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1. Introduction

This paper is a continuation of [12], whose notation and references we shall pre-
serve. There we showed how to compute certain structure constants (equal to 0
or 1) in the asymptotic Hecke algebra J of a finite classical Weyl group W. Here
we use similar methods and a formula of Joseph to compute the remaining struc-
ture constants. Unfortunately these methods cannot be extended to exceptional W.
Nevertheless, we show that the structure constants of J can in principle be used
to produce bases for the irreducible constituents of a left cell C in terms of the
Kazhdan-Lusztig basis for C itself. This was done for classical W in [12], where
we showed that the transition matrices between these bases have all entries equal
to ±1. We also showed how to compute these entries, using Garfinkle’s standard
domino tableaux (but not using the Kazhdan-Lusztig polynomials). The situation
is less satisfactory in the exceptional case. Here we use Lusztig’s character tables
in [ 11 ] to write down nonzero representatives of every isotypic component of a left
cell, and then observe that these representatives may be extended to bases for their
components by using the multiplication table of J. Unfortunately, just as Lusztig
cannot say which columns of his character tables correspond to which Weyl group
elements, so we cannot say which coefficients go with which Kazhdan-Lusztig
basis vectors to produce our representatives. This ambiguity exists for classical
Weyl groups as well, but we will see that it can be circumvented in that case.

The main applications of these results are the same as in [12]. One can now
compute the socle of the bimodule of Ad g-finite maps between two simple highest
weight modules whenever the semisimple Lie algebra g (with Weyl group W) is
classical. One also has severe and explicit constraints on the behavior of the Jacquet
functor between Harish-Chandra and category O modules, since this functor may
be viewed as a Hecke module map. (The applications to tensor products of special
unipotent representations in [12] depend only on the results in that paper.)
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2. Intertwining operators on Hecke algebras

Let a and 0 be simple roots of g with respect to a fixed Certain subalgebra h and
assume that they span a subsystem S of type A2 or B2. If S is of type A2, then
there is a wall-crossing operator T03B103B2 introduced by Vogan in [13]. It can be defined
on Weyl group elements or left cells. Following [12], we define it on elements w
whose T-invariant contains exactly one of a and (3 via T03B103B2(03C9) = u, where is
uniquely specified by three properties. First, u E wW’, where W’ is the parabolic
subgroup of W generated by the reflections through a and (3; second, u and w differ
in length by one; and third, the T-invariants of u and w meet {03B1,03B2} in disjoint
singletons. Then u and w always lie in the same right cell in W, but different left
cells. As mentioned above, the map T03B103B2 is also well defined on left cells and in
fact induces an injective HF-equivariant map from certain left cell representations
[C] in HF to left cell representations. This fact (first observed by Kazhdan and
Lusztig) plays a crucial role in [12].
Now suppose instead that S is of type B2. As noted in [13], one can still define

a map T03B103B2 on Weyl group elements or left cells via the same three properties as
above, but this time T03B103B2 is not single-valued; indeed, a typical T03B103B2(03C9) has either
one or two elements. Nevertheless, T03B103B2 does induce a single-valued equivariant
map T’03B103B2 on HF sending a typical [C] on which it is defined either to some [C’] or
to a sum [C’] + [C"]. More precisely, if T03B103B2(03C9) = u, then T’03B103B2(C03C9) = Cu, while
if T03B103B2(w) = {u,v}, then T’03B103B2(Cw) = Cu -f- Cv. (That the induced map really
is HF-equivariant is proved in the same way as Theorem 4.1 of [12].) To avoid
ambiguity, we henceforth use the notation T03B103B2 only when the subsystem S is of
type A2 and T03B103B2, T’03B103B2 will always denote the induced maps on the Hecke algebra.
The key difference between the maps T03B103B2 and T’03B103B2 is that the former is injective
(and thus preserves the module structure of a cell) while the latter is not. If the
subsystem S is of type B2, then we will also need the map S03B103B2 defined in [14] and
used extensively in [12]. It too induces (and henceforth denotes) an HF-equivariant
map between left cells, which unlike T’03B103B2 is injective and sends basis vectors to
basis vectors.

In types A, B, and C, the maps T03B103B2 and T’03B103B2 suffice to generate the right cells,
but this is not so in type D. We therefore need two further maps (denoted SD
and TD), which are attached to quadruples (03B1,03B2,03B3,03B4) of simple roots spanning
a subsystem S of type D4. As in [12], we assume that a is the inner root in the
Dynkin diagram of S, but it does not matter how we label the outer roots (3, 1 , b.
Furthermore, since the choice of (a, 03B2, 03B3, 03B4) is unique if g is simple, we omit it
from the notation. The map SD was defined in [12] and is entirely analogous to the
map S03B103B2 ; we regard it as an injective equivariant map between certain pairs of left
cells sending basis vectors to basis vectors. Like S03B103B2, but unlike T03B103B2, it has fixed
points. The map TD is the analogue of T’03B103B2. More precisely, when regarded as a
map on Weyl group elements, its domain consists of all w E W satisfying either
Hypothesis D or Hypothesis AB of [5]. The image u or {u, vl of w is defined by
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the same three properties as for SD in [12], except that u or u, v should satisfy
Hypothesis AB (resp. D) if w satisfies Hypothesis D (resp. AB). As with the other
maps, we regard TD as a single-valued HF-equivariant map sending a typical Cw
on which it is defined either to some Cu or to a sum Cu + Cv . It is sometimes
convenient to extend the domains of the maps 03C0 defined above to all of HF by
declaring that 03C0(Cw) : = 0 if it has not already been defined above.

The above paragraphs apply to any simple Lie algebra g and its Weyl group
W. For the remainder of this section we assume that g and W are classical. A
central result in the program of [3] and [4], appearing in [3] as Theorem 3.2.2,
asserts that one can get from any Cx to some sum of basis vectors involving Cy via
some sequence of maps T03B103B2, T’03B103B2, TD whenever x lies in the same right cell as y.
In [12], we proved the analogue of this result for T03B103B2, S03B103B2, SD. The conclusion is
sharper (the sum involving Cy may be replaced by Cy itself), but the hypothesis is
stronger (x and y must also lie in left cells Ci and C2 with [C1] isomorphic to [C2]).
We now retum to Garfinkle’s original setting and make her result more precise. To
do this we need some terminology. If [C1] ~ [C2], then we call the left cells Ci and
C2 isomorphic. If instead exactly half of the representations in [C1] appear in [C2],
then we say that Ci and C2 are adjacent. We extend the notions of isomorphism and
adjacency to pairs of left or right tableaux in the obvious way, by passing to Weyl
group elements having these tableaux and looking at their left or right cells. Then
we have

THEOREM 2.1. Let w 1, w2 E W belong to the same right cell R and adjacent left
cells C1, C2. Then there is a sequence of maps T03B103B2, S03B103B2, SD followed by a single
map T’03B103B2 or TD that either sends Cw, to C03C92 or C03C92 to CWl.

Proof. As in the proof of Theorem 4.2 of [12], we suppose first that W is of type
B or C and then imitate the proof of Theorem 3.2.2 of [3], proceeding by induction
on the rank of W. Once again one must strengthen both the hypothesis and the
conclusion of Lemma 3.2.9 of [3]. The new hypothesis states that we are given a
tableau Tl and an extremal position P’ in it such that there is another tableau Tl
either equivalent or adjacent to Tl having its largest label in position P’. The new
conclusion replaces the sequence of maps in the old conclusion with a sequence
of maps T03B103B2, S03B103B2 followed by a single map T’03B103B2. The proof follows the lines of
the earlier proof but also uses the following fact: whenever two tableaux T1, T2 are
adjacent, then the cycle structure of one of them (in the sense of [2]) is obtained
from that of the other by interchanging the holes attached to exactly two corners.
This fact follows easily from the definition of adjacency and Theorems 2.12 and
3.2 in [12]. One also strengthens Lemma 3.2.8 exactly as in the proof of Theorem
4.2 of [12]. As in that proof, the new versions of Theorem 3.2.2 and Proposition
3.2.4 are easily verified if r = 2 (in the notation of [3]). In general, the arguments
of [3] now carry over to our situation and show that there are sequences of maps as
in our conclusion respectively sending Cwl to a sum involving Cw2 and Cw2 to a
sum involving Cwl . Using Theorem 2.12 of [12] again, one checks that one of the
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intersections Ci ~ R, C2 ~ R, say the first one, has cardinality exactly twice that of
the other. It follows that the first sequence of maps, when restricted to the F-span
of the Cw for w e CI n R, sends basis vectors to basis vectors in a two-to-one
fashion. The result follows.

As in [12], a similar strategy, using [4], takes care of the case when W is of type
D. There the base case is r = 4 and one replaces the maps Sa(3, T’03B103B2 by SD, TD,
respectively. o

We conclude this section with an extension of Theorem 2.1 that is the crucial

step in computing the multiplication table of the asymptotic Hecke algebra J.
Before stating it, we introduce a useful bit of machinery. Given a double cell D
of W, let L, R be the perfectly paired finite-dimensional vector spaces over the
two-element field IF2 attached to D by Theorem 2.12 of [12]. Then isomorphism
types of left cells C in D correspond bijectively to supersmooth subspaces of L, in
the language of [12] . We introduce a metric p on the set of such subspaces via

p( S1, S2) = dim Si + dim S2 - 2 dim(si n S2),

where all dimensions are over IF2. One easily checks that p is indeed a metric
and that 03C1(S1, ,S’2) = 1 if and only if any pair of left cells corresponding to S1, S2
are adjacent. Now we have

THEOREM 2.2. Let x, w e W be an involution and another element in its right
cell R, respectively. Then there is a sequence of maps Ta(3, Sa(3, SD, T’03B103B2, TD
sending Cx to Cw.

Proof. We know that x lies in the left cell C : = R-1; let C’ be the left cell of
w. By Theorem 2.1 and Theorem 4.2 of [12], it suffices to construct a sequence
[C1],.... [Cn] of left cells such that [C1] = [C], [Cn] ~ [C’], each Ci is adjacent to
Ci+1, and each Ci meets R in exactly twice as many elements as Ci+1. Translating
the above properties into the language of supersmooth subspaces, we see that we
must show how to produce a chain of supersmooth subspaces connecting any two
given ones such that each subspace in the chain is at p-distance one from the next
and the length of the chain equals the p-distance between the given subspaces. To
do this it suffices by induction to assume that T, U are supersmooth subspaces with
p(T, U) = i and to produce another supersmooth subspace V at distance 1 from
one of T, U and i - 1 from the other.

Recall now the standard basis ~1, ... , ~n of the space L used in [12] to define the
notion of supersmooth subspace. Call a sum v = ~03B1 + ... + ~b of consecutive basis
vectors with v e T an atom if no proper subsum fa + ... + ~c of consecutive basis
vectors with a  c  b also lies in T. Then the atoms in T form a basis of the latter

satisfying the nonoverlapping condition of [12, Lemma 2.14], and similarly for U.
We now attach two finite sequences of indices {ij}, {i’j} to T, U, respectively, as
follows. Let il be the least index appearing in any atom of T. Assume inductively
that the indices i1, ..., ik have been defined and correspond to the atoms a1, ..., a k
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of T. If there is an atom of T that is a proper subsum of ak, then let ik+1 be the
least index appearing in any such atom. Otherwise ik+1 and all subsequent ij are
undefined. Define the sequence {i’j} in the same way, replacing T by U. We now
consider several cases.

Suppose first that there is some such that i j, ij are defined for j ~ k, that
ij = 1 ) if j  k, and that ik  i’k. We claim that no sum of atoms in T involving
ak can lie in U. This follows because the coefficients of fik’ fik-1 1 in any such
sum must differ, but no sum of atoms in U has this property. If we now take T’
to be the span of all atoms in T except ak, then one checks that T’ fl U = T ~ U
but dim T’ = dim T - 1. Thus T’ has the desired property. Of course the same
argument works if instead i’ k  if.
Now suppose that there is some k such that ij, ij are defined and equal if

j  k, that ik is defined, and that i’k is not. Look at the largest index i in the atom
a’k-1 ~ U corresponding to i’k-1. If t 

i 

~ ik, then we can take T’ to be the span
of all the atoms in T other than ak and the argument in the last paragraph shows
that T’ has the desired property. If i  ik, then the definition of atom shows that
a’k-1 ~ T. Let T’ be the span of the atoms in T and a’k-1. Then T’ is supersmooth
and dim T’ = dimT + 1 while dim(T’ n U) = dim(T n U) + 1. Thus T’ again
has the desired property. Again the same argument works if instead i’k is defined
and if is not.

If neither of the hypotheses of the above paragraphs holds and the sequence of
defined i j is i 1, ... , im, then the sequence of defined 1 § must also be i1, ..., im.
One of the atoms am,a’m, say am, must be a subsum (not necessarily proper) of
the other. If am = am, then let T’ be the span of the atoms in T other than am.
Otherwise a’ e T ; let T’ be the span of the atoms in T and a’m. In either case T’
is supersmooth and we can argue as in the last paragraph to show that T’ has the
desired property. Thus in all cases we can find a suitable T’, as desired. ~

3. Structure constants in the classical cases

We continue to assume that W is classical. We begin by recalling a special case of
the main result of [12] on structure constants. Recall that we denote the standard
basis of the asymptotic Hecke algebra J by {tw : w e W}.

LEMMA 3.1. Let C1, C2, C3 be three left cells in the same double cell D. The set
J1 : = {tx : x e Ci 

1 ~ C1} has a natural structure of elementary abelian 2-group
acting on the sets Ji := Ity : y E C-11 ~ Ci} for i = 2, 3. Any two elements in J2
have the same stabilizer in Jl . Any two orbits of this stabilizer in J3 are isomorphic
as homogeneous spaces. Both this stabilizer and its orbits in J3 may be explicitly
computed in terms of standard domino tableaux.

Proof. The first three assertions are proved in [11, 2.12, 3.13]. More precisely,
suppose that C1, C2, C3 correspond to the supersmooth subspaces SI, S2, S3 of the
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F2-vector space L in the parametrization of [12]. Then JI is naturally isomorphic to
the product(L/S1) x Si and we may identify Ji with (L/S1Si) x (S1~Si)*, ignor-
ing the group structure on this last set. Then L/S1 acts on L/S1Si by left translation
and Si acts on (S1 ~ S2)* by restriction and translation. The transitive action of Ji
on J2 is then the direct product of these two actions; the common stabilizer of any
element identifies with (S1S2/Sl) x (Sl/(Si fl S2))*. The orbits of this group on
J3 may all be identified with (S1S2/(S1(S2~S3))) x (S1/(S1 n S2)(Sl ~ S3))*
as homogeneous spaces, where again we ignore the group structure on this set.
Recipes for multiplication in JI and the JI action on J2, J3 may be found in Theo-
rem 5.1 of [12], where they are expressed in terms of extended open cycles of one
standard domino tableau relative to another (and the bijection between Weyl group
elements and pairs of standard domino tableaux of the same shape). 0

Recall from [2] and [12] the notion of extended open cycles of one tableau
relative to another. Our main result is

THEOREM 3.2. Retain the notation of Lemma 3.1 and its proof. For i, j, k E
{1, 2, 3}, let éij (resp. ~ijk) denote the number of W-representations common
to [Ci] and [Cj] (resp. to [Ci], [Cj], and [Ck]). Suppose that x E CIl 1 nC2, Y E
Cil ~ C3. Then the product txty equals s times the sum of the tz as z runs over
one orbit in J3 of the stabilizer of tx in JI and s = ~123 #L/~12~13~23. The
left and right tableaux TL(z), TR(z) of one index z appearing in this sum may
be obtained as follows. Let d be the Duflo involution in C2 and let TL(x) (resp.
TR(y» be obtained from TL(d) (resp. TR(d) = TL(d)) by moving through the
open cycles c1,..., ck (resp. ci, ... , c’m). Denote by et,..., ek (resp. e’1 ..., e’m)
the extended open cycles containing cl, ... , ck (resp. c’1, le’ m )relative to TL (y)
(resp. TR(x». Denote by U (resp. U’) the union of the extended open cycles
appearing an odd number of times in the list e1, ... , ek (resp. e’1, ... , e’). Then
TL(z) is the right tableau of E((TL(y), TL(x)); U, L); similarly TR(z) is the right
tableau of E((TR(x), TR(y)); U’, L).

Proof. All of these assertions except the recipes for TL(z), TR(z) follow from
Proposition 4.2 of [7]. To get these recipes, we argue as in the proof of Theorem
5.1 of [12]. If y = d, then the sum has only one term, namely tx [11], and the
recipes follow at once. In general, we can get from Cd to Cy via a sequence of maps
T03B103B2, S03B103B2, SD, T’03B103B2, TD as in Theorem 2.2. As each of these maps induces a left
J-module map on J in the obvious way (cf. [12]), we obtain the product txty by
applying the same sequence of maps to Cx and then replacing C by t. Garfinkle has
computed these maps on the level of domino tableaux in [2] and [4]. Her recipes
reduce in this situation to the ones in the theorem. 0

Of course by combining Lemma 3.1 and Theorem 3.2 (or rather Theorem 5.1 in
[12] and Theorem 3.2), we get a formula for the product txty whenever x, y satisfy
the hypotheses of Theorem 3.2 for some left cells C1, C2, G3. If they do not satisfy
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these hypotheses for any choice of left cells Ci, then txty is zero [11]. So we now
know the complete multiplication table of J in the classical cases (as promised
in §5 of [12]). As a consequence, it is not difficult in the classical cases to verify
the general version of Conjecture 3.15 in [11] (that is, the one determining all the
structure constants of J, not just those of certain of its subrings). In the exceptional
cases, Joseph has computed a large number of structure constants in [8].

For the last result of this section we adopt the notation of Corollary 5.2 of
[12].

COROLLARY 3.3. Let x, y e W be arbitrary. Then one can compute the socle of
the bimodule L( L( x . A), L(y . A» of Ad g-finite maps from L( x . À) to L(y . A),
given a knowledge of the Duflo involution in the right cell of x or y. All constituents
of this socle have the same multiplicity, which is a power of 2. The socle is nonzero
if and only if x and y lie in the same right cell.

Proof. This follows at once from Joseph’s formula for the socle of

L(L(x·03BB),L(y·03BB)) in terms of his modified versions c*x-1, ,z-1 of the struc-
ture constants cx-1,y,z-1 of J [6, 4.8], together with his later observation that, in
fact, c*x,y,z = Cx,y,z for any x, y, and z [9]. D

4. Kazhdan-Lusztig bases of irreducible constituents

We now drop the assumption that W is classical. As noted above, the maps
T03B103B2, S03B103B2, SD, T’03B103B2, TD are still defined (under the same hypotheses as above) but
are not as well behaved as in the classical case. In particular, there are left cells C in
every exceptional Weyl group such that self-intertwining operators on [C] sending
basis vectors to basis vectors do not act transitively on C -1 ~ C. Thus one cannot
use such operators to decompose [C] explicitly into irreducible constituents, as was
done for all classical left cells [C] in Section 4 of [12]. It tums out, however, that
the algebra J always fumishes enough intertwining operators to do this. If C is a
left cell, then we define the subrings JC-1~C, Je as in Section 5 of [12].

THEOREM 4.1. Retain the above notation. Right multiplication Px of JC by any
x C JC-1~C induces a left HF-equivariant map px on [C] via the vector space
isomorphism 1T : JC ~ [C] sending tw to Cw. Moreover, there is a natural bijection
EJ ~ EH between simple Je-lne 0 Q-modules and simple HF-submodules of [C]
and an isomorphism i (compatible with this bijection) between the endomorphism
rings of Je and [C] such that Px and Px correspond under i.

Proof. Lusztig has written down a homomorphism H ~ J 0 A which is

injective because it becomes an isomorphism after extending scalars [10, 2.4,
2.8] . Thus it also becomes an isomorphism after extending scalars to F. The
formula for this homomorphism shows that any nonzero left HF-equivariant
map on [C] ] induces a nonzero Je-’ne 0 F-equivariant one on Je 0 F, which
must be given by right multiplication by some element of Je-ne 0 F. On
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the other hand, the space of HF-equivariant maps on [C] has dimension equal
to dim HomQ(C&#x3E; , (C)) = #(C-1 ~ C ) = diMF(JC-1~C ~ F). The first assertion
follows; to get the second one, we use Lusztig’s homomorphism again and [ 11,
Proposition 3.3]. D

Given a left cell C, let ( G, H ) be the ordered pair of finite groups corresponding
to [C] J in Lusztig’s classification [11]. If G is abelian (so in particular if W is
classical), then this result may be sharpened: the tw for w e C-1 ~ C form an
elementary abelian 2-group under multiplication (isomorphic to G) and this group
acts on the set S := {tv : v E C} on the right. Moreover, if we identify S with
the set of vertices of the W-graph of C in the obvious way, then this group acts by
graph automorphisms. In general, the action of Je -’ne on Je is too complicated to
correspond to graph automorphisms.

Asymptotic Hecke algebras J and their subrings Je-lne are examples of ’based
rings’ in the terminology of [11]. The general theory of such rings is developed in
Section 1 of [ 11 ] (and in somewhat different language in [7]) and is quite analogous
to the classical theory of representations of finite groups. Lusztig uses this theory
to construct the character table of JC-1~C for every left cell C in [ 11, Appendix]; it
depends only on (G, H). Now one has

COROLLARY 4.2. Let C and (G, H) be as above. Then there is a bijection t

between the set of columns of Lusztigs character table for JC-1~C and
C -1 ~ C such that if the ith row ( r 1, r2, ... ) of this table corresponds to the
HF-representation oi, then one element of the p,-isotypic component of [C] is

03A3i riC(03B3).
Proof. The map t of course comes from the definition of character table; as

noted in the introduction, one does not know how to compute it (although Lusztig
sets up his tables so that ¿( Il) is always the Duflo involution d in C). By the gen-
eral theory of based rings, the élément - 03A3i rit(i) acts by zero on all simple
representations of JC-1~C other than the one (say p) corresponding to 03C1i, and by a
nonzero scalar on p [11, 1.3]. Now the desired result follows by Theorem 4.1, the
cyclicity of Cd in [C] [6], and the empirical fact that ri = ri e z for all i. D

In case some pi appears with multiplicity greater than one in [C] (as can happen
for exceptional W), then one can obtain further representatives of p, in the span
of the Cw for w e C-1 ~ C by postmultiplying the element ti in the proof of
Theorem 4.2 by various basis vectors in Jc-inc and applying Theorem 4.1. For
any pi, if R is any right cell with p, appearing in [R], then the proof of Theorem
4.2 shows that one can obtain every representative of pi lying in the span of the
Cw for w e C n R by premultiplying ti by suitable elements of JZnc and again
applying Theorem 4.1. Repeating this procedure for every right cell R meeting C,
one obtains a basis for the pi-isotypic component of [C] in which every element
is a Z-linear combination of Cw. Moreover (as promised above) this basis can be
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computed using only the multiplication table of J; indeed, computing it amounts
to decomposing J explicitly as a left module over itself. (It cannot be constructed
from Lusztig’s character tables alone, for it is well known that the character table
of a based ring does not determine its multiplication table. On the other hand,
the multiplication table of J is completely determined by the general version of
Conjecture 3.15 of [11] mentioned above.)

In particular, if W is classical, then we know this multiplication table and can
therefore substantially simplify the recipe for this basis given in Section 4 of [12].
More precisely, given a cell intersection [C n R], we use Theorem 5.1 of [12] and
Theorem 4.1 above to write it as a direct sum of one-dimensional subspaces S, each
of which lies in a single subrepresentation p of [C]. Given the subrepresentation p,
we can decide which subspaces S lie in it as follows. Arguing as in the proof of
[12, Theorem 4.3] by induction on the complexity of p, we can locate a left cell C’
such that p appears in C’ and a one-dimensional subspace S of [C’ n R] lying in
p. Then we construct a chain of left cells from C’ to C as in the proof of Theorem
2.2 above. Using Theorem 2.1 and the equivariance of the maps of Section 2, we
use S to produce a subspace S’ of [C n R] lying in p, as desired. Repeating this
procedure for every subrepresentation p and right cell R meeting C, we produce
bases of the desired type for every subrepresentation of C .

There is one case in which it is very easy to write down a basis for a subrepre-
sentation p of a left cell [C]. This occurs when the finite group G corresponding to
[C] is abelian and p is the special or Goldie rank representation (always occurring
with multiplicity one). Here a basis for p is given by

as R runs over the all the right cells meeting C. This recipe follows easily from
either [11, Sec. 3] or the results in Section 2 of this paper. It also applies if the
ordered pair (G, H) corresponding to [C] is (S3, 1), where as usual S3 denotes the
symmetric group on three letters.
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