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0. Introduction

Nash functions are those real analytic functions which are algebraic over the
polynomials. So it is natural to think that they can separate the analytic components
of real algebraic varieties. A first step in this direction was the separation theorem
of Mostowski [Mo], which implies that Nash functions separate the connected
components of real algebraic varieties.
We must be a little careful in the formulation of the separation problem, since

real algebraic varieties may have analytic components which are not given by
global analytic equations. We will state a general algebraic form of the separation
problem, which amounts to consider the analytic components of the germ at the
real part of a complexification. Let M C Rm be a Nash manifold, N(M) the ring
of Nash functions on M and O(M) the ring of analytic functions on M.

Separation problem. Let p be a prime ideal of N(M). Is pO(M) a prime
ideal ?

We will denote by Sep(M) the property that the separation problem has a positive
answer for any prime ideal p of N(M). We will use the notation Sep, (M) when
we consider only prime ideals p of height 1.

The separation problem for height one prime ideals is related to a problem about
factorization of Nash functions.

Factorization problem. Given a Nash function f on M and an analytic fac-
torization f = f1 f2, do there exist Nash functions gl and g2 on M and positive
analytic functions pi and p2 such that pi p2 = 1, fl = pi gi and f2 = lf’292?

We will denote by Fact(M) the property that the factorization problem has a
positive answer on M.

* 
Partially supported by DGICYT, PB92-0498-C02-02.
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The local separation problem has an affirmative answer. Let Nx (resp. Ox) be
the ring of germs of Nash (resp. analytic) functions at a point x of M. If p is
a prime ideal of Nx, then pOx is prime. This is an easy consequence of Artin’s
approximation theorem [Ar]. Unfortunately, there are difficulties to pass from local
to global results, due to the bad cohomological properties of Nash functions. If NR
is the sheaf of Nash functions on R, then Hl(R,NR) # 0 [Hd]. Despite of this
lack of a good cohomology theory, some properties of Nash sheaves, related to the
separation problem, are expected.

Let Af be the sheaf of Nash functions on M (we write NM if we need to
emphasize M), and let 0 (or OM) denote the sheaf of analytic functions on M.
We know that N is coherent as a sheaf of N-modules [Sh2, 1.6.6]. Hence, if a
sheaf of N-ideals 1 is locally generated by Nash functions, then I is coherent.
Coherent sheaves of N-ideals seem to be interesting, but the concept of a coherent
sheaf of N-ideals is too wide for real algebraic geometry. For example, consider
M = R and J(Z) the sheaf of germs of Nash functions vanishing on Z. Then
J(Z) is not generated by its global sections (the constant zero is the only global
section), and the global section of the quotient sheaf N/J(Z) which is 0 for even
integers and 1 for odd ones does not lift to a global Nash function. Clearly, the
sheaf J(Z) lacks some finiteness property. We call a sheaf of ideals I of N finite
if there exists a finite open semialgebraic covering {Ui} of M such that for each i,
IBui is generated by Nash functions on Ui. Note that any finite sheaf of ideals of
N is coherent, and that the two notions coincide when M is compact. Here are the
main problems about finite sheaves of ideals of N, which would play the role of
Cartan’s Theorems A and B to construct a good sheaf theory on Nash manifolds.

Global equations problem. Is every finite sheaf I of ideals of N generated
by global Nash functions ?
Extension problem. For the same 1 as above, is the natural homomorphism

surjective?
We will denote by Glob( M ) the property that the global equations problem has a
positive answer for any finite sheaf I of ideals of NM. We will use the notation
Glob1 (M) when we consider only locally principal finite sheaves l of ideals of
N M, i.e. those for which every stalk Lx is principal. We will use the notation
Globr(M) when we consider only finite sheaves of radical ideals of NM. Of
course, we will use Globî (M) when we have both restrictions. For the extension
problem we use the corresponding notations Ext(M), Ext1(M) Extr(M) and
ExtÍ (M).

In the last 20 years, several partial results conceming the problems we have
stated were obtained: see [Efl, Ef2, Sh2, Sh3, MoRa, Pe, TaTo]. Recently, all the
problems were given positive answers in the case of a compact Nash manifold
[CoRzSh]. The key point is to use Artin’s conjecture, which says that a regular
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morphism between noetherian rings is an inductive limit of smooth finite type
algebras. This result is applied to the morphism N(M) -+ O(M). This does
not apply to the non compact case, since O(M) is no more noetherian. For the
moment, we are not able to give a positive answer to these problems in the general
non compact case.

The aim of this paper is to prove, in the non compact case, the equivalences of
all these problems. Precisely, we have:

THEOREM 0.1. For any Nash manifold M, the properties Sep(M), Globr(M),
Glob(M), Extr(M), Ext(M) are all equivalent.

THEOREM 0.2. For any Nash manifold M, the properties Fact(M), Sep (M),
Globr1(M). Globl (M), ExtÎ (M), Extl (M) are all equivalent.

Several partial results in the direction of this equivalence appear in [Sh2]; this
kind of problem is also considered in [BaTo]. See also [RzSh] which relates
the separation problem with the problem whether a semialgebraic subset of M
described by global analytic inequalities may be described by the same number of
Nash inequalities.

Recently, R. Quarez [Qu] has shown that if a property known as the ’idempo-
tency of the real spectrum’ holds, then it is possible to apply Artin’s conjecture in
the non compact case to the morphismN(M)1 l -+ HO(M,N 1 lN) where I is a
radical ideal of N(M), getting a positive answer to the extension problem in this
particular case. The results of our paper show that this particular case imply all
properties of Theorem 0.1. Unfortunately, it appeared that there is up to now no
valid proof of this idempotency: see [Qu] for a clarification of the situation and a
proof under an assumption of normality.

The first section of the paper contains preliminary results about finite sheaves
of ideals of N, and their zero-sets considered as complex germs. The second and
third sections are devoted respectively to the proofs of Theorems 0.1 and 0.2. The
fourth section contains some new partial positive answers to our problems.

1. Finite sheaves of N-ideals and their zero-sets

We want to associate to a finite ideal sheaf of N a zero-set which will be some
germ of complex analytic set at M, in a complexification of M, and characterize
these zero-sets.
A complexification of M may be constructed in the following way. Up to a

Nash diffeomorphism, we may suppose that M is a connected component of a non
singular real algebraic set V C Rm ([Sh2,1.5.3], [BoCoRo, 8.4.6]). Let WC be the
Zariski closure of M in Cm, and take for Mc some open semialgebraic subset of
the regular points of WC (we consider Cm = R2m to define semialgebraic subsets
of C’n ), invariant under conjugation, and such that mc n Rm = M. This MC is a
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complex analytic manifold, and its dimension as complex analytic manifold is the
same as the dimension of M.

We will consider germs at M of complex analytic sets in Mc (see for instance
[WhBr]), which we will call M-germs for short. We will mainly consider such
germs which are invariant under complex conjugation, which we will call invariant
M-germs. We will denote by E the complex conjugation. An irreducible invariant
M-germ X is an M-germ such that there exists an irreducible M-germ Y with
X = Y U £(Y). If X is an irreducible invariant M-germ of dimension p, and if Y is
an invariant M-germ contained in X, then either Y = X or dim Y  p (cf. [WhBr,
Prop. 5]). If X is an invariant M-germ, there exists a unique locally finite family
(Xi ) of irreducible invariant M-germs such that X = U Xi and Xi e Xj for 1 fl j ;
the Xi are the irreducible invariant components of X (cf. [WhBr, Prop. 9]). We
call an invariant M-germ X finite if it has a finite number of irreducible invariant
components, and locally semialgebraic if the germ Xx at each point x E M is
semialgebraic.

Let f be a Nash function on M. Then f extends uniquely to a semialgebraic
open neighborhood U of M in MC. Denote by X(f ) the invariant M-germ of the
zero set of f in U at M. We define in the same way X(f1, ... , fp) for a finite
number of elements of N(M); this invariant M-germ depends only on the ideal
I = ( f 1, ... , fp) in N(M), and we denote it by X(I). We will call C-Nash M -germ
an invariant M-germ of the form X(I) for an ideal I of N(M), i.e. an invariant
M-germ defined by global Nash equations.
Now let I be a finite sheaf of ideals of N. There is a finite semialgebraic

covering M = lJk Ui, and for each i an ideal Ii of N(Ui) such that Ilut is

generated by Ii. The germs X(Ii) at Ui and X(Ij) at Uj coincide along Ui n Uj,
and hence these germs may be glued together to give an invariant M-germ XCI).
Actually, there is a semialgebraic neighborhood U of M in MC, and an invariant
semialgebraic complex analytic set X* in U, whose germ at M is X(Z). We call
X * a semialgebraic realization of the M-germ X(I) (in U). An invariant M-germ
having such a semialgebraic realization will be called an invariant semialgebraic
M-germ. We can also define X(I) if l is a coherent sheaf of ideals of N; this
M-germ is locally semialgebraic, but in this case there may be no semialgebraic
realization (remember Z in R).
We will have also to consider the zero sets not only as M-germs, but also as

plain subsets of M. So we have to introduce another notation for these. If I is an
ideal of N(M), we denote by I-1 (0) the set of those x e M such that f (x) = 0 for
all f E I. We call I-1 (0) a Nash set. Correspondingly, if 1 is a coherent sheaf of
ideals of N, we denote by 1- (0) the set of those x e M such that I, is différent
from Nx. We have of course I-1 (0) = XCI) fl M.
A Nash function f e N(M) vanishes on an M-germ X if X C X f), and

we define J ( X) to be the sheaf of germs of Nash functions vanishing on X. It is
clearly a sheaf of radical ideals of N.
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LEMMA 1.l Let I be a finite sheaf of ideals of N. Then VI is a finite sheaf of
ideals ofN, and J ( X( I)) == UÎ.

If X is a C-Nash M-germ, then J(X) is generated by its global sections.
Proof. There is a finite covering of M by semialgebraic open subsets U2 such

that I[u, is generated by an ideal Ii of N(Ui). Then, since Nx is ind-étale over
N(U2) for any x in Ui, we know that VliNx == vr;JV; = vtr;. So Ii generates
VIlui. This proves that VI is finite. Using Rückert’s Nullstellensatz [GuRo], and
the fact that 0., is faithfully flat over Nx for any x E M, we get that J( X(I)) == VI.

If X = X(I) where I is an ideal of V(M), then by the preceding arguments
J(X) = vIN, which shows the last part of the Lemma. D

LEMMA 1.2 Let I be a finite sheaf of ideals of N. Then XCI) has a finite number
of irreducible invariant components, which have semialgebraic realizations.

Proof. Let X* be a semialgebraic realization of X(I). Let U be a sufficiently
small open invariant semialgebraic neighborhood of M in MC. Let {Xj} denote
the family of germs at M of the closures of the connected components of Reg X * n
U, where Reg X* denotes the regular point set of the complex analytic set X*.
Note that RegX* is semialgebraic. Then {XJ} = {Xj U £(Xj)} is the family of
irreducible invariant components of X(I). This assertion proves the Lemma, and
now we are going to prove the assertion.
We obtain U in the following way. Let K be a finite simplicial complex and 7r

a semialgebraic homeomorphism from a union Q of some open simplices of li to
Mc such that 1r-l (M) and 1r-l (Reg X*) are unions of some open simplices of 1(.
By subdividing K, we may assume that if the vertices of a closed simplex a E 1(
are all contained in the adherence of 1r-l(M) then so is Q. Let V denote the union
of the open simplices Q of K such that a C Q and Q n 1r-I(M) i= 0, and set

Then U is an open semialgebraic neighborhood of M in Mc, and U n7r (Z) =
U n X* is a semialgebraic complex analytic set in U. Let Zt,..., Zk denote the
connected components of Z, and set

Then U n X * = Uj=l Xj* and each Xj* is a semialgebraic complex analytic set in
U. It remains to prove that the germ Xj of X j * at M is irreducible as an M-germ.

Assume the M-germ Xj were not irreducible. Then there would be an open
neighborhood U’ C U of M in Mc and at least two connected components YI and
Y2 of U’ n Reg Xj* such that Yi n M =f 0, i = 1, 2. ln other words, there would be
no path in U’ n Reg Xj* joining a point of Y1 with a point of Y2. We can assume
that U’ n 1r ( a) is connected for every open simplex 03C3. Since Zj is connected, we
have a path p C Reg Xj* joining a point yl e YI with a point y2 e Y2. The path
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decomposes into finitely many others ç1, ... , ff’s such that for some open simplices
03C31, ... , as we have pj C 7r (oj) C RegXj*. Now, since every r (ui) is adherent to
M, we can deform the path pj into a path

Clearly, this can be done so that 03C31 ... , 03C3s build up a new path 03C3’ C U’ n Reg Xi,
still joining YI and y2, which is a contradiction. Il

We record here a result using the proof of the preceding Lemma that will be
useful in the proof of Proposition 3.4.

LEMMA 1.3 Let I be a finite sheaf of radical ideals of N such that X(I) is an
irreducible invariant M-germ. Let (nj) be a finite covering of M by semialgebraic
open sets, such that for each j the restricted sheaf Ilç2 3 is generated by an ideal
Ij of N(nj). Let pj C N(nj) and Pjl C N(njl) be minimal prime divisors of h
and Ij, respectively. Then there is a finite sequence pj - Pjo, Pjl’ 1 ... Pjs = P1 1,
where each Pjr is a minimal prime divisor of Ijr’ such that, for r = 1,..., s, the
extensions of the ideals Pjr-l and Pjr to N(njr-l n njr) have a common minimal
prime divisor.

Proof. We perform the construction of the proof of Lemma 1.2, from which we
borrow the notations. We can ask moreover that the triangulation K is compatible
with the covering Q j . Let Vi denote the union of open simplices a of K such that
a C Q and 03C3 ~ 03C0 (03A9j) ~ 0, and let Zj = Vi n7r - 1 (Reg X *). These Zj’s cover
Z. If u is a simplex contained in Zj, then the germ of 1r( a) at Qj is contained in
the nj-germ of zeroes of a unique minimal prime divisor of Ij, which we denote
by Pj( a). Also, if a is contained in Vi fl Vjt, then the germ of 1r( a) at Qj n Q j, is
contained in the Q j n njl-germ of zeroes of a unique minimal prime divisor pj,jl( a)
of the extension to N(nj n njl) of Ij (which is the same as the extension of Ij, );
moreover pj,j, (u) is a common minimal prime divisor of the extensions of pj (u)
and pjl (a). Now choose two simplices a C Zj and a’ C Zj, such that Pj( a) = pi
and pjl(a’) = pj,, and which are contained in the same connected component of
Z; this is possible because, by the irreducibility of X(I), Z is either connected or
the union of two connected components exchanged by conjugation. Then there is
a piecewise linear path joining 03C3 to a’ inside Z and going successively through the
simplices a == uo, 03C31, ... , as = a’. Choose njr such that Ur is contained in Zjr’
and set Pir = Pir (03C3r ) . Now it is enough to understand that since Or - 1 is a face of
ar or vice-versa, we have Pjr-l,jr (ar-l) == Pjr-l,jr (ur). ~

LEMMA 1.4 Let X be an irreducible invariant M-germ, which is locally semial-
gebraic. Then there is an ideal I of N(M) such that X is an irreducible invariant
component of X( 1), and dim X = dim X( 1). Hence X has a semialgebraic real-
ization.
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Proof. We can suppose that M is a connected component of a non singular real
algebraic set W C Rm, and that Mc is an open semialgebraic set of the Zariski
closure WC of W in Cm . Let X* be a locally semialgebraic complex analytic set
in an open neighborhood of M in Mc whose germ at M is X. We can assume that
Reg X* is either connected or the union of two connected components exchanged
by the conjugation E. Let Z* denote the Zariski closure of Reg X* in Cm ; it is
an algebraic set, defined and irreducible over R, contained in WC. We first prove
that the dimension of Z* is equal to dim X * = m’ (these dimensions are complex
dimensions).

Suppose that dim Z* = d &#x3E; m’. Let 0 E Reg X *. After a linear change of
coordinates, the restriction q 1 Z. of the projection

is surjective. Indeed, after a linear change the projection

is finite, and consequently surjective. Since q 1 Z. is the composition of this surjection
with

it is surjective. Moreover, the linear change can be chosen to have a small open
semialgebraic neighborhood U of 0 in Cm such that qlx*nu: X * fl u ---+ q(U) is
proper, and moreover X* nUis semialgebraic. Then q(x* nU) is a semialgebraic
complex analytic set in q(U) of dimension m’. We will prove in the following
Lemma 1.5 that the Zariski closure of q(X* n U) in C’n’+1 has dimension m’.
Then we have a nonzero complex polynomial function Q on Cm’+l vanishing on
q(X* nU). Clearly P = Q o q vanishes on X* n U and, hence, on Reg X * and
also on Z*. Since q(Z*) = Cm’+l, then Q must be zero: here is the contradic-
tion.

Let Z be the invariant M-germ of Z*, and let I C N (M) be the ideal of
Nash functions vanishing on Z. It contains the restrictions to M of the real poly-
nomial equations of Z*, and hence Z = X(I). Let {Zj} be the finite family
of irreducible invariant components of Z. Since X is irreducible invariant, con-
tained in Z and of the same dimension as Z, it must be equal to one of
the Zj’s. o
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Finally, we prove the Lemma quoted above. Although this is not new ([An],
[Kn], [FoLoRa]), we include the (easy) proof for the convenience of the reader.

LEMMA 1.5 Let Y be a semialgebraic complex analytic subset, of complex dimen-
sion m’, of an open subset of Cm’+I. Then the dimension of the Zariski closure of
y in Cm’+1 is m’.

Proof. The set Reg Y is semialgebraic, has a finite number of connected com-
ponents which are semialgebraic, and its adherence is Y. Hence we can retreat
to the case where Y is smooth and connected, and from that to the case where
Y is the graph of a complex analytic function p : W --+ C where W is an open
neighborhood of 0 in Cm’, and moreover Y is semialgebraic.

Writing z = (zl , ... , zm,) = (x + iyl,..., zm, + iym,), we may describe
by a pair of real functions

Then pi and p2 are Nash functions on W. Set W’ = W n (R x (0) x R x (0) x ... ) ,
i.e. Wr is the real part of W. Clearly pj ] wr , i = 1, 2, are Nash functions. Let
W’ be a small open semialgebraic neighborhood of W’’ in Cm’. Then we have
complexifications (pj ] wr ) of pj ] wr on W’, which are the restrictions to W’ of
branches of algebraic functions. Since

~|W, is the restriction to W’ of one branch of an algebraic function, and hence the
dimension of the Zariski closure of the graph of p is m’. D

Let us sum up what we know: if I is a finite ideal sheaf of N, then X(I) is a
finite semialgebraic invariant M-germ; if X is an irreducible locally semialgebraic
invariant M-germ, then it is an irreducible invariant component of X(I) for some
ideal I of N(M) and it is semialgebraic. What we have to show now is clear: that
an irreducible invariant component of X(I) is of the form X(I) for some finite
ideal sheaf 1 of N. The finiteness is the point here, since we do not suppose M
compact. The following Proposition 1.7 will be the tool to get finiteness. It is very
close in spirit to [EkTn, Prop. 5.2.2], and we will follow the lines of the proof
of this proposition. Since the preprint [EkTn] has not yet been published, we will
repeat for the convenience of the reader some of its arguments. The first proof of
this result was given to us by R. Huber, using his work on isoalgebraic functions
[Hr] .

The formulation and the proof of 1.7 make use of the real spectrum; this seems
difficult to avoid. We recall a few facts about the real spectrum, which will be
useful in the sequel. We associate to M a space M, the real spectrum of N(M),
which is a compactification of M. A point a of M is identified with a ultrafilter



39

of semialgebraic subsets of M, which we denote by S. We may consider M
as a subset of M, identifying a point x e M with the principal ultrafilter of
semialgebraic subsets of M generated by x. To a semialgebraic subset S of M is
associated the subset S C M of those a’s such that S e 5. A point a of the real
spectrum defines a prime ideal p of N( M ) whose elements are the Nash functions
f E N(M) such that {x E M; f (x) = 01 E à, and an ordering of the quotient
field of N(M)/p such that the image of f E N(M) is strictly positive if and orily
if {x E M ; f (x) &#x3E; 0} e a; these two data determine a. We denote by Ii( a) the
real closure of this ordered field, and by supp(a) (the support of a) the zero set of p
in M. The topology on M is generated by the !7’s, for U open semialgebraic subset
of M. It induces the usual topology on M. With this topology, M is compact (not
Hausdorff).

Let d be the dimension of the support of a. We can choose a Nash chart with
domain a semialgebraic open subset U of M, and Nash coordinates in this chart
( x 1, ... , x d, t 1, ... , te ) which are restrictions of global Nash functions on M, such
that a e fi, supp( a) n U consists of non singular points of supp( a) and is given
by t 1 = ... = te = 0. The ultrafilter ii is generated by the semialgebraic open
subsets S of supp( a ) n U such that a E S [BoCoRo, 9.6.10]. The field K( a) is
canonically isomorphic (as N(M)-algebra) to the inductive limit of the rings of
Nash functions Nsupp(a)nu(S) on such S.
We can define the ring NM,a of germs of Nash functions on M at a: it is the

inductive limit of the rings NM(n) for n semialgebraic open subset of M such
that a e Q. It is an henselian local ring with residue field Ii( a), and ind-étale over
N(M) [BoCoRo, 8.8.3]. The choice of a Nash chart as above gives an isomor-
phism from N M,a onto the ring Ii( 0152 )[[tl, ... , te]]alg of series which are algebraic
over the polynomials; this is the henselisation of the localisation of K (a) [t 1, ... , te]
at the maximal ideal (tl, ... , te). For this ring we have the preparation and
division theorems [BoCoRo, 8.2.7 and 8.2.9], and also Artin’s approximation
theorem [Ar].

LEMMA 1.6 Let p be a prime ideal of N M,a. Then there exists an open semialge-
braic subset U of M, a E fi, such that, if q = p f1 N(U), we have qivm,, - p.
Moreover, if Ul is an open semialgebraic subset of M, UI :1 a, and if I is an ideal
of N(UI) such that INM,a == p, then there is a smaller open semialgebraic subset
U2 C U nUI, U2 :1 0152, such that IN( U2) = qjv(u2) = p n N( U2).

Proof. Set qo = p fl N(M). We know that qojVm,,,, = p n P2 n ... n Pr, where
p2?... ? p, are prime ideals which have all the same height as p and qo. Now choose
f2 in pBpi, for i = 2,..., r. These f2,..., fr are Nash functions on some open
semialgebraic subset U of M, !7 3 a. We set q = p n N(U). Then qNM,a is the
intersection of p and some prime ideals among p2? " - ? Pr - Since fi E qNM,a, it is
impossible that qN M,a C pi. So we have qN M,a == p.
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Now let U1 and I be as in the statement of the Lemma. Let gl, ... , gs be
generators of q, and hl,..., ht be generators of I. We can find Oi,j and ’l/Jj,i in
N M,a for i = 1,..., s and j = 1,..., t such that

There is an open semialgebraic set U2 C Un Ul, U2 3 a, such that all the CPi,j and
7/Jj,i are Nash functions on U2. Then we have IN(U2) = qN(U2).

The ideal qAr(U2) is the intersection of a finite number of prime ideals of
the same height as p and q. Let r be such a prime ideal associated to qA(U2).
Since qjVm,,, = p, we have also r.A/M,o’ = p Hence r = p n N(U2). This proves
qN(U2) == p n N(U2). 0

PROPOSITION 1.7 Let p be a prime ideal of NM,a. We can find an open semi-
algebraic subset U C M and a Nash submanifold S of U, a E S, such that, if
q = p n N(U), then for every 0 E S, qNM,O is a prime ideal.

Proof Since we are only interested in a neighborhood of a, we can suppose,
using a chart as above, that M is an open semialgebraic subset of Rd x R e
and that the support of a is Rd x {0}. We note x = (x 1, ... , x d ) the variables
in R , and t = (tl,..., te ) the variables in Re . We identify Arm,, with the ring
r-(a)[[tl, - - -, te]]alg. Let e - k be the height of the prime ideal p injVm,,. Following
[GuRo, Chap. 3, A], we can perform a linear change of coordinates in t 1, ... , te,
to be in the situation we will now describe. Remark that this change of coordinates
has a finite number of coefficients in "’( Q), so that this may be viewed as a
linear change of coordinates t with coefficients Nash functions in x, on an open
semialgebraic subset of Rd x {0} whose tilda contains a. Set t’ = (tl, ... , tk) and
N = "’( a ) [[t’]]alg (here A/’ is the sheaf of Nash functions on Rd x R k X {0}).
Then:

l.pn={o}.
2. Na 1 p is integral over N.
3. The field of fractions of Na/p is generated over the field of fractions of N by

the image Of tk+ 1 -
As in [GuRo], it follows that:

4. p contains distinguished polynomials P = Pi in Ar,,,[tk+ll, irreducible of
degree s, P2 in À£§ [tk+2] , ... , Pe-k in N[te]. These polynomials are the
minimal polynomials, over the field of fractions of N, of the classes modulo
p of 4+1,4+2 ?... te respectively.

5. Let ç be the discriminant of P; it is an element of Ar’ ,,,, different from 0.
6. The ideal p contains also Q2 = £tk+2 - R2,..., Qe-k = çte - Re-k where,

for i = 2, ... , e - k, Ri belongs to V,’ , [tk+ 1 and deg Ri  s.
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The following consequences are also essentially in [GuRo]. Nevertheless we give
the arguments. Set

Then:

7. For every i = 2, ... , e-k we have çT Pi e I. Indeed the polynomial Çr Pie Ril ç)
in Y,,, [tk+ 11 is divisible by P since its image inNa /p is null, and then the Taylor
expansion 

shows the assertion.

8. For any r’ &#x3E; r, we have

The inclusion from right to left is clear. If f is in p, it can be divided successively
by P, P2,..., Pe-k, and so f is congruent modulo (P, P2,..., Pe-k)NM,a to a
polynomial of total degree not greater than r in tk+2, ... , te, with coefficients in
N [tk+l]. By 7, to prove that e’f e I, we can suppose that f is this polynomial.
Then e’f is congruent modulo (Q2,..., Q k ) to a g inpnJV,,, [tk+ 1 ]. This g is
divisible by P.

Since P is irreducible, there is no equality P = AB in Af,,,[tk+11 where A and
B are monic polynomials of degree q and s - q respectively, with 0  q  s. Set

The coefficients pj are in Nâ , hence they are roots of polynomials Ej (t 1 , ... tk, Uj)
in the indeterminate uj, with coefficients in K( a ) [t 1 , ... , t k]. Since E j has a finite
number of roots in the fraction field of Nâ, there is a t such that any root in
Nâ of Ej which coincides with pj till order y (i.e. modulo (tl,..., tk)JL+I) is
equal to Pj. Consider the system of 2s polynomial equations in the 2s variables
Us-l,..., UO,aq-l,..., ao,bs-q-l,..., bo, with coefficients in K(a)[tl,..., tk]:

We know that it has no solution inN with uj coinciding with pj till ordery. Hence,
by Artin’s approximation theorem [Ar, Th. 6.1], there is an integer v &#x3E; y such
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that the truncated system at order v (i.e. considered modulo (tl, ... , tk)’+1) has no
solution with uj coinciding with pj till ordery. This translates into the fact that a
polynomial system with coefficients in K( a) and indeterminates 1! (the coefficients
of the series Uj for the terms of order &#x3E; y and  v), 1, b (the coefficients of the
series ai and bj for the terms of order  v) has no solution in K( a). Let us call
I&#x3E; À (1!, a, b) the equations of this system. The real Nullstellensatz translates the fact
that the system (4l x (u, a, b) = 0) À has no solution in the real closed field r, (a) to
an identity

where Aj and Da are polynomials with coefficients in K(a). There is such an
identity ( * q ) for each q with 0  q  s. 

Choose an open semialgebraic subset U of M with V 3 a, such that all the
coefficients of the polynomials P, P2,..., Pe-k, Q2,..., Qe-k (hence also £) are
Nash functions defined on U’ = U n (Rd X R k X {O}). Let I’ C N’( U’)[tk+l, tel
be the ideal generated by (P, Q 2, ... , Q e- k ) . By 7, we can choose U so small that
f?2,..., e’P,-k are all in l’. Set q = (l’N(U): 2r) in N(U). By flatness of
NM,a over N( U) and by 8, we know that qNM,a = p, and by Lemma 1.6 we can
suppose, possibly shrinking U, that q = p n N( U).

Choose S, an open semialgebraic subset of U n (Rd X {0}) such that S 3 a, in
order that all the coefficients of the polynomials Aj, À and $ for all identities
(*q) are Nash functions defined over S. We can also suppose that the non-leading
coefficients of P, P2,..., Pe-k vanish on S.

Let 0 be a point of S ; we can suppose that 0 is the origin of coordinates. Then
AM,o may be identified with R[[x, tllaig- We want to show that qNM,o is a prime
ideal. Set Nô = R[[z , ]]aig. We still call by the same names the images of Pi in
Nb [t k+i] for i = 1,..., e - k, of e in Aro, of Ri invo [tk+i for i = 2,..., e - k,
and of Qz = tk+i - Ri for i = 2,..., e - k. Since the identities (*q) hold in
R[[x ]]alg[1!, a, Q], it follows (going backwards in the arguments above) that P = Pi
is irreducible in Nô [tk+l]. Let us sum up the situation:

9. Pi E Nô [tk+i] are all distinguished polynomials for i = 1,..., e - k.
10. P = P1 is irreducible of degree s.
11. is an element of Nb, different from 0.
12. Qz- = tk+i - Ri where Ri E À£à [tk+ç] has degree  s, for i = 2,..., k.
13. r P2,... P,,-k are in the ideal l’Nb[tk+l,..., tel
To continue we need:

LEMMA 1.8 The properties 9, 11, 12, 13 imply that the canonical homomorphism
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is an injection and that, for any f E NM,o, erf is congruent to an element of
NÓ[tk+l] modulo ( P, Q2,..., Qe-k). 

Proof. We first want to prove that if g is a polynomial in NÓ[tk+l] such that

with 0i e NM,o, then P divides g in JV’O[tk+l]. Dividing successively by
Pe-k, ... , P2, P (thanks to 9), we can write

where Hi e JVo [tk+ 1, - - - , te), and by uniqueness of division we can moreover
suppose that Gi E Nb [tk+l, ... , te). By 13, we get

where fi e NÓ[tk+l,..., te]. Substituting Ri/ç for tk+i and multiplying by an
appropriate power of ç, we find that P divides er’g in NÓ[tk+l] ] with r’ r, and
since P is monic it divides g.
Now we prove the second assertion. Dividing f successively by Pe-k, ... , P2, P

we find that f is congruent modulo (P, P2,..., Pe-k ) to a polynomial in tk+2, ... , te
of total degree  r, with coefficients in Nà [tk+l]. Hence, using 13, we may suppose
that f is this polynomial. Then, by 12, Çr f is congruent modulo (Q2, Q k) to
an element of NÓ[tk+I]. 0

Now we finish the proof that aNM,o is a prime ideal. By flatness of N M,O over
Ar’(U’)[tk+1, - - -, te], we know that h e qNM,o if and only if

Now, let fg E qNM,o . By the Lemma above, we may suppose that erf and Çr 9
are in Nb [tk+l], and that their product is divisible by P in this ring. Since P is
irreducible and Aro [t k+ 1] factorial, one of Çr f and Çr 9 is divisible by P. Hence
either f or g belongs to qÀiM,o . 1:1

LEMMA 1.9 Let I be an ideal of N(M), and let Y be an irreducible invariant
component ofX(I). Let l = J(Y ) be the sheaf of germs of Nash functions vanishing
on Y. Then l is a finite sheaf of radicad ideals, and XCI) = Y.

If I is a prime ideal of N(M) and YI, ... , Yi are the irreducible invariant
components of X(I), then IN = J(Y1) n ... n J(Yi).

Proof. Without loss of generality we can suppose that I is a prime ideal. We
want to show that 1 is finite. Taking into account the compactness of the real
spectrum M, it is sufficient to show that for every a E M, there is a semialgebraic
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open subset U of M with a E U, such that Z is generated by Nash functions on
U. Let

be the decomposition of lN M,Ci into prime ideals. Let X * C Mc be a semialgebraic
realization of X(I). We can suppose, as in the proof of 1.2 that we have a finite
simplicial complex K, a semialgebraic homeomorphism 7r from the union V of
some open simplices of li onto an open semialgebraic subset of Mc, and an open
simplex (7 contained in V such that:

1. V is the union of all open simplices T of K such that Q is contained in the
closure of T.

2. The intersections of 1r(V) with M, X*, Reg(X*) are all unions of images
under 7r of open simplices contained in V.

3. Set S = 7r(u) and U = 1r(V) n M. Then a E S and S and U satisfy the
property of Proposition 1.7, for pl, ... , pk.

Now set qj = pj n N(U). Since qjNx is prime for any x e S, so is qj 0,,, and
the germ X(qj),, is irreducible as invariant germ at x. Let us prove that X(qj )
is irreducible as invariant germ at U. Suppose that YI and Y2, are two distinct
irreducible invariant components of X( qj). The dimension of Yi and Y2 is the same
as the dimension of X(qj). Since Q is in the closure of any open simplex of V, both
YI and Y2 contain S. Hence, for any x in S, we must have X ( qj ) x = YI,x = Y2,x,
against the assumption that YI and Y2 are different.

So the germ of Y at U is the union of some of the X ( qj ) ’s, and Il u is generated
by the intersection J of the corresponding qj’s. Indeed, clearly J generates a
subsheaf of radical ideals of VI u and by the complex Nullstellensatz (Lemma 1.1 ),
JNlu = Ilu.

The fact that XCI) = Y is clear from the proof, as well as the last assertion of
the lemma. D

We gather what we know in the following result.

THEOREM 1.10 The assignment I - XCI) defines a bijection from the set of
finite sheaves of radical ideals of N onto the set of finite semialgebraic invariant
M-germs (which are the same as finite locally semialgebraic invariant M-germs).

Proof. Lemmas 1.2, 1.4, 1.9 show that the assignment l  XCI) is a well-
defined surjection from the set of finite sheaves of radical ideals of N onto the set
of finite locally semialgebraic invariant M-germs. The injectivity comes from the
complex Nullstellensatz 1.1. D

We close the section with a remark about another possible choice for the notion
of finiteness for a sheaf of ideals of N. Say that a coherent sheaf of ideals I of N
is weakly finite when there is no nontrivial infinite decomposition l = nç li into
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coherent sheaves of ideals of N (nontrivial means that for each i, 1 on,ei Ij).
As the terminology suggests, any finite sheaf of ideals is weakly finite. Moreover,
for a radical sheaf of ideals, the notions of finiteness and weak finiteness coincide.
The proofs of these assertions require some work. We do not know whether it is
always the case that a weakly finite sheaf of ideals of N is finite.

2. Equivalence of separation, global equations, and extension

We prove in this section Theorem 0.1. We first devote some work to the extension

problem, studying the global sections of a quotient of N by a finite ideal sheaf.
We will use in Proposition 2.2 and Lemmas 2.4, 2.5, 2.6, the Ck topology on

spaces of Ck semialgebraic maps (for k a positive integer). See [Sh2, 11.1] for
the definition of this topology and its properties. We mainly use the facts that a
Ck semialgebraic map between Nash manifolds may be approximated by Nash
ones, and that the diffeomorphisms form an open subset for this topology. All this
without compactness assumptions on the Nash manifolds involved.
We begin by a construction which will be used in the following results. Let I

be a finite sheaf of ideals of N, and let p be a global section of the quotient sheaf
N II. Set X = T(I), Mi = M x R, and let p : Mi - M be the projection. We
associate to p a coherent sheaf I( p) of ideals of NMI. Let (xo, to) be a point in
Ml, and let (D.,, be an element of NM,xo whose image in NM,xolIxo is Take
I( p )(xo,to) to be the ideal of N Ml,(Xo,to) generated by t - 4),,, and Ixo.
LEMMA 2.1 The invariant Ml -germ X = X(I( p)) is finite. If 1 is a finite sheaf
of radical ideals, then I( p) is a finite sheaf of radical ideals of NMI.

Proof. An analytic extension of p to M is possible by Cartan’s Theorem B.
Let 4l be such an extension, and pc an analytic complexification of 4l defined
on a neighborhood of M in Mc. Then Xi is the intersection of the invari-
ant Mi-germ of the graph of q&#x3E;c and the invariant Mi-germ of X x C. Hence
the numbers of irreducible invariant components of X and X 1 coincide, and X 1
is finite. It is also clearly locally semialgebraic. So by Theorem 1.10 there is an
unique finite sheaf Zi of radical ideals of N such that X(Il) = Xi. If I is
radical, then clearly I( p) is radical, so by the complex Nullstellensatz we get
Tl = I( p). 0

We do not know whether T( p) is finite in general, without the hypothesis that
I is radical. It can be proved when I-I(O) is a finite number of points, or whén
XCI) has complex dimension 1.
Now we see why the study of I( p) is important for the problem of extending

:

PROPOSITION 2.2 If I( p) is generated by its global sections, then there exists
a global Nash function F on M whose image in HO(M,N II) is p. Actually, it

is suffzcient that there exists a semialgebraic open neighborhood U of X n mi
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such that I( p )Iu is generated by its sections on U. Moreover, I is generated by its
global sections.

Proof. Suppose that I(p) ] u is generated by the Nash functions fi, ... , fk in
N(U). We claim that for every (xo, to) E Xl fl mi we can write

for some i and a unit gi in N Ml ,(xo,to). Fix (xo, to). We have

for some hi e JVMI,(xo,to). It suffices to prove that at least one of the hi’S is a unit.
We have also 

for some t j E N Ml, (xo, io) . Hence we get a homogeneous system mod IxoN Ml, (xo, io)

whose determinant has the form

for some Ai E NMl,(xo,to). Therefore, if no hi were a unit, we would conclude

and, consequently, I( P )(xo,to) = I-ojBml,(xo,to). This is impossible, which shows
our claim.

It follows that the sets

cover Xi n Mi. Clearly each Qç is open in Ml. Moreover, it is semialgebraic
because fi is regular with respect to t at every point of ni n Xi, and, hence,
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From this we see in addition that after shrinking Qç we can assume fi regular
with respect to t on Qç . Hence fi-l(O) n ni is the graph of a Nash function Fi on
Vi = p(fi-l(O) n Qç ) . These v cover M fl xi. On Qç, the function fi is equal to
the product of t - Fi by an invertible function. Hence, for each x in Vi, the class
of Fi,,, modulo Zx is Px. On Yo = MBX, we can take Fo = 0.

Using a partition of unity we paste the Fi’s as follows. Let (Pi) be a CI 1

semialgebraic partition of unity subordinated to the covering (Vi). The function
h == Ei pi (t - Fi ) is Cl semialgebraic on Mi, and it is is regular with respect to
t. Since the function t - Fi is in the ideal generated by ( f 1, ... , fk in N(Y2 x R),there exist C1 semialgebraic functions hj on MI such that h = Ej=l i hj fj . Let hj
be a Nash approximation of hj for 1 , j  k. Then the function h* = Ek hj fj is
a Nash approximation of h. Choose the approximation so strong that h* is regular
with respect to t. Then the zero set ( h *) -1 (0) is the graph of a Nash function F on
M, and h* is equal to the product of t - F by an invertible Nash function on Ml .
Since for any (xo, to) E Xi fl Mi the germ of h* is divisible by t - (D,,) modulo
IxoN Ml ,(xo,to), we know that the germs Fxo and q&#x3E;x,) are equal modulo Ixo. Hence
F is the Nash function we are looking for.

The last assertion of the proposition comes from the fact that I is generated by
the global Nash functions fi o (IdM, F) for i = 1, ... k. D

At this point, one could be tempted to conclude that ’global equations’ implies
’extension’. But Proposition 2.2 only says that Globr (Ml) implies Extr (M), and
we want to have the implication between these two properties for the same manifold.
So there is still work to do.

COROLLARY 2.3 Let I be a finite sheaf of radical ideals of Af, and let p be a
global section of the quotient sheaf N II. Then there exists a finite covering of M
by semialgebraic open sets Ui, and for each i a Nash function Fi E N(Ui), such
that for each x in Ui, the class of Fi,x modulo Ix is Px.

In other words, any global section of N II lifts to sections of N over a finite
semialgebraic covering of M.

Proof. We know from Lemma 2.1 that the sheaf I ( p ) is finite. We can cover M1
with finitely many semialgebraic open sets Wi such that I( p )IWi is generated by
Nash functions on Wi. We choose semialgebraic open subsets Ui of M covering
M such that Wi is a neighborhood of X 1 n (Ui x R). Then I(p)I(UiXR)nWi is

generated by Nash functions on ( Ui x R) n Wi. We apply Proposition 2.2 to
each Ui. c

For the following three Lemmas, we have a finite sheaf I of radical ideals of
N, with which we perform the construction of XI -

LEMMA 2.4 Let q : M, --+ M be a Nash map very close to p in the C 1 topology, and
qC a complexification of q. Then for any sufficiently small invariant semialgebraic
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neighborhood W of Ml in Mf and semialgebraic realization Xi of X 1 in W, the
germ of qC(Xi) at M is a semialgebraic invariant M-germ.

Proof. We know from Corollary 2.3 that there is an invariant semialgebraic
neighborhood U of M in Mc, a semialgebraic C1 1 function B11 from U to C,
equivariant under conjugation, and a semialgebraic realization X* of X in U, such
that the graph of the restriction BI1lx* is a semialgebraic realization X i of XI.
Indeed, consider the extensions FiC of the Nash functions of Corollary 2.3 to some
semialgebraic invariant neighborhoods Vic of Y in Mc, and glue them together
using some Cl semialgebraic equivariant partition of unity subordinate to the Vic ’s.
We consider the graph map q = (Idu, B11) : U ---+ U x C.
We can choose q so close to p that (see [Sh2]):
- q o ,lM is a semialgebraic C1 diffeomorphism from M to itself,
- at each point x of M, the differential of qC o y is an R-linear automorphism

from the tangent space Tx(MC) to the tangent space Tq(x,w(x))(MC),
- the Nash map 1r: MI --+ Mi defined by 7r(x, t) = (q(x, t), t) for (x, t) e Mi

is a diffeomorphism.

Then, possibly shrinking U, we can suppose that qCo, is a semialgebraic C equiv-
ariant diffeomorphism from U to another invariant semialgebraic neighborhood U’
of M in MC. Moreover we can suppose that we have W and W’ invariant semial-
gebraic neighborhoods of Ml in Mf such that 7r complexifies to a diffeomorphism
7rc : W --+ W’, PC (W) = U, and W contains the graph F of B11 : U --+ C. Then
1rC(f) is the graph of a C equivariant semialgebraic function from U’ to C. Recall
that Xi = F n (pC)-I(X*), and set Yl = 1rC(Xi). Then yt is a closed subset of
7rc(I’), hence the restriction of pC from Yl to U’ is proper. On the other hand, Yl*
is a complex analytic subset of W’, hence pc(Y,*) = qC(Xi) is a complex analytic
subset of U’. o

LEMMA 2.5 We can find a finite number of Nash maps ql, ... , qk from Mi to
M, arbitrarily close to p in the C1 1 topology, such that for any small invariant
semialgebraic neighborhood W of Ml in Mf and realization Xi of X in W, the
germ at Mi ofni(qf)-I(qf(Xi)) is equal to Xl.

Proof. We know, according to Lemma 2.4, that the germ at Ml of ni (,q,- c 1 x
(qf(Xi)) is a semialgebraic invariant Ml -germ. So, by an easy Noetherian induc-
tion, it is sufficient to see that if Y is a semialgebraic irreducible invariant Ml -germ
which is not contained in X 1, then we can find a Nash map q : MI ---+ M arbitrarily
close to p in the C1 topology such that for any small invariant semialgebraic neigh-
borhood W of Ml in Mc and realization Xi of X1 in W, Y is not contained in the
germ of (qC)-I(qC(Xi)). Let Y * be a semialgebraic realization of Y and choose
a real analytic curve -j : [-1,1] ] --+ Mf with ,((0,1]) C Y*BXi and -f (0) E Ml .
It is sufficient to choose q such that, for small W where q is defined
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This can be done since there exists a v such that for any q whose v-jet at y(0)
belongs to some dense subset, the condition is satisfied. c

LEMMA 2.6 Suppose that Globr (M) holds. Then the Ml-germ Xl is a Nash

Ml -germ.
Proof. Consider a finite number of Nash maps ql,..., qk: Ml -+ M sufficiently

close to p. According to Lemma 2.4, we find an invariant semialgebraic neighbor-
hood W of Mi in Mf and a realization Xi of Xi in W so that the germ of each
qf(Xi) is a semialgebraic invariant M-germ, hence of the form X(l) for some
finite sheaf of radical ideals I of N by Theorem 1.10. So if GlobT(M) holds, the
germ of qf(Xi ) at M, and consequently the germ Yi of (qf)-I(qf(Xi)) at Ml
is a Nash germ. Since, according to Lemma 2.5, we can choose ql, ... , qk so that
Y, n ... n Yk = XI, we are done. D

PROPOSITION 2.7 If Glob’(M) holds, then ExtT ( M ) holds.
Proof. Let 1 be a finite sheaf of radical ideals of N, and let p be a global

section of the quotient sheaf N /I. The Lemma 2.6 tells us that the sheaf of ideals
1(c) = J(XI) is generated by a finite number of global Nash functions (fi, ... , fk )
on Ml. Then we apply Proposition 2.2.

PROPOSITION 2.8 If Exf(M) holds, then Sep(M) holds.
Proof. Let p be a prime ideal of N(M). By way of contradiction, assume that

pO(M) is not prime. Then X(p) is not an irreducible invariant M-germ, and hence
by Lemma 1.9 there are finite sheaves of radical ideals of NM, Zl and 12, such that
pN = Il n 12 and

Let J be the ideal of Nash functions on M vanishing on X(,,Ill +-12). By 1.4 we
have dim 3i(J)  dimX(2’i). Hence there exists a Nash function f on M whose
complexification has a germ at M which vanishes on X(-,Ill + 12) but not on
X(II). Let 7 denote the image of f in HO(M, (Il + I2)III) = HO(M,I2/pN).
Regard 1 as an element of HO(M,NlpN). Then, by Extr(M), there exists a
Nash function F on M whose image in HO(M,N IpN) is 7. Clearly, the germ
at M of a complexification of F vanishes on X(12) and does not vanish on
3C(li). In the same way, we obtain a Nash function G on M whose complexifi-
cation has a germ at M which vanishes on X(Il) and does not vanish on X(I2).
Then neither F nor G belong to p, while FG does, which contradicts the prime-
ness of p. D

PROPOSITION 2.9 If Sep(M) holds, then GlobT(M) holds.
Proof. Let X(2’) = Xi U ... U Xp be the decomposition into irreducible in-

variant components. Set Ii = J( Xi) for i = 1,..., p. We know that Ii is a
finite sheaf of radical ideals of N. Suppose that each Ii is generated by the ideal
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Ii = HO(M,li) of its global sections, and let I = Ii ... Ip. Since X(1À£) =
X(l), we have IN = I and hence I is generated by its global sections. So it is
sufficient to consider the case where X(I) is an irreducible invariant M-germ. Then
we know that there is a prime ideal p of N(M) such that X(I) is an irreducible
invariant component of X(p). Since, by Sep(M), X(p) is irreducible as invariant
M-germ, we have that X(I) = X(p), and hence I = pN is generated by its global
sections. D

Up to now, we have proved the equivalence of Sep(M), GlobT(M) and
EXtr(M). The properties Glob(M) and Ext(M) are obviously stronger than
Globr(M) and Extr (M) respectively. So, to complete the proof of Theorem 0.1,
we just have to see:

PROPOSITION 2.10 If the conjunction of Globr(M) and ExtT(M) holds, then
Glob( M ) and Ext( M ) hold.

The argument, which can be considered as standard, is detailed in [CoRzSh] in
the compact case, and can be used word for word (with ’finite’ instead of ’coher-
ent’) here. So, we do not repeat it. Actually, the following result is proved as an
intermediate step:

Let I be a finite sheaf of ideals of NM. Suppose that global equations and
extension hold for all finite sheaves of ideals l’ of N M such that VI C I’.
Then both hold also for I.

Using this, we get a more precise version of Proposition 2.10.

PROPOSITION 2.11 If both global equations and extension hold for all finite
sheaves of radical ideals of NM whose stalks are everywhere of height &#x3E; r, then
they hold for all finite sheaves of ideals of NM whose stalks are everywhere of
height &#x3E; r.

Proof. If it is not the case, consider the non empty family of finite sheaves
J of radical ideals of JVM whose stalks are everywhere of height &#x3E;, r such that
there exists a finite sheaf of ideals I with J = for which global equations or
extension do not hold. All those J’s are generated by their global sections, hence
by noetherianity we have a maximal element in this family, which we will denote
by J. If l’ is a finite sheaf of ideals containing J, either Z’ _ J or Vfi strictly
contains J. In both cases, global equations and extension hold for l’. Hence, by the
result quoted above, both hold also for any finite sheaf of ideals I with B/T = y.
This contradicts the choice of J. D

It is possible to generalize Glob(M) and Ext(M) to sheaves of N-modules.
We have first to discuss what are the appropriate sheaves of N-modules. We have
already seen, conceming sheaves of ideals, that the coherent ones are not good
enough. We had to consider finite sheaves of ideals. We can of course define in
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a similar way finite sheaves of N-modules. Let F be a sheaf of N-modules. We
will say that F is finite when there is a finite covering of M by semialgebraic open
subsets Ui, such that each restriction Flui is generated (as Nlui -module) by a finite
number of sections of F over Ui. Thus, a finite sheaf of N-modules is coherent, but
when M is not compact there are coherent sheaves of N-modules which are not
finite. Still, these finite sheaves of N-modules are not the good choice. Hubbard
([Hd] or [BoCoRo, 12.7.9]) has given the example of a Nash line bundle over R,
which is trivial over the two intervals ] - oo, 1 [ and ] - 1, +oo[, and does not have
any global nonzero Nash section. Hence, the sheaf of Nash sections of this bundle
is finite, but it is surely not generated by its global sections.

Thus, we have to define a special subcategory, as was already done in the
compact case in [CoRzSh]. This is related to the notion of ’A-coherent’ sheaves,
and also to that of ’strongly algebraic’ vector bundles, discussed in the context of
regular functions [To;BeTo].
A sheaf of N-modules F is called strongly coherent if there is an exact sequence

Of course, a strongly coherent sheaf is finite, and hence coherent.
Now, let F be a finitely generated N(M)-module. Since N(M) is noetherian,

there is an exact sequence

Let N (DV(m) F be the sheaf of N-modules generated by F. We get the exact
sequence of sheaves

Hence, the assignment: F --+ N 0N(M) F defines a functor from the category of
finitely generated N( M)-modules to the category of strongly coherent sheaves of
N-modules.

The idea that the category of strongly coherent sheaves of N-modules is the
good one for sheaf theory in the Nash case is clearly supported by the following
result.

PROPOSITION 2.12 Suppose that the equivalent properties of Theorem 0.1 hold.
Then:

(a) A finite subsheaf of a strongly coherent sheaf of N-modules is strongly coher-
ent.

(b) Strongly coherent sheaves of N-modules form an abelian subcategory of the
category of sheaves of N -modules.
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(c) The global sections functor HO(M, -) induces an equivalence of abelian
categories from strongly coherent sheaves of N -modules to finitely generated
N(M)-modules, with inverse functorN 0N(M) -.

The derivation of these results is made exactly as for the compact case in [CoRzSh]
(see also [Sh2,1.6.15]). Again, we will not repeat the arguments here.

3. Equivalence of factorization and the height 1 cases of the other problems

The proof that SePI (M), GlobÍ (M) and ExtÍ (M) are equivalent is the same as
the proof we have done for the equivalence without the index 1. Remark that a
finite sheaf of radical ideals I is locally principal if and only if X(I) has complex
codimension 1 in Mc at each point of x(i) fl M.

PROPOSITION 3.1 If Sepl(M) holds, then Fact(M) holds.
Proof. For the proof, we can assume that M is connected. Let f be a Nash

function on M and f = fl f2 an analytic factorization. Since N(M) is a noetherian
normal domain, we have ( f ) = prl ... p(k where the pi’s are height one prime
ideals of N(M), and the ai’s positive integers. We know by the separation property
that the extensions pç o(M ) are prime. Let x E M be any point, and mx C O(M)
its maximal ideal; also, set Ax == G( M)mx. Then, the ideal (f)Ax is equal to
prl ... p (k A,,, and, since Ax is factorial, (fI )Ax is equal to a product pfl ... pOk Ax,
where 0 , ai. Fix i = 1,..., k. Since pi O(M) is finitely generated, its
zero set Zi in M is not empty. Thus, the localization Bi = G( M)Pi coincides
with (Ax )Pi for every x E Zi. This shows on the one hand that Bi is a discrete
valuation ring whose valuation we denote by vi, and on the other hand that the
exponent !3i of the factorization of fI Ax coincides with vi(fl), hence it is the
same for all x e Zi. Furthermore, if z / Zi, the exponent does not matter
because disappears in Ax. Then a standard application of Cartan’s Theorem
B yields ( fi )O(M) = pfl...pkO(M). Choose a finite system of generators
of Pi in N(M), and let Fi be the sum of the squares of these generators. Then
PT = (F2), and hence there is a strictly positive analytic function Gl on M such
that fi = G1FfI ... Ffk. Then gl = ,.,fG-l is a strictly positive analytic function
on M, and fl/gl = cpl is a Nash function since it is analytic, and its square is a
Nash function. D

PROPOSITION 3.2 If Fact(M) holds then GlobÍ (M) holds.
Proof. Let 1 be a finite sheaf of radical ideals of N such that all the ideals

Ix, x E M, are principal. We need to prove that XCI) is a C-Nash M-germ. By
Lemmas 1.4 and 1.9 there exists a sheaf of V-ideals J with the same properties
such that I n 3 = IJ is generated by global Nash functions fi,..., fk and the
dimension of 3C(B/2’ + Y) is smaller than dimM - 1. Let f denote the sum of
squares If + ... + If. Then f is a generator of (I n j)2 = 12 n j2 = I2 32 .
Let S2 be a Stein open neighborhood of M in Mc, and IC an extension of 1 to
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n such that Ic keeps the properties of 1. Then by Cartan’s Theorem A we have
complex analytic functions g1, g2, ... on Q which generate Ic and are real-valued
on M. Let CI, C2, ... be sufficiently small positive real numbers, and let g denote
the restriction to M of ~~i=1 1 cig2. Then g is an analytic function on M and it is
a generator of J2. In the same way we obtain an analytic function h on M which
is a generator of J2. Thus we have an analytic factorization f = gh f’ for some
positive analytic function f’. Since we assume Fact(M), we can replace g by a
Nash function, whose complexification has a zero set germ at M that coincides
with X(l). Hence XCI) is a C-Nash M-germ. ~

The reduction of the global equations and extension problems from the general
case to the radical one cannot be done for locally principal finite sheaves as for
finite sheaves (or coherent sheaves in the compact case). Proposition 2.11 does not
help here. So we have to produce a specific argument.

LEMMA 3.3 Let I be a finite sheaf of N-ideals such that all the ideals Ix, x E M,
are principal. Then there is a covering of M by finitely many semialgebraic open
subsets Ui of M such that for each i, the restriction of the sheaf of ideals Ilu, is
generated by a principal ideal of N(Ui).

Proof. We can find a covering of M by finitely many semialgebraic open subsets
Ui such that the restriction Il ui is generated by an ideal of N(Ui). Moreover, by
refining the covering, we can suppose that each Ui is contractible. This implies
that all rings N ( Ui) are factorial, see [BoCoRo, 12.7.17]. Hence we can suppose
that I is generated by an ideal of N(M), say I = ( f 1, ... , fk), and that N(M) is
factorial.

For any x E M, the ideal Ix = l Nx is principal, hence by descent, so is the
localization Imx at the maximal ideal mx of x in V(M). Thus, the localization of
I at any maximal ideal of N( M) is principal, and since N( M ) is factorial we find
that I is principal. ~

PROPOSITION 3.4 Let I be a finite sheaf of N-ideals such that all the ideals

Ix, x E M, are principal. Then I can be written as a, finite product I = TI7=1 Ii- (i)
where a(i) is a positive integer, and each Ii is a finite sheaf of radical ideals such
that Ii,x is principal for all x E M and X(Ii) is an irreducible invariant M-germ.

Proof. Let Xi, 1  i  k be the irreducible invariant components of X(l),
and set Ii = J(Xi). Let x be a point of M. Then all the invariant irreducible
components of the germs Xi,x at x have complex codimension 1 and hence all the
Ii,x’S are principal, since prime ideals of height 1 are principal in Nx.

We can choose a covering of M by finitely many semialgebraic open subsets
Uj such that:
- for each j, the restrictions to Uj of the sheaves I and Ii, 1  i  k, are

respectively generated by the elements fj and fj,i, 1  i  k, of N( Uj),
- all Uj and all non empty intersections Uj n Uj, are contractible.
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Indeed, the first condition may be realized by Lemma 3.3. Then, we get the second
by refining the covering using a semialgebraic triangulation compatible with the
first covering. Again, this condition implies that all the N( Uj)’s and N( Uj n Uj/ )’s
are factorial domains. 
Now write a factorization in N( Uj)

where u j is invertible, pj, x are non associated irreducible elements, and 0(j, A) are
positive integers. The radical ideal of fjN(Uj) is generated by Tjl’= Pj,JB and also
by fI7=1 fj,i. So each pj,,B is an irreducible factor of exactly one fj,i, and all the
irreducible factors of the fj,i’S are obtained in this way. We claim that:

there is a positive integer a( i) such that, for any j, if Pj,JB is any irreducible

factor of fj,i, then 0(j, A) = a( i).
The Proposition follows from this claim. So let us prove the claim. By Lemma 1.3,
it is sufficient to prove that, when the restrictions of Pj,JB and Pj’ ,JB’ to Uj n Uj’ have
a common irreducible factor q (and hence are irreducible factors of fj,i and fj’,i
with the same i), then (j(j, 03BB) = 0(j’, A’). The q-adic valuations of the restrictions
to Uj n Uj, of pj,A and Pj’,JB’ are both 1, so the q-adic valuations of the restric-
tions of fj and fj’ are respectively 0(j, A) and 0(j’, A’). These two numbers
must be the same since the restrictions of fj and fj, differ only by an invertible
factor. D

PROPOSITION 3.5 If Glob’(M) holds, then Glob, (M) holds.
Proof. Let Z be a finite sheaf of ideals of N such that for any x E M,

Ix is principal. We know from Lemma 3.4 that we can write T = fI7=1 T;(i)
where each li is an irreducible finite sheaf of radical ideals such that Ti,x is prin-
cipal for all x e M and a( i) is a positive integer. By the hypothesis Glob’(M),
each Iç is generated by an ideal Ii of N( M). Then 1 is generated by
flÉ=i -(Z) D1 li=1 i 

. ~

PROPOSITION 3.6 If Extî (M) holds, then Extl ( M ) holds.
Proof. Let 1 be a finite sheaf of ideals of N such that for any x E M, Ix is

principal. Using Lemma 3.4 and grouping together all the factors with the same

exponents, we can write T = fI7=1 T;(i) where each li is a finite sheaf of radical
ideals such that Ti,x is principal for all x E M and a ( 1 ) &#x3E; a(2) &#x3E; ... &#x3E; a( k) &#x3E; 0.

We prove the Proposition by induction on a( 1 ) . The key idea of the proof is as in
[Sh1] to use the fundamental class of a Nash set and Thom’s realization Theorem
[Th]. The case a(1) = 1 is just the hypothesis Ext’(M). Hence assume a( 1 ) &#x3E; 1,
and that the extension property holds for locally principal finite sheaves of ideals
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with smaller a(1 ). Let p E HO( M, N II). We first reduce the problem to the
following easier case

Let f, denote the sum of squares of a finite system of generators of HO(M,II)
(recall that Globl(M) holds by hypothesis). Then fi is a generator of I21, which
induces an isomorphism from N to If defined by

This isomorphism induces a commutative diagram

(Here the vertical maps are the natural ones.) If p belongs to H 0 M, If II), then, by
the induction hypothesis, p is the image of some element of H°(M, 12) . Therefore,
it suffices to reduce the problem to the case when p e HO( M, 12/j) . Let pi be
the image of cp under the natural homomorphism

Assume Exti(M) holds in the case (*). Then we have a global Nash function
03A6 1 E H°(M, N) whose image in H°(M, «V112) is Pl. Replace P by

Then we can assume p E H°(M, If /I) , which implies the reduction to (*).
Next apply the same arguments as above to the natural homomorphism

and obtain a second reduction: to the case when
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To progress further, we need to clarify the structures of M and I-I(O). By
[Sh2, VI.2.1], we can assume that M is the interior of a compact Nash manifold
N possibly with boundary. Let dim M = n. For a Nash set Z in M of dimen-
sion  n, let [Z] denote the fundamental class of Z in H n-l (Z U ON, aN; Z2).
(If the dimension of Z is smaller than n - 1, then [Z] = 0.) Let [Z]* denote
the image of [Z] in Hn-I(N,ON;Z2). We recall the following fact. Let

Z(n - 1) C Z be the set of the points z such that the germ Zz has dimension
n - 1, and let Z 1 be a connected component of Z(n - 1). Then Zi 1 also has a
fundamental class in H n-l (Z U aN, 8N ; 22) , and if Zl = Z(n - 1) then the class
equals [Z].

Assume [lî 1 (0)],, = 0. Then we prove that HO(M, Il) is principal as follows.
We have the homology exact sequence

Let Nl be a union of some connected components of MBIll(O) such that the
fundamental class in H n ( N, III 1 (0) U âN; Z2) of the closure NI is carried to

[1, (0)]. Then NI contains (Zi (0) ) ( n - 1 ) by the definition of the above sequence,
and for each x E M there exists a function germ p e Ilx such that {p  0} _
NI U Ill(O) as germs at x. Let Il : MBI-I(O) -+ { 1, -1 denote the map defined
by

Let f, be as above a generator of 1 = J2. Then we can define a generator 91 of
HO(M,II) as follows

Hence HO(M,T1) is principal.
Continue to assume [TI 1 (0)] * = 0. As above, by multiplying by a generator of

HO(M,T1), we obtain a commutative diagram
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hence reducing the case (**) to the case when p e HO(M,NIII), and, conse-
quently, proving Extl(M).

Let us consider the general case of [III(O)]*. By [Th] there exists a compact
C°° submanifold LI of N of dimension n - 1 such that if (9L, 0 0 then OL, is
included in âN, Ll is transversal to âN in N, [LI BâLI]* == [Iî 1(0)]*, and the
dimension of Li n III (0) is smaller than n - 1. (Here the last condition is not
stated in [Th], but it is satisfied once the other conditions hold and we modify L1.)
By the Stone-Weierstrass approximation Theorem we can assume, moreover, that
L1 is of class Nash. Let.:JI denote the sheaf of germs of Nash functions vanishing
on LI BâLI. Set K1 = Z1,71. Then lCl is a finite sheaf of radical ideals of.V, and
we have [KI(O)]* = 0. As above, we have a commutative diagram

This reduces the problem to the case where p e H°(M, J/ /Kf) , and by the proof
above in the case [Iî 1 (0)],, = 0, p is the image of some function of H°(M, J,2).
This completes the proof of Extl (M). 0

4. Positive answers in particular cases

We first consider the case where the real zero set is zero dimensional.

PROPOSITION 4.1 Let p be a prime ideal of N(M). If p (0) has dimension
zero, then separation holds for p.

Proof. Then p-1 (0) consists of one single point a, and it suffices to see that po a
is a prime ideal. By Artin’s approximation Theorem this is equivalent to see that
pNa is prime. Suppose f g E pNa, where f, g E Na. Let hl, ... , hs be generators
of p and set

Since pma is a radical ideal, it is enough to show that either f’ or g’ is in pNa.
In other words, we may assume that a is an isolated zero of both f and g. Then,
by [Sh3], there are global Nash functions F, G such that Fa = u f , Ga = vg,
where u, v are units of Na, and F-l(O) = G - 1 (0) = {a}. It follows that FG E
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p, and since p is prime, either F E p or G e p. Hence, either f e pNa or
g El pJV,,,, - Il

PROPOSITION 4.2 If 1 is a finite sheaf of ideals of N such that I-I (0) has
dimension 0, then global equations and extension hold for 1.

Proof. By hypothesis I-1 (0) consists of finitely many points. Let a be one
of them. We will find an ideal J(a) of N(M) which generates Ia and whose
only zero in M is a; then the product of J(a)’s will generate I, and so we have
global equations. Pick finitely many Nash functions gi, 1 , i  s, defined on

an open semialgebraic neighborhood of a, whose germs at a generate Ia. Set
ht = gi + cE j=1 gj, 1  i  s. We can find a sufficiently large c &#x3E; 0, so that
the zero set of h, in some open neighborhood of a is compact. We can find a Nash
function Oi defined and positive on a neighborhood of a, such that the germ of Oi hi
at a coincides with the germ of a global Nash function Fi ([Sh3]). Analogously,
after multiplication by a positive function, we extend 2:j=1 gI to a global Nash
function Fo whose only zero is a (see again [Sh3]). Then J(a) = (Fo,..., Fs) is
what we want.

Now let p be a global section of YII. Then the sheaf I( ’P) of ideals of N MxR
is obviously finite and I(p)-I(O) is a finite number of points. Hence I(p) is
generated by its global sections, and Proposition 2.2 allows to lift cp to a global
Nash function on M. So extension holds for I. D

Next, we tum to the case of real ideals whose singularities are isolated in the
real zero set. A point a of a Nash set N is called Nash nonsingular if a is a smooth
point of N of the maximal dimension and if for some Nash functions fi vanishing
on N, grad fi span the normal vector space.

PROPOSITION 4.3 Let p be a prime ideal of N(M). If p is real and p-l(O) has
only isolated Nash singularities, then separation holds foi 1J.

Proof. We need to prove that X(p) is irreducible as an invariant M-germ.
Assume X(p) were not so. There would exist two finite sheaves of radical NM-
ideals Ii and 12 such that Ii fl 12 = pN and Il 1 (0) n IiI 1 (0) is a finite number
of points. This comes from Lemma 1.9. Hence it suffices to prove the following
statement.

Let Il and 12 be finite sheaves of radical NM-ideals such that all irre-
ducible invariant components of X(li) and X(I2) have the same dimension,
dim 3i(Ii ) n x(I2)  dimX(Il), I = Il n 12 is generated by global Nash
functions, and Il 1 u and I21u are generated by Nash functions on U, for an
open semialgebraic neighborhood U ofIll(O) fl Ii1(O) in M. Then Il and
2’2 are generated by global Nash functions.

First we show that for a small open semialgebraic neighborhood U2 of IiI (0) in
M, I11uuU2 is generated by Nash functions on U U U2. Let fl, ... , fk e N(U) be
generators of H ° ( U, Ii ) . Replace fi by fi+ f’ £’- 1 fg 1  i  k, for a sufficiently
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large positive Nash function f’ on U, and add Ej=l Il to the generators. Then we
can assume that each fi is positive on

U fl ZZ 1 (0)B(a neighborhood ofLl1(0) in M).
Hence by [Sh3], multiplying fi by a positive Nash function on U, we can extend fi
to U U U2 for a small U2 so that the extension is positive on U2 B U. Hence Il 1 uuu2
is generated by these extensions.

Secondly we want to show that the restriction I2lutju2 is generated by Nash
functions on U U U2. We know that Lluuu2 and Llluuu2 are generated respectively
by radical ideals I and Il of N(U U U2). We have

X(I) = X(Il) U X(L2Iuuu2)’
dim 3i(Ii ) n X(L2IuuU2)  dimX(I1),

and all the irreducible invariant components of 3i(Ii ) and X(L2Iuuu2) have the
same dimension. From this it follows that

- any irreducible invariant component of X(Il) or of X( L21 UUU2) is an irreducible
invariant component of X(I), and hence an irreducible invariant component
of X(q) for some minimal prime divisor q of I,

- X(Il) and X(I2juuu2) have no common irreducible invariant component.
Hence Il must be the intersection of some of the minimal prime divisors of I,
and therefore L21uuU2 is generated by the intersection of the other minimal prime
divisors. Finally apply the arguments in the above first step to L21 uuu2. Then we can
choose generators of L21 UUU2 so that they are extensible to M and the extensions
are generators of Z2. In the same way we see that Il is generated by global Nash
functions. D

PROPOSITION 4.4 Let I be a finite sheaf of ideals of N. Global equations holds
for 1 if each stalk Lx is real, and the intersection of M with the Zariski closure of
L-I (0) in Rm has only isolated Nash singularities.

Proof. Set X = X(T). It suffices to prove that X is Nash. Without loss of
generality we can assume X irreducible as an invariant M-germ, and M = Rm.
Let X’ denote the smallest Nash Rm_germ containing X, and let X" denote the
germ at Rm of the Zariski closure of X in Cm. Then X’ is a union of some

components of the decomposition of X" into irreducible invariant M-germs.
Hence by hypothesis, if we set Y = X’ n Rm, then X’ is the germ at Rm
of a complexification of Y, Y is irreducible as a Nash set, and Y has only
isolated Nash singularities. Let p be the ideal of global Nash functions vanishing
on X’. Then p-1(0) = Y, X(p) = X’, and p satisfies the condition of 4.3.
Hence X’ is irreducible as an invariant M-germ. It follows that X’ = X, i.e.
X is Nash. D

The next case is when the complex zero set germ has dimension 1.
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PROPOSITION 4.5 Ifp is a prime ideal ofN(M) of coheight  1, then separation
holds for p. If a finite sheaf of ideals T of N is everywhere of coheight 1, then

global equations and extension hold for T.
Proof. For separation there are two cases: the dimension of p-I(0) is 0 or 1.

If the dimension is 0, then we apply Proposition 4.1; if the dimension is 1, then p
satisfies the condition in Proposition 4.3.
Now let I be a finite sheaf of radical ideals of N everywhere of coheight 1.

By considering the irreducible invariant components of XCI), we know from the
first part of the Proposition that global equations holds for I. For the same reason
it holds for the sheaf I(p) where p is any global section of N II. Hence, by
Proposition 2.2, extension holds for T.

Finally, using Proposition 2.11, we get that global equations and extension hold
for any finite sheaf of ideals everywhere of coheight 1. D

The following result is a generalization of a result in [TaTo] (see also [MoRa]).
It concems the case where the quotient is normal. It matches the result of [Qu]
obtained under an assumption of normality.

PROPOSITION 4.6 Ifp is a prime ideal ofN(M) such thatthe quotientN(M)/p
is normal, then separation holds for p. If T is a finite sheaf of ideals of N such that
all the quotients NxlTx, x E M, are normal, then global equations and extension
hold for I.

Proof. If N(M)/p is normal, then for any x E M the localization N(M)mxl
pN(M)mx is normal, and hence the henselization Nx/pNx is normal, so pNx is
prime. Since moreover p-1(0) is connected, we have that X( p) is an irreducible
invariant M-germ, which means that separation holds for p.

To prove that global equations hold for I, we use an idea of the proof of Artin-
Mazur’s theorem (see [BoCoRo, 8.4.4]). The fact that Nx/Ix is normal for any
x implies that 2* is a finite sheaf of radical ideals. We can suppose that Z-1 (0) is
connected, and then the argument above shows that X = X(I) is an irreducible
invariant M-germ. Let p be the prime ideal of N(M) of global Nash functions
vanishing on X. The normalization of N(M)/p is a finite N( M ) /p-module, so we
can write this normalization as N(M)[y]1 q where y = (yl, ... , ys) and q is a prime
ideal. Let X’ be the M-germ X(p), and Y the M x RS-germ X( q). Let rl, ... , rk be
the minimal prime divisors of qN(M x RS). Since N(M x RS) is ind-étale over
N(M)[y], the quotients N(M x RS)/r2 are normal. So, by separation, the X( ti)’S
are the irreducible invariant components of Y.

Set A = T-I(O), A’ = p-I(O), B = q-I(O). By the assumption that the
quotients NxlTx are normal, the germ inclusion f : X -+ X’ factorizes through
the projection p : Y - X’, which gives g : X -+ Y. We have

Moreover, since f (X BA) C X’BA’ and fiA is proper, g (X B A) c YBB and g 1 A
is proper. _
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On the algebraic side, for any x in A, the local homomorphism

induces, by normality and henselianity of N’xlIx, a local homomorphism

This ax is surjective, since composing it with

gives the surjection Nx 1 pNx --+ Nx IIx. And since both source and target of ax
are normal, and have the same dimension, cxx is an isomorphism.

Putting together these informations, we find that g is an isomorphism onto some
irreducible invariant component, say 3C(ri), of Y. Let Pi be the composition of the
coordinate y2 with g, which can be identified with a global section of As/2": the
germ Pi,x at x e I-I (0) is the image of the coordinate yi under the isomorphism
ax . We can construct the sheaf I(V 1, ... , Ps) of ideals of iVm x R-«, as it was done
for I( p) at the beginning of Section 2. We have that I( Pl, ... , ps ) is a finite sheaf
of radical ideals by Lemma 2.1, and since

it is generated by its global sections. Then, applying s times Proposition 2.2, we
conclude that I itself is generated by its global sections. So global equations hold
for I.

Lastly we prove extension for I. Let p E H°(M, N/I), and consider the sheaf
I(p) of NMxR-ideals. It is a finite sheaf of radical ideals by Lemma 2.1. For
each (x, t) E I( p)-1(0), the stalk JIfXR,(x,t)/Z()(,t) is isomorphic to the stalk
NM,xIIx. Hence NMxR,(x,t)/I(p)(x,t) is normal. Therefore, by the above proof,
I( p) is generated by its global sections. Then, by Proposition 2.2, p is extensible
to a global Nash function on M, which completes the proof. 0
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