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1. Introduction

Let g be a complex simple Lie algebra of classical type, U(g) its enveloping
algebra. The classification of the primitive spectrum Prim U(g) of U(g) was first
achieved by Joseph in type An ([14, 16]; see also [33]) and by Barbasch and
Vogan in types Bn, Cn, and Dn [3]. Garfinkle has substantially simplified the
Barbasch-Vogan classification [7, 8, 9, 10]. In all of these papers, the starting point
is a fundamental result of Duflo which states that the primitive ideals of a fixed
(dominant) infinitesimal character À are all realized as annihilators Iw of simple
highest weight modules L03C9 indexed by an element w of the Weyl group W and
À [6]. Thus classifying primitive ideals of infinitesimal character À amounts to
deciding for each w, w’ e W whether or not I03C9 = Iw,. This is done by attaching a
complete combinatorial invariant Tw to w depending only on Iw, so that Iw = I03C9’
if and only if T w = T w’. In type An, Tw tums out to be a standard Young (n + 1)-
tableau ; in the other types T w is a standard Young 2n-tableau with special symbol
in [3] and a standard domino n-tableau of special shape in [7].

The equivalence classes under the relation defined by w N w’ if and only if
I03C9 = Iw, are called left cells and were originally defined by Kazhdan and Lusztig
in a completely different way [20]; the equivalence of their definition and the one
above is a consequence of the Kazhdan-Lusztig conjectures. (Earlier Joseph had
given a weaker definition of cell [14], which was slightly modified in type Dn
by Vogan [34]; the modified definition tums out to coincide with the above one
in the classical cases but not in general.) A fundamental property of left cells as
defined in [20] is that they span vector spaces which carry the natural structure
of left W -modules, or more precisely left modules over the Hecke algebra H of
W; prior to [20], Joseph showed (modulo a conjecture later proved by Vogan)
that Prim U(g) also carries a W-module structure. Using some tables of Alvis in
the exceptional cases, Lusztig has computed the W-module structure of every left
cell [22, 26]. Although the resulting Kazhdan-Lusztig picture of the left cells is
quite beautiful (at least in the classical cases), it did not seem to merge well with
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the Barbasch-Vogan-Garfinkle picture; no one knew how to compute W-module
structure from Garfinkle’s algorithms.

The purpose of this paper is to remedy this gap by showing that the W-module
structure of a left cell can in fact be read off very simply from its standard domino
tableau of special shape, using bijections between Weyl group representations and
symbols on the one hand and symbols and partitions on the other. We also show that
the operators TafJ and SafJ used to define Vogan’s generalized T-invariant, which
play a fundamental role in Garfinkle’s classification of the primitive spectrum,
may be lifted to W-module maps between left cells (or actually H -module maps).
Furthermore, the operators TO, SafJ (plus a substitute SD for S03B103B2 in type D)
generate enough intertwining operators between left cells to enable one in principle
to write down Kazhdan-Lusztig bases for every irreducible W- or H-submodule
of a left cell (Theorem 4.3). We conclude the paper by showing how to compute
explicitly the product of two basis vectors of Lusztig’s asymptotic Hecke algebra
J ([25, 29]) whenever this product is a third basis vector. As a consequence we
get explicit formulas for the socle of the bimodule of Ad g-finite maps between
two simple highest weight modules in many cases and for the behavior of special
unipotent representations under the tensor product.

The paper is organized as follows. In Section 2, we recall Lusztig’s theory
of classical left cells, regarded as modules. Our exposition is a slight variant of
that in [23, chs. 4, 5]. We also set up the correspondences between Weyl group
representations, symbols, and partitions that we will need in the next section. In
Section 3, we show how to read off the W-module structure of a left cell from its
tableaux. In the next section, we recall the definitions of the maps T03B103B2, Saj3, and
SD on left cells and observe that they induce H-module maps. We then use these
intertwining operators to produce basis vectors for irreducible H-representations.
Finally, in the last section, we develop the applications promised above to bimod-
ules of maps between simple highest weight modules and tensor products of special
unipotent representations.

2. Left cells as modules

Throughout we consider only Weyl groups of types BC and D, as all of our results
are trivial in type A. So let Wn be the Weyl group of type BCn ; it acts in the
usual way on en by permuting and changing the signs of the coordinates. Let
Wn C Wn be the Weyl group of type Dn, consisting of all permutations and even
sign changes. We begin by recalling the standard parametrization of irreducible
Wn- and W’n-representations.

PROPOSITION 2.1. There is a 1-1 correspondence (d, f) ~ 03C0(d,f) between

ordered pairs (d, f) of partitions the sums |d|, |f| of whose parts add to n, and
irreducible representations of Wn. We have 7r (ft,dt) ~ 03C0(d,f) 0 sgn, where pt
denotes the transpose of the partition p, and sgn denotes the sign representation.
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PROPOSITION 2.2. There is a correspondence (d, f) ~ 03C0d,f between unordered
pairs (d, f) of partitions with Idl + Ifl = n and irreducible representations of W’n.
The correspondence is 1-1 except when d = f; in that case two representations
7r J,f’ 03C02d,f are attached to (d, f). As in type BC, we have 03C0ft,dt ~ 7rd,f ~ sgn. If
a representation is twisted by the outer automorphism of Wn induced from the
symmetry of its Coxeter graph, the resulting representation is isomorphic to the
original one, unless the latter has a numeral, in which case the new representation
has the opposite numeral.

For proofs see, e.g., [30,31]; these papers also give a precise definition of
the labels 1 and 2 and show how these labels change when the corresponding
representations are tensored with sgn (cf. [5]).
We now recall Lusztig’s well-known method for rewriting the parametrizations

of Propositions 2.1 and 2.2. Henceforth it will be convenient to treat the Weyl
groups of types B and C separately (for Lie-theoretic reasons), even though these
groups are of course isomorphic. Following [21], we define a symbol in type Bn
(resp. Cn) to be an arrangement

of non-negative numbers such that 03A3i(2pi+1)+03A3j 2qj = 2n+1+r(2r+1) (resp.
Ez 2pi + ¿j(2qj + 1) = 2n + r(2r + 1) ) and pi  ...  pr+1, ql  ...  qrr.
Define a symbol in type Dn to be an arrangement

of non-negative integers such that Li(2pi + 1) + Zi 2qj = 2n + r(2r - 1) and
pi  ...  p; , ql ...  qT. We introduce an equivalence relation - on symbols
as the transitive closure of the ’shift relations’

and

In type Dn, we further extend - by decreeing that
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furthermore, if a symbol in type Dn has pi == qi for all i, then we attach a numeral
1 or 2 to it.

There are injective maps 03C0’n from partitions of 2n + 1 (resp. 2n, 2n) to symbols
in type Bn (resp. Cn, Dn), defined as follows: given a partition p, add a zero part
to it if necessary to make it have an odd number of parts (resp. an odd number of
parts, an even number of parts) and arrange these parts in increasing order. Obtain
a new partition p’ (of a number larger than 2n + 1 ) by adding zero to the first part of
p, one to its second part, two to its third, and so on. Enumerate the odd parts of p’ as
2p1 + 1  ...  2p, + 1 (resp. 2q, + 1  ...  2qr + 1, 2p1 + 1  ...  2 ps + 1)
and its even parts as 2ql  ...  2qr (resp. 2pi  ...  2ps, 2q,  ...  2qr).
Assume that s = r + 1 (resp. s = r + 1, s = r); that is, restrict the domain of
03C0’n to partitions for which this condition holds. Then one may form a symbol as
in (2.3) (resp. (2.3),(2.4)) out of the pi and qi. Take this symbol as the image of
p under 03C0’n. In case the original partition p is very even in the usual sense that its
terms are all even and occur with even multiplicity, then we attach a numeral 1 or
2 to p and the same numeral to its image under 03C0’n. While the domain of 03C0’n does
not contain every partition of 2n + 1 (resp. 2n, 2n), it does contain every partition
corresponding to a nilpotent orbit in the appropriate Lie algebra. In particular, it
contains the partitions corresponding to the special orbits; these are just the ones for
which the associated symbol is special in the usual sense that p1 ~ q1 ~ p2 ~ ···.
The map 03C0’n is one-to-one in types Bn, Cn and on very even partitions in type
Dn ; for other partitions in type Dn, it is two-to-one (thanks to the identification
(2.5(c))). Similarly, there are bijections 7rn from symbols in type En (resp. Cn, Dn)
to representations of Wn (resp. Wn, Wn), obtained as follows. Given a symbol as
in (2.3) (resp. (2.3),(2.4)), subtract 1 - 1 from pi and qi to obtain an ordered (resp.
ordered,unordered) pair of partitions ( pi ) , (q’j) the sums of whose parts add to n.
Attach a representation of Wn (resp. Wn, Wn) to this pair as in Proposition 2.1
(resp. 2.1, 2.2). This representation is the image of the symbol under xn ; in type
Dn, if the symbol has a numeral attached to it, then the representation has the same
numeral. If we set 03C0 := 03C0n03C0’n and restrict its domain to partitions corresponding to
nilpotent orbits in the appropriate Lie algebra, then it induces a map from nilpotent
orbits to Weyl group representations which coincides with (part of) the Springer
correspondence [3, 24].
We now recall Lusztig’s definition of left cells in [22] (where they are called

’packets’ ; their coincidence with the left cells of [20] is demonstrated in [26], using
the theory of primitive ideals in U(g)).

DEFINITION 2.6. The left cells of Wn or W’n are the smallest class of representa-
tions containing the trivial one and closed under truncated induction from parabolic
subgroups and tensoring with sgn.

We do not need to recall the definition of truncated induction here; it suffices to
cite the formula from [22] for the representation truncatedly induced from a given
irreducible one. Thanks to the transitivity of truncated induction and its well-known
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behavior in type A, it suffices to show how to induce an irreducible representation
1r’ of W to W(= Wn or W’n) when W is a maximal parabolic subgroup whose
type A component acts by sgn on 1r’.

PROPOSITION 2.7. ([22]). With the above notation, suppose that the type A com-
ponent of W’ has rank r - 1. Assume that the symbol s’ has at least r (not
necessarily distinct) terms, using the shift relations as necessary. Then the induced
representation 1r is irreducible if and only if the rth largest term in s’ occurs only
once; in that case the symbol s of 03C0 is obtained from s’ by adding one to the r
largest terms of the latter. Otherwise 1r has length two and the two symbols s1, 82 of
the constituents of 1r are obtained from s’ by adding one to the r - 1 largest parts
and to each of the two parts tied for rth largest in turn. In case W is of type D and
W’ itself is of type A, then the symbol of 1r can have either numeral, depending
on the choice of W’. Otherwise this symbol has either no numeral or the same
numeral as s’.

We will also need to record the effect on symbols of tensoring with sgn.

PROPOSITION 2.8. ([22]). With notation as in Proposition 2.7, let m be the largest
number occurring in the symbol s of a representation 7r of W . Then the top row of
the symbol s’ of 7r (D sgn is obtained by listing the integers from 0 to m, omitting
m - a whenever a occurs in the bottom row of s. Similarly, the bottom row of s’ is
obtained by listing the integers from 0 to m, omitting m - a whenever a occurs in
the top row of s.

As mentioned above, there is also a rule for determining the numeral of s’ in
Proposition 2.8 if s has a numeral, but we will not need it. We now reformulate
Propositions 2.7 and 2.8 in terms of partitions.

LEMMA 2.9. Under the hypotheses of Proposition 2.7, let p be the partition
corresponding to 1r’ when the latter is restricted to the non-type A component
of W’. Write p = [pl , ... , ps] with p1  ···  p, and assume that s  r, by adding
zero parts to p as necessary. Let Pr-a+1, ···, pr+b enumerate the parts of p equal
to Pro Set p’ = [p1 + 2, ... , Pr + 2,Pr+I’... ps], pli == [p1 + 2,..., Pr-1 + 2, Pr +
l, pr+1 + 1, Pr +2, ..., ps]. Then either 7r is irreducible and corresponds to p’, or
1r has length two and its constituents correspond to p’ and p". In type B, 1r is

irreducible if and only if either a is even, or b = 0 and pr ~ 0. In type C, 1r is
irreducible if and only if either a and Pr have opposite parity, or a is even and
b = 0. In type D, 1r is irreducible if and only if a and Pr have the same parity, or a
is even and b = 0.

Proof. This is a simple direct calculation from Proposition 2.7 and the corre-
spondence between symbols and partitions. 0
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LEMMA 2.10. If a representation 03C0 has partition p, then the representation 7r 0 sgn
has partition pt, the transpose of p.

Proof. Let s be the symbol of 03C0 and let s 1 &#x3E; ... &#x3E; s j enumerate the distinct
terms in s. Let s’ be the symbol of 7r 0 sgn. Gather the terms of s into groups, the
ith of which consists of the terms equal to si or si+1 (note that each term appears
at most twice in s). One can easily work out an explicit correspondence between
groups of terms in s, in p, in p’, and in s’. Now the result follows by an easy
calculation with the terms in each group. c

We will also need to see how to the inductive constructions of Definition 2.6

behave on the level of subsets of Weyl groups.

PROPOSITION 2.11. If w E W represents the left cell C (regarded as a module),
then wow represents the left cell obtained from C by tensoring with sgn, where wo is
the longest element of W . If W’ is a parabolic subgroup of W and w’ represents a
left cell C’ of W’, then wo w’ 0 w’ represents the left cell obtained from C’ by truncated
induction, where w’ 0 is the longest element of W’.

Proof. Both assertions follow from [23, ch. 5]; cf. also [13, 14.17]. ~

Now we are ready to head towards Lusztig’s characterization of left cells in the
classical case. This appeared first in [22] and was reformulated in [23] and [28].
Here we modify the treatment in [23] slightly. We have mentioned above that a
symbol is said to be special if it is equivalent to one of the form (2.3) or (2.4) with
p1 ~ q1 ~ p2 ~ ···. We will attach a family of left cells to each special symbol;
then the totality of left cells will simply be the union of the families.

Given a special symbol s, let s 1  ...  sm enumerate the terms appearing only
once in s. Let T = {t1, ... , tp} (resp. B = {b1, ... , bq} consist of the si appearing
in the top (resp. bottom) row of s, with the ti and b. labelled in increasing order.
Then one easily checks that p = q + 1 in type B or C, while p = q in type
D. The Cartesian product P(T)  P(B) of the power sets of T and B becomes
a vector space over the field IF2 of two elements if addition is defined via the

symmetric difference and scalar multiplication in the obvious way. We now define
two subspaces L and R of P(T) x P(B) and set up a perfect pairing ·,·&#x3E; between
them. Take L’ (resp. R) to be the span of all ~i : = (ti, bi ) with 1 ~ i ~ q (resp.
all ri : := (ti+1, bi ) with 1  i  min( q, p - 1 ) ); here we are identifying singleton
subsets {x} with their unique elements x. If s is of type Dn, so that p = q, let L be
the quotient of L’ by the span of E fi = (T, B); otherwise, let L = L’. We define
the pairing (., .) by decreeing that two basis vectors ~i,rj are orthogonal if and
only if the corresponding singletons are all disjoint. Thus ~i, r j) = 1 if j = i or
j = i - 1 and ~i, rj&#x3E; = 0 otherwise. It is easy to see that ·,·&#x3E; is indeed a perfect
pairing.

Define a subspace S of L or R to be smooth if it is spanned by sums of
consecutive basis vectors ~i or rj. For éxample, if p = 4, then R has exactly one
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nonsmooth subspace, spanned by ri + r3. We say that S is supersmooth if both S
and its (., .) -orthogonal S~ are smooth. If p = 4, then R has exactly one smooth
but not supersmooth subspace, spanned by ri + r2 and r2 + r3 (its orthogonal is
spanned by £1 + £3).

At last we are ready to characterize the left cells.

THEOREM 2.12. ([23]). Given a special symbol s, the left cells in the family (or
double cell) of s are parametrized by supersmooth subspaces of the space L (or
equivalently the space R) defined above. Given such a subspace S, the left cell C
corresponding to S consists of the representations with the following symbols: for
each (X, Y) E S + S1.., transfer the elements of X from the top to the bottom row
of s, and similarly transfer the elements of Y from the bottom to the top row of s. In
type Dn, if s has equal rows and a numeral, then each of the two representations
with the symbol s lies in a left cell by itself.

For example, if

then the double cell corresponding to s has exactly five (isomorphism types of)
left cells, corresponding to the five subspaces of L (all of which tum out to be
supersmooth). The symbols of the representations in the left cell attached to L
itself are

while those in the left cell attached to the subspace F2~2 (whose orthogonal is
spanned by ri + r2) are

The last of thèse symbols was computed by observing that ri + r2 + ~2 = (4,1).
Of course the analogous result to Theorem 2.12 holds for right cells. Theorem

2.12 enables us to put an obvious structure of elementary abelian 2-group on the
representations in a left or right cell, or on the representations common to a left and
a right cell. We will use this group structure in Section 5. For now, we note that any
family (or double cell) contains two distinguished left cells Co, CL, corresponding
respectively to the supersmooth subspaces 0, L of L. From the formulas for the
Springer correspondence in [24], one can check that in types B and D (resp. type C),
the cell CL (resp. Co) consists exactly of the representations attached by Springer
to the nilpotent orbit in the Lie algebra g whose (special) symbol coincides with
that of the family. We therefore call these cells CL or Co Springer cells. Following
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Joseph, whenever CL (resp. Co) is a Springer cell, we call the ’opposite’ cell Co
(resp. CL) a Lusztig cell. In general, Lusztig attaches an elementary abelian 2-group
to every family of left cells and a subgroup of this group to every left cell in the
family ([23, 28]); this subgroup is the whole group exactly when the cell is Lusztig
in the above sense. Note that any Lusztig cell has only the special representation
in common with the corresponding Springer cell. It tums out that an analogue of
the Springer cell can be attached to non-Lusztig cells as well.

PROPOSITION 2.13. Given any left cell C, there is another left cell C’in the family
D of C that has only the special representation in common with C.

Proof. In general, if CI, C2 are any two left cells in D, corresponding to the
supersmooth subspaces S1, S2 of L via Theorem 2.12, then one easily checks that
representations common to Ci and C2 are parametrized by elements of (Si ~ S2) +
(S~1 n S2 ) . Hence it suffices to locate a supersmooth subspace of L complementary
to the one (call it S) corresponding to C. Extend a basis of S to a basis of L by
adding vectors of the form ~1 + ··· + Let S’ be the span of the added vectors.
Since IF2(Êl 1 + ··· + £i)1. is spanned by the r j with j ~ i, it follows that S’ is

supersmooth, as desired. D

In [32, 6.9] it was claimed that the C’ of Proposition 2.13 is unique (when
regarded as a W-module); this actually holds only for Lusztig and Springer cells.
However, these cases suffice for the applications in that paper (cf. [1, Sect. 5]).
We conclude this section with a characterization of supersmooth subspaces that we
will need in Section 4.

LEMMA 2.14. Retain the above notation. A subspace S of L is supersmooth if
and only if it is spanned by a set of sums ~i + ... y- ~j of consecutive ~k such that, if
~i + ··· + ~j,~i’ + ··· + are two sums in the set, then the intervals [i, j], [i, i’]
are either one contained in the other or disjoint.

Proof. One computes that F2(~i+...+~j)~ is spanned by all rk with k ~ i -1, j ,
together with ri-1 + rj if i &#x3E; 1. Thus if the intervals [i,j], [i’, j’] overlap but nei-
ther is contained in the other, then a sum of consecutive rk is orthogonal to both
Êt + ··· + ~j and ~i’ + ··· + ~j’ if and only if it involves all or none of the indices
i - 1, i’ - 1, j, j’. By contrast, an arbitrary sum of rk’s is orthogonal to both of
these sums if and only if it involves both or none of the indices i - 1, j, and both
or none of the indices i’ - 1, j’. Now the necessity of the stated condition is clear,
and its sufficiency is easy to check as well. D

3. Standard domino tableaux and W-module structure

We tum now to our recipe for computing the W-module structure of a left cell from
Garfinkle’s standard tableaux. We begin by summarizing the basic properties of
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these tableaux [7, 8, 9, 10]. Given an element w of Wn or W’n, Garfinkle constructs
an ordered pair of standard domino tableaux (TL(03C9), TR(03C9)) of the same shape
in such a way that w can be recovered from the pair (TL(03C9), TR( w ) ). A domino
tableau in type C or D is simply an arrangement of numbered horizontal and
vertical dominos having the same shape as a Young tableau such that domino
labels increase as one moves downward or to the right. (The definition in type
B is slightly different: there domino tableaux consist of dominos as above plus
a single square in the upper left corner, always numbered 0.) A domino tableau
is called standard if the domino labels are precisely the integers from 1 to n for
some n, each occurring once. The procedure for constructing (TL(03C9),TR(03C9))
from w is similar to the Robinson-Schensted insertion algorithm (where w is first
replaced by the sequence w( 1,..., n) of signed integers), but involves a more
complicated kind of ’bumping’, as dominos may be horizontal or vertical and may
change their orientations when subsequent dominos are added. As in type A, we
have TR(w) = TL(03C9-1), but this time we do not have I03C9 = Iw’ if and only if
TL(03C9) = TL(03C9’) (in the notation of Section 1). The decomposition of Wn and Wn
by left domino tableaux is strictly finer than the left cell decomposition (we hope
to study it in a future paper). Thus one must introduce an equivalence relation
on tableaux, as follows. The dominos in a tableau can be grouped into ’cycles’,
some of which are called ’open’ and the others ’closed’. For each open cycle,
there is a procedure called ’moving the tableau through the cycle’, which involves
changing the positions of the dominos in the cycle (but no others). Moreover, the
set of squares involved in moving through one open cycle is disjoint from the
corresponding set for any other, so that it is possible to move through any set of
open cycles simultaneously. For any two tableaux Tl , T2, we say that T1 ~ T2 if
it is possible to get from Tl to T2 by moving through open cycles. The symmetry
of this relation is guaranteed because moving through the same open cycle twice
always leads back to the original tableau. Now the classification theorem states that
Iw = Iw’ if and only if TL(03C9) ~ TL(03C9’). Garfinkle actually expresses this result
slightly differently: she picks a distinguished representative in every ~-equivalence
class, namely the one with ’special shape’ in her terminology, and then classifies
primitive ideals by domino tableaux of special shape. The definitions of special
shape and open cycle depend on the type B, C, or D of the tableau. We will
use a different representative in each equivalence class in §5. For now, we need a
preliminary result. Recall the notion of extended open cycles of one tableau relative
to another (of the same shape) [8, 2.3.1].

LEMMA 3.1. Let D be a double cell containing a left cell C and a right cell R. Let
Té, T7z be the standard domino tableaux of special shape corresponding to C, R.
Then the number of elements in the intersection C ~ R equals 2max(0,m-1), where
m is the number of extended open cycles of TL relative to TR.

Proof. Assume first that we are in type B or C. The possible left tableaux TL(w)
(resp. right tableaux TR(03C9)) of elements w of the given intersection are obtained
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from Te (resp. TR) by moving through open cycles, none of which can involve the
upper left corner of the tableau (since it must not be vacated in type C or occupied
by a domino in type B). Conversely, a pair of tableaux (T, T’) obtained as in the
last sentence arise from a Weyl group element w, necessarily lying in the relevant
intersection, if and only if they have the same shape. Since the upper left corners
of TC, Tn always belong to open cycles [7, Sect. 5], the result follows at once from
the definition of extended open cycles. In type D, one must work a little harder.
All of the above reasoning goes through, except that (1) the element w of Wn
corresponding to a given pair (Tl , T2) of tableaux of the same shape need not lie in
Wn, and (2) the upper left corner of a tableau is always occupied by a domino and
never vacated in the course of moving the tableau through open cycles. Thus one
gets exactly 2m elements v of Wn with left and right tableaux equivalent to TC, T7z,
respectively, and it suffices to show that exactly half of these lie in W’n. To this
end, let c e WnBW’n act on en by changing the sign of the first coordinate. Then
[10] shows that the left tableaux of w and cw are x5-equivalent whenever w E W’n,
where of course the open cycles of cw are defined relative to type D even though
cw e W’n. As for the right tableaux of w and cw, they either coincide or differ only
by moving the domino labelled 1 through its closed cycle, up to ~-equivalence.
So if the domino labelled 1 in T7z belongs to an open cycle, then elements v of Wn
as above come in pairs {03C9, c03C9} and the desired result follows. So assume that this
domino belongs to a closed cycle c 1 instead and let T’R be obtained from TR by
moving through ci. Then there are clearly just 2m elements v’ of Wn with left and
right tableaux equivalent to Té, T’R. Elements v as above not lying in W’n corre-
spond bijectively to elements v’ as above lying in W£ under the map w - cw, and
vice versa. Thus, of the 2m+ 1 elements v or v’ as above, exactly 2’n of them lie in
W’n. The tableau T’R also has special shape, and the right cell Tz’ corresponding to
it is obtained from R as a module by twisting every representation by conjugation
by c. It follows from Proposition 2.2 and Theorem 2.12 that R’ is isomorphic to
R as a Wn-module, unless R consists of a single representation with a numeral. If
R’ ~ R, then C n R, C n R’ have the same cardinality [23, 12.15], and the desired
result follows. If R consists of a single representation with a numeral, then [23,
12.15] applies again and shows that C n R is a singleton while C n R’ is empty. It
follows that m = 0 in this case. Hence Lemma 3.1 holds in all cases. D

Now we are ready to compute W-module structure from domino tableaux.
Given a tableau T, let Tl , ... , Tk enumerate the tableaux obtained from T by
moving through open cycles and of the same type as T (so not involving the upper
left corner of T, if it lives in type B or C). For 1  i  k, let pi be the partition
corresponding to the shape of Ti. In case p, is very even and Ti lives in type D, then
we also attach a numeral 1 or 2 to p2, according as the number of vertical dominos
in Ti is congruent to 0 or 2 modulo 4. Whenever two tableaux have exactly the
same set of partitions pi and numerals attached to them by the above recipe, then
we say they are module equivalent. The terminology is justified by
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THEOREM 3.2. Retain the above notation and let C be the left cell corresponding
to T. Then the constituents of C, when regarded as a W-module, are precisely those
corresponding to Pl , ... , Pk via the map 03C0 of Section 2. In types B and C, each
constituent appears exactly once in the list 7r(P1)’..., 7r (Pk) and the number of w
in C (regarding the latter now as a set) with left tableau Ti equals the dimension of
03C0(pi). In type D, the list 03C0(p1), ..., 03C0(pk) contains each constituent of C exactly
twice, unless k = 1. The number of w E C such that the left tableau of w or wc is
Ti again equals the dimension of 03C0(pi).

Proof. By Lemma 3.1, the definition of open cycle, and [23, 12.15], we see
that two left cells C, C’are isomorphic as W -modules if and only if their standard
tableaux T, T’ of special shape are module equivalent. The first assertion thus
follows in general if it can be checked for one left cell in each W-module equiv-
alence class. Thanks to Definition 2.6 and Proposition 2.11, we have an inductive
recipe for producing one left cell in each such equivalence class, together with a
representative of each cell. Applying the definition of open cycle to each of these
representatives and the formulas for truncated induction and tensoring with sgn on
the level of partitions (Lemmas 2.9 and 2.10), we see that the first assertion holds
in all cases. We remark that we took c e WnBW’n to change the sign of the first
rather than the last coordinate because Garfinkle makes a nonstandard choice of

positive roots in type Dn in [10].
Tuming now to the proof of the second assertion, let C, R be arbitrary left and

right cells lying in the same double cell D. As w runs over the intersection C n R,
its left tableau TL(03C9) must always have a shape corresponding visa 7 to a repre-
sentation in C, and the right tableau TR(w) must behave similarly with respect to
R. In type Dn, similar results hold for wc, by the facts mentioned in the proof of
Lemma 3.1 about its tableaux in terms of those of w. But the left and right tableaux
of any element have the same shape. Furthermore, there cannot be distinct tableaux
TL(03C9) for w E C ~ R of the same shape, since each TL(03C9) is ~-equivalent to
a fixed tableau of special shape. It follows that, in types B and C, the common
shapes of TL(03C9), TR( w ) as w runs over the relevant intersection parametrize the
representations common to C and R bijectively. In type D, the common shapes of
TL(03C9), TR(w) and TL(wc), TR(wc) parametrize the representations common to
C and R in a two-to-one fashion. In all cases, holding C fixed and letting R run
through all the right cells in D, we get the desired result by [23, 12.15]. D

Of course the analogous result holds for right and double cells. Theorem 3.2
allows one to attach representations of W to elements of one-sided cells C in a
manner consistent with the module structure of the cell. In particular, in types
B and C, we get an injective map from C ~ C -1 to a subset of W that carries
a natural structure of elementary abelian 2-group, by the remarks after Theorem
2.12. We could use this map to transfer the group structure to C ~ C-1. Now we
will see in Section 5 that Lusztig has also defined a natural elementary abelian
2-group structure on C fl C -1, which is unfortunately not the same (in general) as
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the one just described. We will describe the difference between these two structures
precisely in Section 5. In type D, matters are more complicated, for the map 7r from
partitions to representations is (generically) two-to-one. Let T be a tableau and T’
the tableau obtained from T by moving through all of its open cycles. Then one
easily checks that the shapes of T and T’ parametrize the same representation. If
w e Wn belongs to the intersection C n R of the left cell C and right cell R, then any
other v e C ~ R has left tableau TL(v) obtainable from TL(03C9) by moving through
an even number of cycles. Thus the map from a typical intersection C ~ C -1 to W
coming from Theorem 3.2 is injective if and only if the tableau corresponding to C
has an odd number of open cycles (or no open cycles at all).
We also remark that Theorem 3.2 shows that the open orbit in the associated

variety of a typical primitive ideal Iw in the classical case may be read off from
the shape of its corresponding (left) tableau T of special shape (unless this orbit
lives in type D and is very even, in which case one must also look at the number
of vertical dominos in T, as mentioned above).

4. Wall-crossing functors and Hecke module equivalences

In Joseph’s classification of primitive ideals in type An a crucial (and often over-
looked) role is played by a simple set of generators discovered by Knuth for the
equivalence relation of having the same Robinson-Schensted left tableau. Ana-
logues of the Knuth generators in types B, C, D were discovered by Joseph [14]
and Vogan [34]. Joseph showed that they fumish simple sufficient conditions for
two elements to lie in the same left cell; Vogan then observed that they can be
tumed around to fumish necessary conditions as well, using T-invariants. The key
to Garfinkle’s classification of primitive ideals in types B, C, D lies in her discov-
ery that these necessary and sufficient conditions coincide in these types. Although
the statement of this coincidence does not involve domino tableaux, its proof relies
on them in a crucial way [8, 9, 10]. We now define the (dual) Knuth map T03B103B2 (which
makes sense in any classical type) and two analogues Sa(3, SD (which make sense
in types BC and D, respectively) and show that they have the properties asserted
of them in the introduction.

Let a, 03B2 be simple roots spanning a subsystem of type A2. The wall-crossing
operator Ta(3 is defined on Weyl group elements w whose T-invariant contains
exactly one of ce and 03B2 where u is uniquely defined by the following properties:
first, u e wW’, where W’ is the parabolic subgroup of W generated by the
reflections sa, se through cx, 03B2; second, u and w have different lengths; and third,
the T-invariants of u and w meet la, 03B2} in disjoint singletons. Then Ta(3 may also
be defined on simple highest weight modules (or simple Harish-Chandra modules
over some real group) via a composite of translation functors, whence it also

induces a well-defined order-preserving map on primitive ideals [34].
In type An the various maps T03B103B2 suffice to classify the primitive spectrum as

a set, and even (conjecturally) as an ordered set as well. In types Bn and Cn,
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however, these maps fail to take account of the short or long simple root at the
extreme right end of the Dynkin diagram. One therefore needs to define a substitute
for Tcx(3 if a, Q are simple roots spanning a subsystem of type B2. Although the
paper [34] does actually define a map that it calls Tcx(3 in this case as well, it tums
out that the correct analogue of the map Tcx(3 of the last paragraph is a map defined
in a later paper [35] and called S03B103B2 there. Like the map Tcx(3, its domain consists
of all w E W whose r-invariant meets {03B1, 03B2} in a singleton, but now the second
and third requirements to specify the image u of w under S03B103B2 are different. The
second one now states that the length difference between and 03C9 should be even
in any event and nonzero if possible. The third one states that the T-invariants of
u and w should meet {03B1,03B2} in the same singleton. Then Scx(3 (unlike the Tcx(3 of
[34]) is a well-defined single-valued map that can also be defined on simple highest
weight or Harish-Chandra modules by translation functors. Like the Tcx(3 of the last
paragraph, it induces an order-preserving map on primitive ideals [35].

In type Dn things are more complicated. Although there is only one root length,
the maps T cx(3 fail to generate the right cells, even if n = 4 [34]. So let the simple
roots 03B1, 03B2, 03B3, 03B4 span a subsystem of type D4 with a the inner root. (It does not
matter how we label the outer roots (3, 1 , b; moreover, the choice of {03B1, (3, 03B3, 03B4} is
unique if g is simple. This is why we will suppress it from the notation.) Assume
that w E W belongs to the set S of elements satisfying hypothesis D of [11],so
that in particular the T-invariant of w meets {03B1, 1 0 03B3, 03B4} precisely in {03B1}; note that
the r-invariant of [ 11 ] coincides with the left 7-invariant of [8] in this situation.
We now define a map SD on elements w as above via SD(03C9) : = u, where u E S is
uniquely specified by the requirement that it also satisfy hypothesis D, differ from
03C9 if possible, and lie in a common diagram with w of type 8-2 or 8-6, in the sense of
[11]. Using the main theorem of [ 11 ], one checks that SD, like Tcx(3 and S03B103B2, may
be defined on simple highest weight or Harish-Chandra modules by a composite
of translation functors. Hence SD, like T03B103B2 and S03B103B2, induces an order-preserving
map on primitive ideals.

Recall now the definition, canonical basis ITw : w e W} and Kazhdan-Lusztig
basis {C03C9 : 03C9 E W} of the Hecke algebra H corresponding to W [20]. Following
Kazhdan and Lusztig, we take the ring A : = Z[q1/2, q-1/2] of Laurent polynomials
in an indeterminate q1/2 as the base ring of H (originally H was defined to have
base ring Z[q]). We let F denote the fraction field of A and HF the algebra obtained
from H by extending the scalars to F. Given a left cell C, recall that the F-span
[C] (resp. the Q-span C&#x3E;) of the Cw for w E C carries the natural structure of a left
HF-module (resp. left W-module); more precisely, there is an explicit formula for
the left action of Ts on Cw whenever s e W is a simple reflection and w e C which
involves only structure constants in Z[q1/2] and depends only on the W-graph of
C [20, 1.3]. F’inally, given a left cell C and one of the maps T := To;/3, So;(3, or SD,
recall (as noted above) that T is defined at one element of C if and only if it is
defined at every element of C and in that case it sends C to a single left cell C‘. We
extend T to an F-module map defined on [C] in the obvious way.
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THEOREM 4.1. If C is a left cell and a map T : = To:(3, So:(3, or SD, is defined on
C, then the induced map on [C] is left HF-equivariant.

Proof From the discussion of To:(3, So:(3, SD above we see that T is given by a
composition of right multiplication by various elements T, with s a simple reflec-
tion, subtraction of a multiple of the identity map, projection to certain left cells,
and scalar multiplication (one needs to use the results in [ 11 ] to verify this in the
case of SD ). All of these maps respect the left HF-action. 0

This fact was already observed in [20] for the maps To:(3, where it was used to
show that left cells in type An are irreducible as W -modules. For the map So:(3 it
is implicit in [35]; for SD it is new. If the simple roots a and j3 span a subsystem
of type B2, then we have mentioned above that Vogan has defined a map which
he denotes by To:(3 in [34]; we will however denote it by T’03B103B2 to avoid ambiguity.
It is neither injective nor single-valued, but it induces a single-valued left HF-
equivariant map sending a typical C03C9 on which it is defined either to another Cu
or to a sum Cv + CB/. Similarly, the map SD may be modified to a new map TD
with the same property as T’03B103B2. The maps T’03B103B2 and TD can also be defined on the
level of left cells, but even on this level they are not single-valued. A crucial result
in the program of [9, 10], appearing in [9] as Theorem 3.2.2, asserts that one can
get from any left cell to any other in the same double cell by a sequence of the
maps To:(3, T’03B103B2, and TD. We will need the analogue of this result for To:(3, So:(3, and
SD.

THEOREM 4.2. Let 03C91, 03C92 E W belong to the same right cell Rand left cells
CI, C2 that are isomorphic as W -modules. Then there is a sequence of maps
To:(3, S03B103B2, SD sending 03C91 to W2.

Proof. Assume first that W is of type B or C. We imitate the proof of Theorem
3.2.2 in [9], proceeding by induction on the rank of W. That proof is broken down
into a proposition (3.2.4) and a sequence of lemmas (3.2.6-3.2.9). In our situation
we must strengthen both the hypothesis and the conclusion of Lemma 3.2.9. The
new hypothesis states that we are given a tableau Tl and an extremal position P’ in
it such that there is another tableau Tl module equivalent to Tl having its domino
with largest label in position P’. The new conclusion replaces the sequence of maps
in the old conclusion with a sequence of maps To:(3 and So:(3; indeed, of course,
Garfinkle’s map To:(3 (which coincides with Vogan’s in [34]) must be replaced by
our map So:(3 throughout whenever a and 0 have different lengths. Lemma 3.2.8
must also be strengthened. Given a tableau shape S and an extremal position P in
it, there is a standard domino tableau T of shape S whose domino D with largest
label is in position P and whose cycle structure in the sense of [8] may be any of
the possible ones for a tableau of this shape, subject only to the constraint that D
may be forced to lie in an open cycle by itself. This is easily proved by induction
on the size of S. Now the new versions of Theorem 3.2.2 and Proposition 3.2.4
are easily verified if r = 2 (in the notation of [9]). In general, the arguments of [9]
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can now be carried over to our situation. A similar strategy, using [10], takes care
of the case when W is of type D ; there the base case is r = 4 and we replace the
map S03B103B2 by SD. ~

Unfortunately Theorem 4.2 fails for the exceptional Weyl groups; there are left
cells C in every such group such that the self-intertwining operators on C sending
basis vectors to basis vectors cannot act transitively on C n C-1. The reason is
that the finite group attached by [23] to the double cell D containing C is not an
IF2 -vector space in these cases (as mentioned in Section 5, it is a symmetric group
instead). We are now ready for the main result of this paper.

THEOREM 4.3. The algebra HF is semisimple Artinian. Its simple (left) modules
are all defined over F and correspond bijectively to simple W -modules over Q.
Given a simple QW-module I, realized as a constituent of some left cell represen-
tation C&#x3E;, one can construct an explicit basis of the corresponding HF-module
whose elements are linear combinations of basis vectors Cw with coefficients ± 1.
The structure constants with respect to this basis lie in A. In particular, specializing
at q = 1, one obtains a canonical basis for every simple QW -module such that W
acts on the basis by integral matrices.

Proof. The first two assertions follow at once from the Benson-Curtis-Lusztig
theorem: the algebra HF is in fact isomorphic to the group algebra FW. We will
also see below that we can recover at least these two assertions without invoking
this theorem. Given a left cell C, let R be a right cell meeting C nontrivially.
By [23, 12.15], one knows that the elements of C n TZ are parametrized by the
representations common to (C) and (R). More precisely, the arguments of [19,
2.8] show that the F-span [C n R] of the C03C9 with w e C n R generates the
HF-submodule of C corresponding to the sum of these common representations.
For each constituent J of [C], we will construct a weighted sum of Cw lying in J.
Repeating the construction for every right cell R with J a submodule of [R], we
get a basis of J of the desired type.
We begin by considering all compositions of maps T03B103B2, S03B103B2, SD defined on

C and mapping it into itself. Each such composition induces a permutation cr of
C n R; the set E of permutations obtained in this way is obviously a subgroup of
the symmetric group Sk on k := #(C n R) letters. Note that is a power of 2,
by Theorem 2.12. Every (7 ~ 03A3 induces a linear map on [C] that multiplies every
constituent of the latter by a scalar, which must be a root of unity in F. As the only
such roots of unity are + 1 , we see that o, must be an involution (or the identity).
Thus E must be an elementary abelian 2-subgroup of Sk acting transitively on the
k letters, by Theorem 4.2. There is only one such subgroup, up to conjugacy; it
may be described geometrically as the symmetry group of a log2 k-dimensional
parallelepiped whose edges have distinct lengths, identifying the k letters with the
k vertices of the parallepiped. It follows that E acts on [C n R] (or (C n n)) by the
left regular representation, so that this space decomposes uniquely as the sum of
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one-dimensional subspaces S, each preserved by E and lying in some constituent
J as above. It only remains to decide which subspace 8 lies in which constituent
J. This is done by induction on the ’complexity’ of J, which is defined as follows.
We know from Theorem 2.12 that there are finite-dimensional F2-vector spaces
L, R attached to C endowed with a perfect pairing (.,.) and canonical respective
bases {~i},{rj} such that J identifies with a sum f + r with f E S, a supersmooth
subspace of L, and r e S 1.. Let t be the least number of sums of consecutive ~i in
S adding up to ~ and let be the corresponding number for r and S 1. Then the
complexity of J is defined to be t + u. Assume now that we can compute exactly
which subspaces 8 lie in which submodules J’ whenever J’ has complexity less
than m and suppose that J has complexity exactly m. Define the sum f + r and
integers t, u as above. Thanks to Lemma 2.14 we can find 1 sums of consecutive
fi spanning a supersmooth subspace SI of L and adding to ~. Similarly there are u
sums of consecutive rj spanning a supersmooth subspace S2 of R and adding to r.
Let RI, R2 be the right cells corresponding to S1, S2 and let {Si}, {S’i} be the sets
of subspaces produced as above from the intersections C n R1, C n R2. Enumerate
the subspaces Si that are conjugate under HF to subspaces Sj as S"1, S2 , .... Using
Theorem 2.12, we see that all but one of the subspaces SI’ lies inside submodules
of complexity less than m, whence we can inductively identify these submodules.
The unique exceptional SI’ lies in J, and now we can say that an arbitrary subspace
S lies in J if and only if it is conjugate under HF to this subspace Si’. Thus we can
’place’ all the subspaces 8 arising in the first part of the argument, and this suffices
to complete the proof. D

Actual computations of course become quite tedious as soon as k is large,
but one should note that the recipes in [9] and [10] enable one to evaluate the

operators T,,3, S03B103B2, SD directly on ordered pairs of standard domino tableaux,
without passing to Weyl group elements. We hope to pursue the applications of
Theorem 4.3 in a future paper; for now we mention just two of them. First, it

is clear that this theorem puts severe and explicit constraints on the behavior of
the Jacquet functor from a double cell of simple Harish-Chandra modules over a
classical real reductive group to a right cell in W, since Casian and Collingwood
have shown that this functor may be viewed as a Hecke module map. For example,
Collingwood has shown that this functor takes a certain 14-dimensional double
cell of SO(6,2) to a certain 10-dimensional right cell of W4. Using Theorem 4.3,
one can show that the range of this map is the unique 8-dimensional submodule
of this right cell, corresponding to the 8-dimensional special representation of W’4;
the theorem also provides a basis of this submodule. (One can identify the functor
in this case with a map TD mentioned above.) Second, one can now attempt to
relate the Kazhdan-Lusztig bases of irreducible Q-representations of Wn and W’n
provided by Theorem 4.3 to other bases worked out much earlier by Young and
Frame. The paper [12] does this for W = Sn, where the left cells are already
irreducible. We also remark that Lusztig has attached a different basis to every
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simple left HF-module M (for arbitrary finite or affine W) which shows that M
admits a W-graph but which does not decompose left cells into their constituents
[29].

5. Applications to the asymptotic Hecke algebra

In this section we will be working not with H but with a remarkable Z-form of
(a completion of) it, which is also a Z-form of the group algebra QW. This was
discovered by Lusztig; following him, we call it the asymptotic Hecke algebra and
denote it by J. Like H, this algebra has a canonical basis {tw} (this time over Z)
indexed by W, but the behavior of the tw under multiplication is much simpler than
that of the Cl. Indeed, if C is a left (resp. right, two-sided) cell of W, then the span
Je of the tw for w e C is a left (resp. right, two-sided) ideal of J, notjust a quotient
of ideals as for H. Moreover, if we write txty = E cx,y,ztz-1 for x, y E W, then
the structure constants cx,y,z lie in N. As in the Benson-Curtis-Lusztig theorem, the
isomorphism between J ~Z Q and QW is complicated to write down; it does not
just send tw to Cw. For all of these facts and the precise definition of multiplication
in J, see Lusztig’s papers [25, 27, 28, 29], which also treat the case of affine Weyl
groups W. For our purposes the main facts about J are the following ones. Given
left cells C , C that are isomorphic as W -modules and an element x of C-1 n C’,
any product tytx or txty is either zero or tz for some z. We have tytx ~ 0 if and
only if y e C, in which case z lies in the same left cell as x and the same right
cell as y. A similar result holds of course for txty. The main result of this section
shows how to compute z in terms of x and y. To state it, we need to extend the
definition of extended open cycles of one tableau relative to another in [8] slightly.
If the tableaux TI and T2 do not necessarily have the same shape, but are equivalent
under the relation ~ of Section 3 to tableaux T’1, T’2 which do have the same shape,
then the extended open cycles of Tl relative to T2 are defined to be those of Tl
relative to T2.
THEOREM 5.1. Retain the above notation and suppose that y E C, so that tytx =
tz. Then one can compute the left and right tableaux TL(z), TR(z) of z as follows.
Let d be the Duflo involution in C and let TL(y) (resp. TR(x)) be obtained from
TL(d) (resp. TR(d) = TL ( d ) ) by moving through the open cycles c1, ... , Ck (resp.
’CI 1 ... , c’m ). Let e1, ... , ek (resp. e’1, ... , e’m) be the extended open cycles containing
ci,..., ck (resp. Ci, - ...,c’m) relative to TL(x) (resp. to TR(y». Denote by U (resp.
U’) the union of the extended open cycles appearing an odd number of times in
the list e1, ... , ek (resp. e’1 ... , e’k). Then TL( z) (resp. TR(z)) is the right tableau
of E((TL(x), TL(y)); U, L) (resp. of E((TR(y), TR(x)); U’, L)), in the notation
of [8].

Proof. If x = d, then we know from [27] and [28] that z = y. In other words,
td is the unit element of the subring Je - 1 n c : = Jc -1 n Jc of J and the right Jc - i n c
module Jc is unital. In general, we know from Theorems 4.1 and 4.2 that we can
get from d to x via a sequence of maps T03B103B2, S03B103B2, SD and that this sequence of maps
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induces a left J-equivariant map from Jc to Jc, (by the definition of multiplication
in J and the equivariance of the induced map on [C]). So it suffices to compute
the effect of the maps T03B103B2, S03B103B2, SD on the level of domino tableaux. Garfinkle
has done this in [8] and [10]. Her recipes reduce in this situation to the ones in the
theorem. 0

There is a similar formula for txty whenever x satisfies the hypothesis of
Theorem 5.1. It can be proved in the same way, using the right H-equivariant
analogues of the maps T03B103B2, S03B103B2, SD. We will use these analogues below. Unfor-
tunately Theorem 5.1 falls far short of determining the multiplication table of J
completely. In a subsequent paper, we will adapt the ideas of this section to compute
all the structure constants cx,y,z.

COROLLARY 5.2. Fix a Cartan subalgebra b and a Borel subalgebra b of g
containing b. Let A E fj* be a dominant regular integral weight. For w E W,
denote by L(03C9·03BB) the simple module of highest weight w(A + 03C1) - p, where p
as usual is the half sum of the positive roots. Let x E W satisfy the hypothesis of
Theorem 5.1 and y be any other element of W . Then one can compute the socle of
the bimodule L(L(x · À), L(y . À)) of Ad g-finite maps from L( x . A) to L(y . A),
given a knowledge of the Duflo involution in C. This socle is simple or zero and is
nonzero if and only if y E C -1.

Proof. Begin by recalling the map w - w* introduced by Joseph in [18,
Appendix]; this map takes left cells to left cells, right cells to right cells, and Duflo
involutions to Duflo involutions. If we set c*x,y,z := cx.,y. ,z., then Joseph has
shown in [18, 4.8] that the multiplicity of the simple Harish-Chandra bimodule
with infinitesimal character (03BB,03BB) and Langlands parameter z in the given socle is
c* -1 ; here we wam the reader that the integers cx,y,z in [18] have the same
absolute value as the cx,y,z here, but can differ from the latter by a sign. (A for-
mula for this sign is given in [ 18, Appendix].) For the purposes of this proof only,
enlarge the domain of the map SD above by decreeing that it send wow to wou
whenever it sends w to u, where wo is the longest element of W (the other two
maps T03B103B2 and S03B103B2 already have this property). The definition in [18, Appendix]
then shows that the map w - w* commutes with the maps T03B103B2, S03B103B2, SD (since
these maps commute with left multiplication by wo). Hence the same sequence
of maps T03B103B2, Sa/3, SD taking the Duflo involution d of C to x-1 also takes d* to
x-1*, and similarly for y and z-1. Now the recipe for computing cx,y,z in Theorem
5.1 shows that c* x -1 ,y,z -1 = cx-1,y,z-1 and computes cx-1,y,z-1 in this situation. (In
fact, Joseph has shown that c*x,y,z = cx,y,z for any x, y, z e W.) The first assertion
follows; the second is an easy consequence of the first and the basic facts about the

Gx,y,z given above. 0

As with Theorem 5.1 there is of course a parallel formula for the socle of
B : = L(L(y·03BB),L(x·03BB)). The most important special case of Theorem 5.1 occurs
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when x and y both lie in C -1 ne for some left cell C ; then z also lies in C-1 ~C. More
precisely, Lusztig has shown in [28] that the tw for w E C -1 ~C form an elementary
abelian 2-group under multiplication, but he has not shown how to compute this
group structure explicitly. We can now do this, using standard tableaux. We already
know that td is the identity element of this group, where d is the Duflo involution
in C. Now let x, y be any elements in C -1 ~ C and TL ( x ) , TL(y) their left tableaux,
which coincide with their right ones. Suppose that TL(x), TL(y) are obtained from
the common left and right tableau TL(d) of d by moving through the open cycles
c 1, ... , Ck and c’1, ... , c’~, respectively. Then it follows from Theorem 5.1 that the
left tableau TL ( z ) is obtained from TL(d) by moving through those open cycles
appearing exactly once in the list ci,..., ck, c’1... , c§. Recall now that we remarked
after Theorem 2.12 that the set of representations in (C), which of course coincides
with the corresponding set for C-1&#x3E;, also has the natural structure of an elementary
abelian 2-group. In types B and C, each such representation corresponds to a unique
partition via the map 7r of Section 2; the resulting set of partitions consists exactly
of the tableau shapes of elements in C -1 fl C. Now it is not difficult to produce a
recipe for the group structure on this set of representations in terms of tableaux.
Indeed, one just follows the above recipe for the group structure on the set C -1 n C,
with one crucial exception: the identity element t in the group of representations
is the one whose tableau shape(= partition) is special, not the one whose tableau
shape coincides with that of the Duflo involution. (Already in type C2, one sees
that these two elements can differ.) Thus the tableau (shape) corresponding to t
plays the role of TL( d) above. If we regard the two group structures as living on
the same set (of tableaux, or tableau shapes), then they are conjugate to each other,
but not the same in general. In type D, as noted above, the map from C fl C-1 to
W can fail to be injective, so that the two group structures need not even live on
the same set.

The above special case of Theorem 5.1 can be further specialized, namely to
left cells C containing long elements ws of parabolic subgroups Ws of W. Any
such cell has ws as its Duflo involution [ 17, 4.2] and is often Lusztig in the sense of
Section 2 [3]. Thus Corollary 5.2 yields an explicit formula for the socle of
L(L(03C9· 03BB),L(y·03BB)) for any w, y e C ~ C-1. Translating this formula to a
dominant infinitesimal character singular on exactly the simple roots correspond-
ing to S, we obtain a formula for Soc L(L(w’· 03BB’),L(y’ · A’» valid for any
w’, y’ ~ W such that Ann L( w’ . A’) = Ann L(y’· À’) is a maximal ideal. More-
over, it tums out that the bimodule B : := L(L(03C9’ · A’), L(y’ . A’» coincides
with its socle [32, 4.1] and can be interpreted as a tensor product over U(g)/I
of two simple Harish-Chandra bimodules with the same maximal left and right
annihilator I. We thus obtain

THEOREM 5.3. For any infinitesimal character M, the set of simple Harish-
Chandra bimodules with maximal left and right annihilator It, of infinitesimal char-
acter y form an elementary abelian 2-group under tensor product over U (g) / Im.
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The group structure is explicitly computable on the level of domino tableaux oj
Langlands parameters.

The first assertion of this result was proved for special unipotent infinitesimal
characters y by Barbasch and Vogan [4] and later generalized by Barbasch to
arbitary Il [1], making heavy use of the techniques of [4]. Later Joseph [19]
showed how to obtain it more elegantly using the calculations in [23] and [28].
Barbasch’s proof however does have one advantage over Joseph’s in that it yields
an explicit (but rather complicated) inductive recipe for the group structure on
the level of Langlands parameters. The contribution of the present paper is to
simplify this recipe considerably by using domino tableaux. We mention that the
techniques of [4] and [19], unlike the ones in this paper, extend beyond the case
of classical g. They show that for any infinitesimal character y in any semisimple
Lie algebra g, with two families of exceptions [2], the simple Harish-Chandra
bimodules of maximal left and right annihilator I03BC tensor over U(g) /Ip like the
irreducible characters (not elements) of a finite group A, which is a direct product
of elementary abelian 2-groups (and nothing else in the classical case) and copies
of the symmetric groups S3, S4, S5. Again the techniques of [4], unlike those of
[ 19], yield explicit formulas on the level of Langlands parameters; we do not know
how to simplify them. In [28], Lusztig has generalized this result by determining
the ring structure of JC-1~C for any left cell C (not necessarily containing the long
element of a parabolic subgroup). His methods do not give explicit formulas for
multiplying the iw.

Of course a major drawback of Theorem 5.1 is that it requires a knowledge of
the Duflo involution in the left cell C before it can be applied. Although there is
a simple criterion for deciding when a tableau has special shape [7], there is no
analogous rule for determining the tableau shape of the Duflo involution in a left
cell. We therefore conclude the paper with the following useful result.

THEOREM 5.4. As d runs over the Duflo involutions in W, the shape of TL(d)
depends only on the module structure of the left or right cell to which d belongs,
not on the cell itself.

Proof. Any map X := Ta(3, S03B103B2, or SD has a ’right analogue’ T!’(3’ SR03B103B2, or
sE which sends w-1 to u-1 whenever X sends w to u. The maps X R cannot
be implemented on simple highest weight modules by translation functors, but
they can be implemented on Harish-Chandra bimodules for the complex group
by right translation functors. Now apply a typical composition X o X R to the
bimodule L : = L(L(d·03BB),L(d·03BB)), where as above A is a dominant regular
integral infinitesimal character and d is a Duflo involution. One obtains a bimodule
of the form L’ : == L(L(d’ · À’), L(d’ · A’», where A’ is a different integral infinites-
imal character (no longer regular) and d’ = X o XR(d) is an involution not yet
known to be Duflo. But now the exactness of X o X R forces it to send the unique
simple subbimodule of L to that of L’. These subbimodules have the Langlands
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parameters d, d’, so d’ is indeed a Duflo involution. Since we know from
Theorem 4.2 that we can get from any left cell to any other with the same
module structure via sequence of maps X, it follows that the same sequence of
maps X o X R takes the Duflo involution of the first cell to that of the second.
Now Garfinkle has shown how to compute any map X on the level of domino
tableaux [8, 10]. It follows from her recipes and the fact that TL(w), TR(w)
have the same shape for any w E W that any map X o X R preserves tableau
shapes. The result follows. p

One also has a weaker result for left cells Cl , C2 with C2 obtained from CI by
a map T03B103B2 or TD as in Section 4; then knowledge of the Duflo involution of Ci
determines that of C2 up to a list of two candidates ([17, 5.7], [35]).
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