fj = H ujp;@,()‘\? )7
A=1

where u; is invertible, p; \ are non associated irreducible elements, and 3(j, A) are
positive integers. The radical ideal of f;N'(U;) is generated by Hi\’zl p;,» and also

by [15_; f;:. So each p; » is an irreducible factor of exactly one f;;, and all the
irreducible factors of the f;;’s are obtained in this way. We claim that:

there is a positive integer a(t) such that, for any j, if p; » is any irreducible

factor of f; i, then B(j, X)) = a(1).
The Proposition follows from this claim. So let us prove the claim. By Lemma 1.3,
it is sufficient to prove that, when the restrictions of p; \ and p;/ x to U; N U;» have
a common irreducible factor ¢ (and hence are irreducible factors of f;; and f;/ ;
with the same ¢), then 8(7, A) = B(j’, A’). The g-adic valuations of the restrictions
to U; N U of p; \ and pj s are both 1, so the g-adic valuations of the restric-
tions of f; and f; are respectively 3(j,A) and B(j', \'). These two numbers
must be the same since the restrictions of f; and f; differ only by an invertible
factor. a

PROPOSITION 3.5 If Glob} (M) holds, then Glob;( M) holds.
Proof. Let T be a finite sheaf of ideals of A such that for any z € M,

T, is principal. We know from Lemma 3.4 that we can write 7 = []%, 7°®
where each Z; is an irreducible finite sheaf of radical ideals such that Z;  is prin-
cipal for all z € M and a(7) is a positive integer. By the hypothesis Globj (M),
each Z; is generated by an ideal I, of N(M). Then 7 is generated by

PROPOSITION 3.6 If Ext{(M) holds, then Ext;(M ) holds.

Proof. Let T be a finite sheaf of ideals of A such that for any z € M, Z, is
principal. Using Lemma 3.4 and grouping together all the factors with the same
exponents, we can write Z = ]'[f:1 I © Where each Z; is a finite sheaf of radical
ideals such that Z; . is principal forall z € M anda(1) > a(2) > --- > a(k) > 0.
We prove the Proposition by induction on a(1). The key idea of the proof is as in
[Sh1] to use the fundamental class of a Nash set and Thom’s realization Theorem
[Th]. The case (1) = 1 is just the hypothesis Ext](M ). Hence assume o(1) > 1,
and that the extension property holds for locally principal finite sheaves of ideals
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with smaller o(1). Let ¢ € HY(M, N /TI). We first reduce the problem to the
following easier case

=12 (*)
Let f; denote the sum of squares of a finite system of generators of HO(M,Z;)
(recall that Glob] (M) holds by hypothesis). Then f; is a generator of Z?, which
induces an isomorphism from N to Z7 defined by

Nedp—pfig 6112’,5, z € M.

This isomorphism induces a commutative diagram

HY(M, N) . H(M,T?)

J }

k . o
HO (M,N/Ii"‘"znlf‘(") —— HY(M,T}/T).
1=2

(Here the vertical maps are the natural ones.) If ¢ belongs to H%(M, 72 /T), then, by
the induction hypothesis, ¢ is the image of some element of H%( M, Z#). Therefore,
it suffices to reduce the problem to the case when ¢ € H(M,Z?/T). Let ¢ be
the image of ¢ under the natural homomorphism

HYM,N|T)— H (M, N /T}).

Assume Ext;(M) holds in the case (*). Then we have a global Nash function
®; € H%(M,N') whose image in H%(M, N /T?) is 1. Replace ¢ by

¢ — (the image of ®; in H(M, N'/T)).

Then we can assume ¢ € H(M,Z?/T), which implies the reduction to ().
Next apply the same arguments as above to the natural homomorphism

HYM,N|T?) — H(M,N/Ty),
and obtain a second reduction: to the case when

o e HY(M,1,/T%). (%)
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To progress further, we need to clarify the structures of M and Z~1(0). By
[Sh2, VI.2.1], we can assume that M is the interior of a compact Nash manifold
N possibly with boundary. Let dim M = n. For a Nash set Z in M of dimen-
sion < 7, let [Z] denote the fundamental class of Z in H,_1(Z U ON,0N;Z,).
(If the dimension of Z is smaller than n — 1, then [Z] = 0.) Let [Z], denote
the image of [Z] in H,—1(N,0N;Z,). We recall the following fact. Let
Z(n — 1) C Z be the set of the points z such that the germ Z, has dimension
n — 1, and let Z; be a connected component of Z(n — 1). Then Z; also has a
fundamental class in H,,_1(ZUON,0N;Z,),and if Z; = Z(n — 1) then the class
equals [Z].

Assume [Z;1(0)]. = 0. Then we prove that H%( M, Z;) is principal as follows.
We have the homology exact sequence

0 — H,(N,0N;Zy) — H,(N, Iy (0)U ON; Z,)
— Hy—1(Z71(0) U ON,ON; ).

Let N be a union of some connected components of M\Z;!(0) such that the
fundamental class in H,(N,Z;'(0) U dN;Z,) of the closure N; is carried to
[Z;'(0)]. Then V] contains (Z;(0))(n—1) by the definition of the above sequence,
and for each z € M there exists a function germ p € Z;, such that {p > 0} =
N1UZ;1(0) as germs at z. Let v : M\Z~'(0) — {1, —1} denote the map defined

by
1 forz € Ny,
n(e) = { —1 forz € (M\Z~'(0))\N.

Let f; be as above a generator of 7 = Ilz. Then we can define a generator g, of
HO%(M,I,) as follows

gt=fi onZI7'0) andg;=|Vfily1 onM\ZI7(0).

Hence H%(M,Z,) is principal.
Continue to assume [Z; 1(0)], = 0. As above, by multiplying by a generator of
HOY(M,I;), we obtain a commutative diagram

R

H(M,N) ——  HY(M,T)

l |

o~

HO(M,N[/T)) —— H'(M,T,/1}),
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hence reducing the case (**) to the case when ¢ € HO(M, N /), and, conse-
quently, proving Ext; (M ).

Let us consider the general case of [Z;!(0)].. By [Th] there exists a compact
C* submanifold L; of N of dimension n — 1 such that if 9L; # () then dL; is
included in ON, Ly is transversal to N in N, [L1\0L1]« = [Z;'(0)]., and the
dimension of L; N Z;'(0) is smaller than n — 1. (Here the last condition is not
stated in [Th], but it is satisfied once the other conditions hold and we modify L;.)
By the Stone—Weierstrass approximation Theorem we can assume, moreover, that
L is of class Nash. Let 71 denote the sheaf of germs of Nash functions vanishing
on L1\OL;. Set Ky = Z1J;. Then K is a finite sheaf of radical ideals of AV, and
we have [K7!(0)]. = 0. As above, we have a commutative diagram

H(M,N) ——— BYM,T?)

| |

H(M,N/T?) ——— HO(M,J2/K3).

This reduces the problem to the case where ¢ € H(M, J2/K?), and by the proof
above in the case [Z;'(0)]. = 0, ¢ is the image of some function of HO(M, J3).
This completes the proof of Ext;(M). ]

4. Positive answers in particular cases

We first consider the case where the real zero set is zero dimensional.

PROPOSITION 4.1 Let p be a prime ideal of N(M). If p~'(0) has dimension
zero, then separation holds for p.

Proof. Then p~!(0) consists of one single point a, and it suffices to see that pO,
is a prime ideal. By Artin’s approximation Theorem this is equivalent to see that
pN, is prime. Suppose fg € pN,, where f,g € N,.Let hy,...,h, be generators
of p and set

=243 12 §d=¢+> h.

Since pN, is a radical ideal, it is enough to show that either f’ or ¢’ is in pN,.
In other words, we may assume that a is an isolated zero of both f and g. Then,
by [Sh3], there are global Nash functions F,G such that F, = uf, G, = vg,
where u, v are units of AV, and F-1(0) = G~1(0) = {a}. It follows that F'G €
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p, and since p is prime, either F' € p or G € p. Hence, either f € pN, or
g € pN,. |

PROPOSITION 4.2 If T is a finite sheaf of ideals of N such that T~'(0) has
dimension O, then global equations and extension hold for T.

Proof. By hypothesis Z~1(0) consists of finitely many points. Let a be one
of them. We will find an ideal J(a) of M (M) which generates Z, and whose
only zero in M is a; then the product of J(a)’s will generate Z, and so we have
global equations. Pick finitely many Nash functions g;, 1 < ¢ < s, defined on
an open semialgebraic neighborhood of a, whose germs at a generate 7, . Set
hi =gi+cd i gjz-, 1 < 7 < s. We can find a sufficiently large ¢ > 0, so that
the zero set of h; in some open neighborhood of a is compact. We can find a Nash
function ¢; defined and positive on a neighborhood of a, such that the germ of ¢;h;
at a coincides with the germ of a global Nash function F; ([Sh3]). Analogously,
after multiplication by a positive function, we extend 37, g% to a global Nash
function F whose only zero is a (see again [Sh3]). Then J(a) = (Fp,..., Fs) is
what we want.

Now let ¢ be a global section of A'/Z. Then the sheaf Z () of ideals of Mprxr
is obviously finite and Z()~!(0) is a finite number of points. Hence Z(¢) is
generated by its global sections, and Proposition 2.2 allows to lift ¢ to a global
Nash function on M. So extension holds for 7. o

Next, we turn to the case of real ideals whose singularities are isolated in the
real zero set. A point a of a Nash set N is called Nash nonsingular if a is a smooth
point of N of the maximal dimension and if for some Nash functions f; vanishing
on N, grad f; span the normal vector space.

PROPOSITION 4.3 Let p be a prime ideal of N(M). If p is real and p~'(0) has
only isolated Nash singularities, then separation holds foi p.

Proof. We need to prove that X(p) is irreducible as an invariant M-germ.
Assume X(p) were not so. There would exist two finite sheaves of radical M-
ideals Z; and 7, such that 7; N Z, = pA and Z;!(0) N Z;(0) is a finite number
of points. This comes from Lemma 1.9. Hence it suffices to prove the following
statement.

Let I and I, be finite sheaves of radical Nys-ideals such that all irre-
ducible invariant components of X(Z,) and X(1,) have the same dimension,
dim X(Z1) N X(Z;) < dimX(Z1), T = I N I, is generated by global Nash
functions, and I1|y and I|u are generated by Nash functions on U, for an
open semialgebraic neighborhood U of T;'(0) N Z;'(0) in M. Then T, and
I, are generated by global Nash functions.

First we show that for a small open semialgebraic neighborhood U, of Z; 1(0) in
M, I{|yuy, is generated by Nash functions on U U Uy. Let fi,..., fr € N(U) be
generators of H(U, ;). Replace f; by fi+ f’ f=1 f}, 1 < i < k, forasufficiently
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large positive Nash function f' on U, and add Z;-;l sz to the generators. Then we
can assume that each f; is positive on

U nZ;1(0)\(a neighborhood of Z;}(0) in M).

Hence by [Sh3], multiplying f; by a positive Nash function on U, we can extend f;
to U U U, for a small U, so that the extension is positive on U;\U. Hence 71|y,
is generated by these extensions.

Secondly we want to show that the restriction Z,|ysyrs, is generated by Nash
functions on U U U,. We know that Z|yyuy, and Z; |y, are generated respectively
by radical ideals I and I; of N (U U U;). We have

x(I) = x(h) U X(Z2luuws),
dimXx(I;) N X(IleuUz) < dimXx(1;),

and all the irreducible invariant components of X(/;) and X(Z;|yuy,) have the
same dimension. From this it follows that

— any irreducible invariant component of X(I;) or of X(Z;|uuws,) is an irreducible
invariant component of X(I), and hence an irreducible invariant component
of X(q) for some minimal prime divisor q of I,

— X(I) and X(Z|yuv,) have no common irreducible invariant component.

Hence I; must be the intersection of some of the minimal prime divisors of 7,
and therefore 7, |uyu, is generated by the intersection of the other minimal prime
divisors. Finally apply the arguments in the above first step to Z5|7urs,. Then we can
choose generators of 7|7y, so that they are extensible to M and the extensions
are generators of 7,. In the same way we see that 7 is generated by global Nash
functions. O

PROPOSITION 4.4 Let T be a finite sheaf of ideals of N'. Global equations holds
for T if each stalk 1, is real, and the intersection of M with the Zariski closure of
Z71(0) in R™ has only isolated Nash singularities.

Proof. Set X = X(Z). It suffices to prove that X is Nash. Without loss of
generality we can assume X irreducible as an invariant M-germ, and M = R™,
Let X’ denote the smallest Nash R™-germ containing X, and let X" denote the
germ at R™ of the Zariski closure of X in C™. Then X' is a union of some
components of the decomposition of X” into irreducible invariant M -germs.
Hence by hypothesis, if we set Y = X’ N R™, then X' is the germ at R™
of a complexification of Y, Y is irreducible as a Nash set, and Y has only
isolated Nash singularities. Let p be the ideal of global Nash functions vanishing
on X'. Then p~!(0) = Y, %(p) = X', and p satisfies the condition of 4.3.
Hence X' is irreducible as an invariant M-germ. It follows that X' = X, i.e.
X is Nash. a

The next case is when the complex zero set germ has dimension 1.
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PROPOSITION 4.5 Ifyp is a prime ideal of N (M) of coheight < 1, then separation
holds for p. If a finite sheaf of ideals T of N is everywhere of coheight < 1, then
global equations and extension hold for I.

Proof. For separation there are two cases: the dimension of p~1(0) is 0 or 1.
If the dimension is O, then we apply Proposition 4.1; if the dimension is 1, then p
satisfies the condition in Proposition 4.3.

Now let Z be a finite sheaf of radical ideals of A" everywhere of coheight < 1.
By considering the irreducible invariant components of X(Z), we know from the
first part of the Proposition that global equations holds for Z. For the same reason
it holds for the sheaf Z(¢) where ¢ is any global section of A'/Z. Hence, by
Proposition 2.2, extension holds for 7.

Finally, using Proposition 2.11, we get that global equations and extension hold
for any finite sheaf of ideals everywhere of coheight < 1. a

The following result is a generalization of a result in [TaTo] (see also [MoRa]).
It concerns the case where the quotient is normal. It matches the result of [Qu]
obtained under an assumption of normality.

PROPOSITION 4.6 Ifyp is a prime ideal of N (M) such that the quotient N (M) [p
is normal, then separation holds for y. If T is a finite sheaf of ideals of N such that
all the quotients N, /I, ¢ € M, are normal, then global equations and extension
hold for T.

Proof. If N(M)/p is normal, then for any z € M the localization N (M), /
pN (M), is normal, and hence the henselization NV;/pN; is normal, so pN; is
prime. Since moreover p~!(0) is connected, we have that X(p) is an irreducible
invariant M -germ, which means that separation holds for p.

To prove that global equations hold for Z, we use an idea of the proof of Artin—
Mazur’s theorem (see [BoCoRo, 8.4.4]). The fact that NV, /Z, is normal for any
z implies that Z is a finite sheaf of radical ideals. We can suppose that Z~1(0) is
connected, and then the argument above shows that X = X(7) is an irreducible
invariant M-germ. Let p be the prime ideal of A'(M) of global Nash functions
vanishing on X . The normalization of V(M) /y is a finite N'(M ) /p-module, so we
can write this normalization as V(M )[y]/q where y = (y1,...,Yys) and qis a prime
ideal. Let X' be the M -germ X(p), and Y the M X R*-germ X(q). Let ¢y, ..., vz be
the minimal prime divisors of gV (M X R?®). Since N (M x R?) is ind-étale over
N (M)[y], the quotients N (M x R®)/r; are normal. So, by separation, the X(t;)’s
are the irreducible invariant components of Y.

Set A = 771(0), A’ = p~1(0), B = q~1(0). By the assumption that the
quotients N /Z, are normal, the germ inclusion f: X — X’ factorizes through
the projection p: Y — X', which gives g: X — Y. We have

pog=/f, f(A)cA, g(A)cB, pB)cCA.

Moreover, since f(X\A) C X'\ A’ and f|4 is proper, g(X\A) C Y\B and g|4
is proper.
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On the algebraic side, for any z in A, the local homomorphism
N(M)/p)m, = No/Ze,

induces, by normality and henselianity of A /Z,, a local homomorphism

Qg :NMst,g(x)/qNMxR’,g(x) - Nx/zx

This a, is surjective, since composing it with

Nx/pNx - NMXRS,y(x)/qNMXRSyy(l‘)

gives the surjection N /pN,; — N, /Z,. And since both source and target of o
are normal, and have the same dimension, o, is an isomorphism.

Putting together these informations, we find that g is an isomorphism onto some
irreducible invariant component, say X(t;), of Y. Let ¢; be the composition of the
coordinate y; with g, which can be identified with a global section of A//Z: the
germ ;s atx €1 ~1(0) is the image of the coordinate y; under the isomorphism
a,.. We can construct the sheaf Z(¢y, ..., ;) of ideals of Mps«r¢, as it was done
for Z () at the beginning of Section 2. We have that Z(¢y, . .., ¢;) is a finite sheaf
of radical ideals by Lemma 2.1, and since

X(Z(p15--55) = 9(X) = X(t1),

it is generated by its global sections. Then, applying s times Proposition 2.2, we
conclude that 7 itself is generated by its global sections. So global equations hold
forZ.

Lastly we prove extension for Z. Let ¢ € H% M, N'/T), and consider the sheaf
Z(p) of Nprxr-ideals. It is a finite sheaf of radical ideals by Lemma 2.1. For
each (z,t) € Z(¢)~1(0), the stalk V; MxR,(z,t)/ () (z,¢) is isomorphic to the stalk
Nu /T Hence NpsyR (z,t)/Z(¢)(c,t) is normal. Therefore, by the above proof,
Z(¢) is generated by its global sections. Then, by Proposition 2.2, ¢ is extensible
to a global Nash function on M, which completes the proof. a
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