COMPOSITIO MATHEMATICA

HUASHI XIA

Degenerations of moduli of stable bundles over algebraic curves

Compositio Mathematica, tome 98, nº 3 (1995), p. 305-330 <http://www.numdam.org/item?id=CM_1995__98_3_305_0>

© Foundation Compositio Mathematica, 1995, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Degenerations of moduli of stable bundles over algebraic curves

HUASHI XIA

School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Received 27 September 1993; accepted in final form 28 July 1994

0. Introduction

Let X be a smooth projective curve of genus $g \ge 2$ over C. For an odd integer d, let M(2, d) (resp. $M(2, \xi)$) denote the space of isomorphism classes of rank two semistable bundles of degree d (resp. degree d with determinant ξ), which is nonsingular and projective. Consider a family of smooth projective curves X_t degenerating to a singular one X_0 . Then the space $M_t(2, d)$ (resp. $M_t(2, \xi_t)$) over X_t will subsequently degenerate to a variety $M_0(2, d)$ (resp. M_0). This limit moduli is in no way canonical, depending on what objects over X_0 to be considered. One way to construct such a $M_0(2, d)$ (resp. M_0) is to use torsion free sheaves over the singular curve X_0 , as studied by Newstead [8] and Seshadri [11]. Another, introduced by Gieseker [4], utilizes vector bundles over X_0 , together with bundles over certain semistable models of X_0 . The second method has certain advantages. Indeed, when X_0 is an irreducible curve with a single node, Gieseker has constructed the moduli $M_0(2, d)$ which is irreducible and has only normal crossing singularities.

In this paper we continue Gieseker's work to study the limit of $M_t(2, d)$ and $M_t(2, \xi_t)$ when X_0 consists of two smooth irreducible components meeting at a simple node. Assume that X_0 is obtained by identifying $p \in X_1$ and $q \in X_2$. We first show (Section 1) that the resulting $M_0(2, d)$ has also two smooth irreducible components, intersecting transversally along a divisor (Remark 1.4). Next we prove (Corollary 1.6) that the same is true for M_0 (which will be our main object of study). Denote the two components of M_0 by W_1 and W_2 . Then, by interpreting a point in M_0 in terms of semistable bundles over X_1 and X_2 , we explicitly build up two smooth projective varieties U_1 and U_2 from the moduli spaces of semistable bundles over X_1 and x_2 (Sections 2 and 3). The natural maps $\alpha_i: U_i \to W_i$ (i = 1, 2) turn out to be locally free \mathbf{P}^1 -bundles (Theorems 3.6 and 5.1). Finally, these maps α_i enable us to derive certain properties of W_i , especially the corresponding degeneration of the generalized theta divisor Θ_t in $M_t(2, \xi_t)$ (Theorems 3.15 and 5.3).

The construction of U_1 and U_2 is based on a proposition (Proposition 1.1) that relates Hilbert semistability of a bundle E on X_0 to the semistability of the restrictions $E|_{X_1}$ and $E|_{X_2}$. (For the definition of Hilbert semistability, see [5].) It states that a vector bundle E of degree d over X_0 is Hilbert semistable if and only if $E_i =$ $E|_X$ are semistable with appropriate degrees $(d_1, d_2) = (\deg(E_1), \deg(E_2))$. There are two choices for such (d_1, d_2) for odd d, corresponding to the fact that M_0 has two components W_1 and W_2 . Suppose W_1 corresponds to one of the choices $(d_1, d_2) = (e_1, e_2)$, and assume $(e_1, e_2) = (-1, 0)$ for simplicity. Let B be a generic bundle in W_1 , and write $det(B|_{X_1}) = \xi$ and $det(B|_{X_2}) = \eta$. Denote by $M_{i,\sigma}$ the moduli of rank two semistable bundles with determinant σ over X_i . There exists a universal bundle E over $X_1 \times M_{1,\xi}$, but none over $X_2 \times M_{2,\eta}$ [9]. However, starting from a universal bundle F' over $X_2 \times M_{2,n(q)}$, we can use the Hecke operation to produce a family of semistable bundles F over X_2 with determinant η , parameterized by $N_2 = \mathbf{P}(F_q^{\prime*})$. This operation is defined as follows. A point t in N_2 corresponds to a pair (G, γ) , where G is a bundle in F' and γ is a quotient $G_a \to \mathcal{O}_a \to 0$. The bundle F_t is then the modification $\operatorname{Ker}(G \xrightarrow{\gamma} \mathcal{O}_a)$. Since G is stable with det(G) = $\eta(q)$, F_t is semistable with determinant η . Now a Hilbert semistable bundle over X_0 can be obtained by gluing a bundle B_1 in $M_{1,\xi}$ with a bundle B_2 in N_2 along the two fibers $B_{1|p}$ and $B_{2|q}$. This allows us to construct a projective bundle $V_1 = \mathbf{P}(\text{Hom}(E_p, F_q)) \rightarrow M_{1,\xi} \times N_2$, where E and F are pullbacks to $X_i \times M_{1,\xi} \times N_2$. V_1 contains all the gluing data, hence there is a natural rational map $\alpha: V_1 \to W_1$. The locus $Z_1 \subset V_1$ where α is not defined comes from the strictly semistable bundles parameterized in N_2 . Indeed, if a family of gluing data degenerates to a rank one map $\phi_0: B_{1|p} \to B_{2|q}$, the cokernel of ϕ_0 provides a quotient $\gamma_0: B_{2|q} \to \mathcal{O}_q \to 0$. To produce a Hilbert semistable bundle, we need to modify B_2 again by γ_0 . When γ_0 coincides with a semistabilizing quotient of B_2 , the modification will be an unstable bundle over X_2 , which will subsequently give a bundle which is not Hilbert semistable.

To describe Z_1 , we further assume that $g_1 = 1$ for simplicity. So $M_{1,\xi}$ is a single point. Let L be a Poincare bundle over $X_2 \times J_2, J_2 = \text{Jac}(X_2)$, and $p_J: X_2 \times J_2 \to J_2$ the second projection. Let $H = R^1 p_{J_*}(L^2(-q \times J_2))$ and consider $\mathbf{P}(H) \xrightarrow{\nu} J_2$. A point in $\mathbf{P}(H)$ over $j \in J_2$ represent a nontrivial extension of j^{-1} by j. Thus $\mathbf{P}(H)$ parameterizes a family of nontrivial extensions given by the bundle \mathcal{E} over $X_2 \times \mathbf{P}(H)$:

$$0 \to \nu^{\#}L \otimes p_{2}^{*}\tau_{\nu}^{*} \to \mathcal{E} \xrightarrow{\beta} \nu^{\#}(L^{-1}(q \times J_{2})) \to 0,$$

where τ_{ν} denotes the tautological subline bundle of $\nu^* H$, $p_2: X_2 \times \mathbf{P}(H) \to \mathbf{P}(H)$, and $\nu^{\#} = (1 \times \nu)^*$. \mathcal{E} defines a map $\mathbf{P}(H) \xrightarrow{\alpha_h} M_{2,\xi}$, which lifts to a map $\psi_0: \mathbf{P}(H) \to N_2$. The lifting is induced by a bundle \mathcal{E}' (plus certain quotient) over $X_2 \times \mathbf{P}(H)$, given by the following extension:

$$0 \to \nu^{\#}L \otimes p_{2}^{*}\tau_{\nu}^{*} \to \mathcal{E}' \to \nu^{\#}L^{-1} \to 0,$$

which is a modification of the previous one by a natural quotient. \mathcal{E}' is a family of strictly semistable bundles, and $\psi_0(\mathbf{P}(H)) \subset N_2$ will be the strictly semistable locus in N_2 . Let E be the pullback of E and consider $\pi_h: Z_h = \mathbf{P}(\operatorname{Hom}(E_p, (\nu^{\#}L \otimes p_2^*\tau_{\nu}^*)_q) \to \mathbf{P}(H)$. Then Z_h admits a map ψ_h to V_1 , and $Z_1 = \psi_h(Z_h)$. We verify that ψ_h is actually an embedding.

Let T_1 be the preimage in Z_h of the locus where \mathcal{E}' is an extension of line bundles of order two. We then show that the induced map $Z_1 \to N_2$ ramifies along T_1 . Hence we first blow up T_1 , then blow up the strict transformation of Z_1 . These two blowings up will resolve the rational map α . The resulting morphism can be further blown down twice. The first is to blow down the strict transformation of the first exceptional divisor in another direction; the second is essentially to contract along the direction ν : $\mathbf{P}(H) \to J_2$. The final space we obtain is U_1 , and the natural map $U_1 \to W_1$ will be a locally free \mathbf{P}^1 -bundle. The construction for U_2 and the natural map α_2 : $U_2 \to W_2$ are similar.

1. Moduli of Hilbert semistable bundles and geometric realizations

Let X_1 and X_2 be two smooth projective curves of genus $g_1 \ge 1$ and $g_2 \ge 1$ with fixed points $p \in X_1$ and $q \in X_2$ respectively. Assume that $\pi: X \to C$ is a family of curves of genus $g \ge 2$ with both X and C smooth and projective, such that for some $0 \in C, X_0 = \pi^{-1}(0)$ is the singular curve with one node, obtained by identifying $p \in X_1$ with $q \in X_2$, but for $0 \ne t \in C, X_t = \pi^{-1}(t)$ is smooth. As mentioned in the introduction, we will use the theory of Hilbert stability, developed by Gieseker-Morrison [5], to construct a moduli $M_0(2, d)$ over X_0 . Such $M_0(2, d)$ respects the degeneration of the curves X_t , and a generic point in it represents a Hilbert semistable bundle over X_0 .

Points in $M_0(2, d)$ are characterized by the following two propositions. They can be verified, in one direction, through computations analogous to those carried out in the end of [5], and in the other, by arguments parallel to ([4], Proposition 3.1). Let $X'_0 = X_1 \cup X_2 \cup \mathbf{P}^1$ such that $X_1 \cap \mathbf{P}^1 = p, X_2 \cap \mathbf{P}^1 = q$, and no other intersections. Write $c_i = \frac{2g_i-1}{2(g-1)}d$ and assume d is large.

PROPOSITION 1.1 (Bundles of Type I). A rank two bundle E of degree d over X_0 is Hilbert semistable if and only if

(i) for
$$i = 1, 2, E_i = E_{|X_i|}$$
 is semistable over X_i , and
(ii) $d_i = \deg(E_i)$ satisfies the inequality $c_i - 1 \le d_i \le c_i + 1$.

PROPOSITION 1.2 (Bundles of Type II). A rank two bundle E' of degree d over X'_0 is Hilbert semistable if and only if

- (i) $E'_{|\mathbf{p}|} = \mathcal{O} \oplus \mathcal{O}(1)$, and for $i = 1, 2, E'_i = E'_{|X_i|}$ is semistable,
- (ii) $d'_i = \deg(E'_i)$ satisfies the inequality $c_i 1 \leq d'_i \leq c_i$, and

(iii) E' has the following property: E'_1 (resp. E'_2) has no semistabilizing quotient identified with the trivial quotient of $E_{\mathbf{P}^1}$ over p (resp. q).

PROPOSITION 1.3. There exists a smooth projective variety M(2, d) and a map $M(2, d) \xrightarrow{\varpi} C$, such that $\varpi^{-1}(t) = M_t(2, d)$ for all $t \neq 0$, and $M_0(2, d) = \varpi^{-1}(0) \subset M(2, d)$ is a divisor with normal crossing singularities. *Proof.* All arguments in ([4], Sect. 4) hold true for our context.

REMARK 1.4. Since d is odd and $d_1 + d_2 = d$, (d_1, d_2) has exactly two solutions by Proposition 1.1. So the moduli space $M_0(2, d)$ has two components, denoted by $W_i(2, d), i = 1, 2$. Because the inequalities in both propositions are strict for odd d, every Hilbert semistable bundle over X_0 or X'_0 is actually Hilbert stable (which will be simply referred to as stable). Bundles of Type I constitute a Zariski open subset of each component, and those of Type II correspond to the boundary. $W_1(2, d)$ and $W_2(2, d)$ naturally glue along these boundaries to form $M_0(2, d)$, since the boundary points in both $W_1(2, d)$ and $W_2(2, d)$ have the same degree distribution by Proposition 1.2 and since X'_0 has two ways to deform to X_0 by smoothing away the two nodes separately. Furthermore, the normal crossing property implies that $W_1(2, d)$ and $W_2(2, d)$ are smooth along the boundaries. Since $W_i(2, d)$ (i = 1, 2) are clearly smooth away from the boundaries, they are smooth everywhere.

FIXING DETERMINANTS

Let (e_1, e_2) and (h_1, h_2) be the two choices for (d_1, d_2) . Then $|e_i - h_i| = 1, i = 1, 2$. One can assume $e_1 = h_1 - 1$ and $e_2 = h_2 + 1$, and arrange $W_1(2, d)$ to correspond to (e_1, e_2) and $W_2(2, d)$ to (h_1, h_2) . Let J_i^k be the k-th Jacobian of X_i , i = 1, 2.

PROPOSITION 1.5. There exists a natural surjective map det₁ : $W_1(2, d) \rightarrow J_1^{e_1} \times J_2^{e_2}$ (resp. det₂ : $W_2(2, d) \rightarrow J_1^{h_1} \times J_2^{h_2}$), and all the fibers of det₁ (resp. det₂) are isomorphic.

Proof. Suppose $E \in W_1(2, d)$. If E is of Type I, then define $det_1(E) = (det(E_1), det(E_2))$. If E is of Type II, define $det_1(E) = (det(E_1), det(E_2)(q))$. One sees that det_1 is a morphism. Assume now M_1 and M_2 are two fibers of det_1 and let M_1° and M_2° be their Type I loci. One finds a line bundle L over X_0 which induces a map $M_1^{\circ} \to M_2^{\circ}$ by assigning to $E \in M_1^{\circ}$ the bundle $E \otimes L \in M_2^{\circ}$. This map can be extended to Type II bundles by similarly tensoring L', where L' is the pull back of L to X'_0 through the standard map $X'_0 \to X_0$. One checks that the resulting map $M_1 \to M_2$ is an isomorphism. The surjectivity follows from Proposition 1.1. The claims for det_2 are derived by parallel arguments.

COROLLARY 1.6. The fibers of det₁ (resp., det₂) are smooth and transversal to the Type II locus of $W_1(2, d)$ (resp., $W_2(2, d)$). Hence $M_0 = W_1 \cup W_2$, with W_i smooth and meeting transversally along the divisor of Type II bundles. Here M_0 and W_i are as in the introduction. *Proof.* This follows directly from the smoothness of $W_1(2, d)$ (resp. $W_2(2, d)$), $J_1^{e_1} \times J_2^{e_2}$ (resp. $J_1^{h_1} \times J_2^{h_2}$), and the Type II loci.

We assume e_1 is odd in the sequel for convenience. Then e_2 is even, and the bundle E_2 (resp. E_1) as in Proposition 1.1 is semistable (resp. stable). Divide Type I into three classes:

 $I_{st}: E_2$ is stable. $I_{sp}: E_2 = L \oplus M$, where L and M are line bundles of degree $e_2/2$. $I_{ns}: E_2$ is a nontrivial extension: $0 \to L \to E \to M \to 0$, with L and M as above.

GEOMETRIC REALIZATIONS

The construction of the spaces U_1 and U_2 employs the method of geometric realization introduced in [4], which we now review and modify in order to serve our context. Let S be a smooth curve and $R \in S$ a fixed point. Let E and F be two vector bundles over S. Call an isomorphism ϕ from E to F over $U = S \setminus R$ a rational isomorphism. For such a ϕ , there is a unique $r \in \mathbb{Z}$ so that ϕ induces a morphism $\phi': E(rR) \to F$ which is nonzero at R. There also exists a unique $s \in \mathbb{Z}$ so that $(\operatorname{coker}(\phi'))_R = \mathcal{O}_R/m_R^s$. We say (r, s) is the type of ϕ .

Now suppose that E (resp. F) is a rank two bundle over $X_1 \times S$ (resp. $X_2 \times S$), which is a semistable family of degree e_1 (resp. e_2) over X_1 (resp. X_2). Let ϕ be a rational isomorphism of type (r, s) between $E_p = E_{|p \times S}$ and $F_q = F_{|q \times S}$. Then $\phi: (E_p)_{|U} \cong (F_q)_{|U}$ glues E_U to F_U to yield a stable family of Type I bundles over X_0 , parameterized by U. We will extend this U-family to a stable S-family; the latter is called the geometric realization of ϕ . (When dim S > 1 and $U \subset S$ a Zariski open subset, we will also refer to each step of extending the stable U-family as a geometric realization.) Notice that we may assume r = 0, since we can always replace the family E by $E \otimes \mathcal{O}_{X_1 \times S}(r(X_1 \times R))$ when performing the geometric realization. One notational remark: If E is a vector bundle over $X \times T$, then $E_Y = E_{|Y \times T}$ and $E_V = E_{X \times V}$ for $Y \subset X$ and $V \subset T$.

LEMMA 1.7 (Case (0, 1)). Suppose s = 1. One then has an exact sequence $0 \to E_p \xrightarrow{\phi} F_q \xrightarrow{\beta} Q_R \to 0$. Distinguish two subcases:

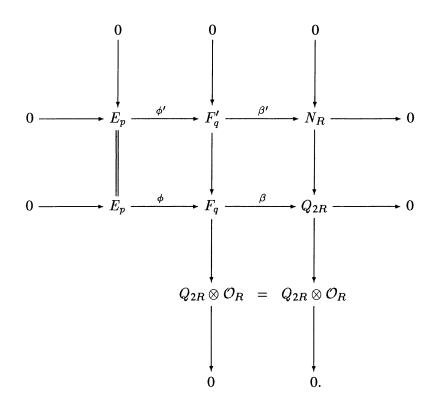
- (a) If F_R has no semistabilizing quotient coinciding with $\beta|_R$, then the geometric realization of ϕ gives a bundle of Type II at $R \in S$.
- (b) If F_R has a semistabilizing quotient $F_R \to M \to 0$ coinciding with $\beta|_R$, then the geometric realization of ϕ gives a bundles of Type I at $R \in S$.

Proof. (b) Modify F by the $(X_2 \times R)$ -supported $M: 0 \to F' \to F \to M \to 0$. Then $F'_q \cong \ker(F_q, Q_R)$, which provides an isomorphism $\phi': E_p \cong F'_q$. Using ϕ' as decent data, one produces a stable family of Type I bundles over X_0 , since F'_R is evidently semistable.

(a) Blow up $X_2 \times S$ at $q \times R$ to form a surface $X': X' \xrightarrow{\pi} X_2 \times S$. Let $D_2 = \pi^{-1}(q \times R)$, and let X_2 and $\overline{q \times S}$ be the proper transformations of $X_2 \times R$ and $q \times S$ respectively. Modify $\pi^*(F)$ by $\pi^*(Q_R)$ over $X': 0 \to F' \to \pi^*(F) \to \pi^*(Q_R) \to 0$, where $\pi^*(Q_R) = \mathcal{O}_{D_2}$. Write $F'_q = F'|_{\overline{q \times S}}$. Then $F'_q \cong \ker(F_q, Q_R)$, whence $\phi': E_p \cong F'_q$. Since $F'_{|D_2} = \mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1}(1)$ and $F'_{|X_2}$ is stable, gluing E and F' through $\phi': E_p \cong F'_q$ forms a stable family over S, whose fiber over R is clearly of Type II.

LEMMA 1.8 (Case (0, 2)). Suppose s = 2. Then one has an exact sequence: $0 \rightarrow E_p \stackrel{\phi}{\rightarrow} F_q \stackrel{\beta}{\rightarrow} Q_{2R} \rightarrow 0$. Suppose F_R has a semistabilizing quotient $F_R \rightarrow M \rightarrow 0$ coinciding with $\beta \otimes \mathcal{O}_R$. Then it reduces to the case (0, 1).

Proof. Modify F by the $(X_2 \times R)$ -supported M to attain $F': 0 \to F' \to F \to M \to 0$. Then F'_q fits in the diagram:



Hence replacing F by F' transfers the problem to the geometric realization of ϕ' in the first row, which is of type (0,1).

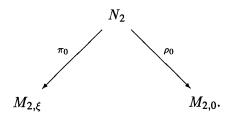
REMARK 1.9. Lemmas 1.7 and 1.8 work for the derivation of U_1 , due to the choice of degrees. If one starts with the pair (h_1, h_2) , the only modification one needs is to interchange the roles of X_1 and X_2 .

2. Basic constructions

Let X_1 and X_2 be as in the setting of Section 1 and let A be a line bundle over Xover C such that for any $t \neq 0$, deg $(A_t) = d$, where $A_t = A_{|X_t}$. For the clarity of exposition, we assume $e_1 = -1$ and $e_2 = 0$, since one can conveniently translate the construction to appropriate (e_1, e_2) by tensoring line bundles. So deg $(A_t) = -1$ for any $t \in C, t \neq 0$. We choose A such that $A_{0|X_1} = \mathcal{O}_{X_1}(-p)$ and $A_{0|X_2} = \mathcal{O}_{X_2}$. Let the corresponding component in M_0 be W_1 . Now modify A over X by $A_0|_{X_1}$ to produce a new line bundle $A': 0 \to A' \to A \to A_0|_{X_1} \to 0$, so that $A'_0|_{X_1} = \mathcal{O}_{X_1}$ and $A'_0|_{X_2} = \mathcal{O}_{X_2}(-q)$. Then the corresponding component in M_0 is W_2 .

This section is the first step to establish U_1 and U_2 under the above assumptions. We will focus on U_1 , since the same construction works for U_2 (see Remark 2.14). We will work on the case $g(X_1) = 1$ and $g(X_2) = g > 1$; other cases can be obtained by easy generalization. Hence we assume that E' stands for the unique stable rank two bundle over X_1 with det $(E') = A_{0|X_1}$.

Denoting $A_{0|X_2}(q) = \mathcal{O}_{X_2}(q)$ by ξ , one has a moduli space $M_{2,\xi}$ of rank two stable bundles over X_2 with determinant ξ . Choose a Poincare bundle F'over $X_2 \times M_{2,\xi}$ such that $\det(F'_q)$ is the ample generator of $\operatorname{Pic}(M_{2,\xi})$. Consider $N_2 = \mathbf{P}(F'_q) \xrightarrow{\pi_0} M_{2,\xi}$. Then one obtains a vector bundle F through the following exact sequence over $X_2 \times N_2$: $0 \to F \to \pi_0^{\#}F' \to \tau_0^* \to 0$, with τ_0^* supported at $q \times N_2$. Here τ_0^* is the dual of the tautological subline bundle of $\pi_0^*(F'_q)$. Since F' is a stable family, F represents a family of semistable bundles over X_2 , parameterized by N_2 . Moreover, $\det(F_v) = \mathcal{O}_{X_2}$ for all $v \in N_2$. Hence F defines a map $\rho_0: N_2 \to M_{2,0}$, where $M_{2,0}$ denotes the moduli space of rank two semistable bundles over X_2 with trivial determinant (modulo S-equivalence). The two maps π_0 and ρ_0 are related as in the following diagram:



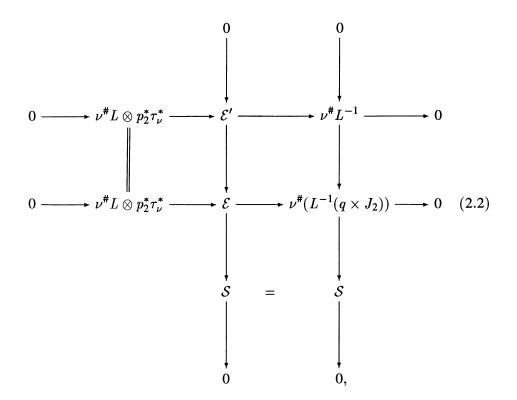
Write $E = \pi_{X_1}^* E'$, where $\pi_{X_1} \colon X_1 \times N_2 \to X_1$ is the first projection. Introduce $V_1 = \mathbf{P}(\operatorname{Hom}(E_p, F_q)) \xrightarrow{\pi_1} N_2$, and let τ_1 be the tautological subline bundle. One then has an exact sequence over V_1 :

$$0 \to \pi_1^* E_p \otimes \tau_1 \xrightarrow{\phi_1} \pi_1^* F_q \xrightarrow{\beta_1} Q_D \to 0, \qquad (2.1)$$

with D the rank dropping locus of $\phi_1: \mathcal{O}(D) = \bigwedge^2 \phi_1$.

We want to determine the subvariety $Z_1 \subset V_1$ at which the geometric realization of ϕ_1 produces unstable bundles. Notice that a point $z \in V_1$ belongs to Z_1 if and only if $\beta_1|_z$ results from the restriction to $q \times z$ of a semistabilizing quotient $(\pi_1^{\#}F)_z \to M \to 0$. Thus to understand Z_1 , we first need to locate the strictly semistable bundles in the family F.

Let L be a Poincare bundle over $X_2 \times J_2$, $J_2 = \operatorname{Jac}(X_2)$, and $p_J: X_2 \times J_2 \to J_2$ the second projection. Consider $H = R^1 p_{J_*}(L^2(-q \times J_2))$ and $\mathbf{P}(H) \xrightarrow{\nu} J_2$. A fiber $\mathbf{P}(H_j) = \mathbf{P}(H^1(X_2, j^2(-q)))$ over any $j \in J_2$ represents all nontrivial extensions: $0 \to j \to * \to j^{-1}(q) \to 0$. All such are accommodated in a universal extension over $X_2 \times \mathbf{P}(H): 0 \to \nu^{\#}L \otimes p_2^* \tau_{\nu}^* \to \mathcal{E} \xrightarrow{\beta} \nu^{\#}(L^{-1}(q \times J_2)) \to 0$, where τ_{ν} denotes the tautological subline bundle of ν^*H , and $p_2: X_2 \times \mathbf{P}(H) \to \mathbf{P}(H)$ the second projection. \mathcal{E} is a family of triangular bundles [7], parameterized by $\mathbf{P}(H)$. It supplies a map $\mathbf{P}(H) \xrightarrow{\alpha_h} M_{2,\xi}$, and a lifting $\psi_0: \mathbf{P}(H) \to N_2$. To define the lifting, it suffices to observe that for every $u \in \mathbf{P}(H)$, \mathcal{E}_u is a stable bundle endowed with a linear form $\beta_{|q \times u}$ on $\mathcal{E}_{|q \times u}$. One can describe the map ψ_0 in more detail. Notice that a point $(E, \gamma: E \to \mathcal{O}_q \to 0)$ in N_2 can be interpreted equivalently as a semistable bundle F plus a quotient $\beta: F \to \mathcal{O}_q \to 0$, where Fis the modification of E by γ and β is the canonical quotient corresponding to γ . Define a family \mathcal{E}' over $X_2 \times \mathbf{P}(H)$ through the following diagram:



where $S = \nu^{\#}(L^{-1}(q \times J_2))|_{q \times \mathbf{P}(H)}$. Consider the canonical quotient $\mathcal{E}' \to \mathcal{T} \to 0$ corresponding to $\mathcal{E} \to S \to 0$. Then the map ψ_0 is induced from \mathcal{E}' plus the quotient $\mathcal{E}' \to \mathcal{T}$.

Evidently, \mathcal{E}' is a family of strictly semistable bundles, and $\mathcal{E}' = \psi_0^{\#} F$. Further, Lemma 7.3 of [7] claims that $\psi_0(\mathbf{P}(H)) \subset N_2$ is isomorphic to the strictly semistable locus in N_2 .

Let $E_h = \pi_{X_1}^* E'$, where π_{X_1} is the first projection $X_1 \times \mathbf{P}(H) \to X_1$, and let $\pi_h: Z_h = \mathbf{P}(\operatorname{Hom}((E_h)_p, (\nu^{\#}L \otimes p_2^*\tau_{\nu}^*)_q) \to \mathbf{P}(H)$. Then Z_h admits a map ψ_h to V_1 , and the destabilizing locus $Z_1 = \psi_h(Z_h)$. We want to show that ψ_h is actually an embedding. The first row in (2.2) provides a section $\theta_h \in$ $H^0(\mathbf{P}(H), R^1 p_{2*}(\nu^{\#}L^2) \otimes \tau_{\nu}^*)$. The sheaf $R_{p_{2*}}^1(\nu^{\#}L^2)$ over $\mathbf{P}(H)$ is locally free of rank g - 1 away from $\nu^{-1}(j), j^2 = 0$, and locally free of rank g over such $\nu^{-1}(j)$. Lemma 7.4 of [7] asserts that θ_h is generic. More specifically, θ_h vanishes at a unique point s_j when restricted to the fiber $\nu^{-1}(j)$ for any $j, j^2 \neq 0$. Furthermore, the same lemma shows that $\psi_0: \nu^{-1}(j) \to N_2$ is an embedding for all j and $\psi_0(\nu^{-1}(j))$ meets $\psi_0(\nu^{-1}(j^*))$ ($j^2 \neq 0$) at the unique point where θ_h vanishes. But s_j and s_{j^*} correspond to two distinct destabilizing quotients of the same bundle $\mathcal{E}'_{s_j} = \mathcal{E}'_{s_{j^*}}$. Thus when lifted to $V_1, \psi_h(\pi_h^{-1}(\nu^{-1}(j)))$ does not meet $\psi_h(\pi_h^{-1}(\nu^{-1}(j^*)))$. Moreover, there is no other intersections between the ψ_h -images of two fibers of $\nu \circ \pi_h$. Consequently, we have proved the following proposition.

PROPOSITION 2.3. The destablizing subvariety Z_1 in V_1 for the geometric realization of ϕ_1 is isomorphic to $Z_h \cong \mathbf{P}(H) \times \mathbf{P}^1$.

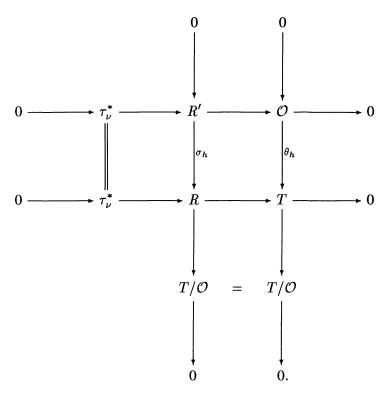
Before extending the morphism $V_1 \setminus Z_1 \to W_1$, we digress for a moment to describe the types of bundles parameterized by $V_1 \setminus Z_1$. By the above discussion, the zeroes of θ_h defines a section s of ν away from $j \in J_2, j^2 = 0$.

LEMMA 2.4. The schematic closure θ of s in $\mathbf{P}(H)$ is isomorphic to the blowing up of J_2 simultaneously at all points of order two. (So $\theta_n =: \theta \setminus s = \bigcup_{j \in J_2, j^2 = 0} \mathbf{P}_j^{g-1}$, where \mathbf{P}_j^{g-1} is the exceptional divisor over j.)

Proof. by functoriality $R^1 p_{2*}(\nu^{\#}L^2) = \nu^*(R^1 p_{J*}(L^2))$. Choose the Poincare bundle L over $X_2 \times J_2$ such that $L_q = \mathcal{O}_{J_2}$ for simplicity. Taking direct image of the exact sequence: $0 \to L^2(-(q \times J_2)) \to L^2 \to L_q^2 \to 0$ produces another one over $J_2: 0 \to \mathcal{O}_{J_2} \to R^1 p_{J*}(L^2(-(q \times J_2))) \to R^1 p_{J*}(L^2) \to 0$. Pulling back to $\mathbf{P}(H)$ then tensoring by τ_{ν}^* , one has

$$0 \to \tau_{\nu}^* \to \nu^*(R^1 p_{J_*}(L^2(-(q \times J_2)))) \otimes \tau_{\nu}^* \to \nu^*(R^1 p_{J_*}(L^2)) \otimes \tau_{\nu}^* \to 0.$$

Write $\nu^*(R^1p_{J_*}(L^2(-(q \times J_2)))) \otimes \tau_{\nu}^* = R$ and $\nu^*(R^1p_{J_*}(L^2)) \otimes \tau_{\nu}^* = T$. Then R is locally free of rank g and $T = R^1p_{2_*}(\nu^*L^2) \otimes \tau_{\nu}^*$. The section θ_h induces a diagram:



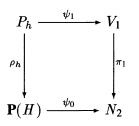
We claim that the nonlocally free support $\theta' = s \bigcup (\bigcup_{j \in J_2, j^2 = 0} \nu^{-1}(j))$ of T/\mathcal{O} is reduced and irreducible, hence isomorphic to J_2 blown up at all points of order two. Indeed, the above diagram says that θ' equals the first degeneracy locus associated to σ_h , and σ_h is locally represented by a $2 \times g$ matrix. But $\sigma_h|_{\tau_{\nu}^*} = \text{id}$ implies that this matrix takes the form

$\begin{bmatrix} 1\\ c_1 \end{bmatrix}$	0	•••	0]
c_1	c_2	•••	c_g

with respect to suitable bases. So θ' is cut out by at most (g-1) functions, so every component of θ' has dimension $\geq (2g-1) - (g-1) = g$. In particular θ' has no $\nu^{-1}(j)$ as component, since $\nu^{-1}(j)$ has dimension g-1. Thus θ' is irreducible, gdimensional, and Cohen-Macaulay [1]. It follows that θ' has no embedded components, hence is reduced along each $\nu^{-1}(j)$. This shows that θ' can be identified with the blown up of J_2 at all $j, j^2 = 0$. But the irreducibility of θ and the inclusion $\theta \subset \theta'$ immediately imply $\theta = \theta'$. For the mentioned description of types, we also need to form $P_h = \mathbf{P}(\operatorname{Hom}((E_h)_p, \mathcal{E}'_q)) \xrightarrow{\rho_h} \mathbf{P}(H)$. Then we have an exact sequence analogous to (2.1) over P_h :

$$0 \to \rho_h^*((E_h)_p) \otimes \tau_h \xrightarrow{\phi_h} \rho_h^*(\mathcal{E}_q') \xrightarrow{\beta_h} Q_{D_h} \to 0,$$
(2.5)

with τ_h the tautological subline bundle associated to ρ_h . There exists a natural lifting of ψ_0 to a map ψ_1 :



so that (2.5) is the pullback of (2.1) by ψ_1 .

Let $\Delta = \psi_1(P_h), \Theta = \pi_1(\rho_h^{-1}(\theta))$, and $\Theta_n = \psi_1(\rho_h^{-1}(\theta_n))$. Then, under the geometric realization of $\phi_1, D \setminus Z_1 \subset \text{II}, V_1 \setminus (D \cup \Delta) \subset I_{st}, \Delta \setminus (D \cup (\Theta \setminus \Theta_n)) \subset I_{ns}$, and $(\Theta \setminus \Theta_n) \setminus D \subset I_{sp}$.

Now we go back to resolve the rational map $V_1 \to W_1$. It will take two steps. First we blow up a subvariety $T_1 \subset Z_1$, then blow up the strict transformation of Z_1 . Write $T_j = \psi_h((\nu \circ \pi_h)^{-1}(j))$ for $j \in J_2$. Then $T_1 = \bigcup_{j \in J_2, j^2 = 0} T_j$.

LEMMA 2.6. T_1 can be characterized by the property that $d\psi_0$ fails to inject along $\pi_h(T_1)$. Moreover, ker $(d\psi_0)|_{T_1}$ is a line bundle over T_1 .

Proof. A point in $\mathbf{P}(H)$ gives a bundle E which is an extension $0 \to j \to E \to j^* \to 0$. The subline bundle j deforms infinitesimally inside E if and only if $H^0(X_2, j^2) \neq 0$, or $j^2 = 0$. This will imply that $d\psi_0$ drops rank along T_1 . The assertion that $\ker(d\psi_0)|_{T_1}$ is locally free of rank 1 is due to the fact that $H^0(X_2, j^2) = \mathbf{C}$ for $j^2 = 0$ (cf. Proposition 6.8, [7]).

Blow up V_1 along T_1 to achieve $V_2: V_2 \xrightarrow{\pi_2} V_1$. Let $T_2 = \pi_2^{-1}(T_1)$ and Z_2 be the proper transformation of Z_1 . The exact sequence (2.1) becomes: $0 \to E_p^{(1)} \to F_q^{(1)} \to Q_D^{(1)} \to 0$ when pulled back to V_2 . It induces an exact sequence:

$$0 \to E_p^{(1)} \xrightarrow{\phi_2} F_q^{(2)} \xrightarrow{\beta_2} Q_D^{(1)} \otimes \mathcal{O}_D(-T_2) \to 0.$$

$$(2.7)$$

Let Q' be the invertible $(X_2 \times T_1)$ -quotient $\pi_1^{\#}(F) \xrightarrow{\beta} Q' \to 0$ over $X_2 \times V_1$, such that $\beta|_{q \times T_1} = \beta_1|_{T_1}$. Let $Q_{X_2 \times T_2} = \pi_2^{\#}(Q')$. Then $F_q^{(2)}$ is the restriction to $q \times V_2$ of the bundle modification over $X_2 \times V_2$:

$$0 \to F^{(2)} \to F^{(1)} \to Q_{X_2 \times T_2} \to 0.$$
 (2.8)

To examine the geometric realization of ϕ_2 , one needs to inspect the splitting situation of $F^{(2)}$. We first state the following proposition.

PROPOSITION 2.9. The unstable locus in V_2 for the geometric realization of ϕ_2 is Z_2 .

The proof requires a lemma. Let $S_0 = \psi_0(\mathbf{P}(H)) \subset N_2$. Let F be the bundle specified in the beginning of this section. Let $u \in N_2$ represents a semistable bundle F_u which is an extension: $0 \to M \to F_u \to M^{-1} \to 0$ for some $M \in \text{Jac}(X_2)$. Suppose Y is a smooth curve in N_2 passing through u. Modify the family F_Y by $(X_2 \times u)$ -supported $M^{-1}: 0 \to F'' \to F_Y \to M^{-1} \to 0$.

LEMMA 2.10. If F''_u splits, then $T_{u,Y} \subset TC_{u,S_0}$, where TC denotes tangent cone.

Proof. Suppose F''_u splits. Then $F_Y \to M^{-1} \to 0$ lifts to a quotient $F_Y \to M' \to 0$, where M' is a line bundle over $X_2 \times Y_{\epsilon}$. Here $Y_{\epsilon} = \text{Spec}(\mathcal{O}_{u,Y}/m^2), m =$ the maximal ideal of $\mathcal{O}_{u,Y}$ at u. By the property of ψ_0 , the inclusion $Y_{\epsilon} \to N_2$ factors through $\mathbf{P}(H)$.

Proof of Proposition 2.9. Let $\pi_T = \pi_2|_{T_2}: T_2 \to T_1$, which is a \mathbf{P}^{2g} -bundle. Restricting (2.8) to $X_2 \times T_2$ suggests the following exact sequence:

$$0 \to Q_{X_2 \times T_2} \otimes \pi_T^{\#} \tau_T^{-1} \to F_{T_2}^{(2)} \xrightarrow{\beta_T} Q_{X_2 \times T_2}^{-1} \to 0,$$
(2.11)

where τ_T is the tautological line bundle associated to π_T . This extension defines a section $s \in H^0(T_2, R^1 p_{2*}(Q_{X_2 \times T_2}^2) \otimes \tau_T^{-1})$ over T_2 , where $p_2: X_2 \times T_2 \to T_2$ is the second projection. Clearly the sheaf $R^1 p_{2*}(Q_{X_2 \times T_2}^2)$ is locally free of rank g. We claim that the section s is generic. Indeed, since $R^1 p_{2*}(Q_{X_2 \times T_2}^2)$ is trivial along the fibers of $T_2 \to T_1$, zero(s) = \mathbf{P}^r -bundle over T_1 for some $r \ge g$. On the other hand, Lemmas 2.10 and 2.6 shows that $r \le g$ by dimension counting. Hence zero(s) = \mathbf{P}^g -bundle, which means s is generic. Observe that the extension (2.11) splits at $y \in T_2$ if and only if $y \in \text{zero}(s)$. Since the locus where β_T in (2.11) coincides with β_2 in (2.7) over a point in T_1 is of codimension one in the splitting locus zero(s), the coinciding locus G inside zero(s) is a \mathbf{P}^{g-1} bundle over T_1 . On the other hand, $\operatorname{codim}(T_1, Z_1) = ((2g - 1) + 1) - (g) = g$ implies that $Z_2 \cap T_2$ is also a \mathbf{P}^{g-1} -bundle over T_1 . The fact that $Z_2 \cap T_2 \subset G$ forces $Z_2 \cap T_2 = G$, confirming that G is identified with the exceptional divisor of Z_2 under π_2 . Therefore, the unstable locus for the geometric realization of ϕ_2 is exactly Z_2 .

Now blow up V_2 along Z_2 to create $V_3: V_3 \xrightarrow{\pi_3} V_2$. Let $Z_3 = \pi_3^{-1}(Z_2)$ and T_3 be the strict transformation of T_2 in V_3 . Pull back the exact sequence (2.7) to V_3 to yield another one:

$$0 \to E_p^{(2)} \stackrel{\phi_3}{\to} F_q^{(4)} \stackrel{\beta_3}{\to} Q_D^{(2)} \otimes \mathcal{O}_D(-T_3 - Z_3) \to 0.$$
(2.12)

PROPOSITION 2.13. ϕ_3 realizes stable bundles over the entire V_3 .

Proof. We need to analyze the splitting situation of $F^{(4)}: 0 \to F^{(4)} \to F^{(3)} \to Q_{X_2 \times Z_3} \to 0$, where $F^{(3)} = \pi_3^{\#} F^{(2)}$ and $Q_{X_2 \times Z_3}$ is interpreted similarly as $Q_{X_2 \times T_2}$ in (2.8). When restricted to $X_2 \times Z_3$, we derive an extension analogous to (2.11) and an $s' \in H^0(Z_3, R^1 p_{2*}(Q_{X_2 \times X_3}^2) \otimes \tau_Z^{-1})$ over Z_3 . Here $p_2: X_2 \times Z_3 \to Z_3$ is the second projection and τ_Z the tautological line bundle associated to $\pi_Z = \pi_3|_{Z_3}: Z_3 \to Z_2$.

First, we assume $y \in Z_2 \setminus T_2$. One argues as in Proposition 2.9 that the section s' is generic over such y. Since $R^1 p_{2*}(Q^2_{X_2 \times Z_3})$ is locally free of rank g-1 along the fiber over y, the splitting locus of $F^{(4)}$ in $\pi_Z^{-1}(y)$ equals a \mathbf{P}^1 . But the coinciding locus is of codimension two inside the splitting locus for such y, so it is empty. Thus $\phi_3|_{\pi_z^{-1}(y)}$ realizes stable bundles.

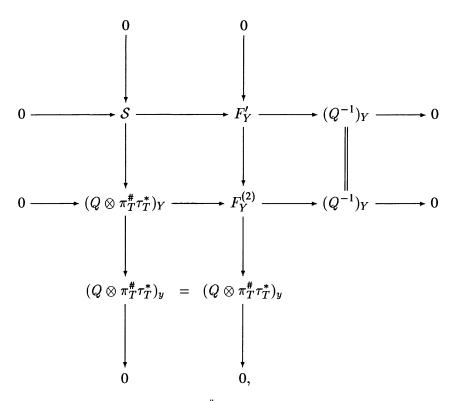
We now take $y \in Z_2 \cap T_2$. In order to understand $\operatorname{zero}(s')$ over such y, we study modifications of 1-dimensional family around y inside V_2 . Take any smooth curve $Y \subset V_2$ passing through y. Since $\operatorname{codim}(Z_2, V_2) = (3g + 1) - (2g) = g + 1 =$ $\operatorname{codim}(T_2 \cap Z_2, T_2), \pi_Z^{-1}(y)$ is contained in the exceptional divisor of T_3 under π_3 . Thus it suffices to choose Y inside T_2 . Let $\pi_T(f)$ stands for a fiber of $\pi_T: T_2 \to T_1$. From the proof of Proposition 2.9, $Z_2 \cap \pi_T(f) = \mathbf{P}^{g-1}$ which has codimension g+1 in $\pi_T(f)$. So we can essentially limit Y inside $\pi_T(f)$. In other words, we have reduced to the case of examining the splitting possibilities when we blow up $\pi_T(f)$ along the \mathbf{P}^{g-1} . Write $s_T(f) = \operatorname{zero}(s)|_{\pi_T(f)}$, with s as in the proof of Proposition 2.9. Then $\operatorname{codim}(Z_2 \cap \pi_T(f), s_T(f)) = 1$. Observe that when restricting (2.11) to $X_2 \times s_T(f)$, the induced extension:

$$0 \to (Q_{X_2 \times T_2} \otimes \pi_T^{\#} \tau_T^*)_{s_T(f)} \to F_{s_T(f)}^{(2)} \to (Q_{X_2 \times T_2}^{-1})_{s_T(f)} \to 0$$

splits. We can then reverse this exact sequence:

$$0 \to (Q_{X_2 \times T_2}^{-1})_{s_T(f)} \to F_{s_T(f)}^{(2)} \xrightarrow{\beta_t} (Q_{X_2 \times T_2} \otimes \pi_T^{\#} \tau_T^*)_{s_T(f)} \to 0.$$

The destablizing property of β_2 from (2.7) over $Z_2 \cap \pi_T(f)$ means that $B_2|_{Z_2 \cap \pi_T(f)}$ coincides with $\beta_f|_{q \times (Z_2 \cap \pi_T(f))}$. Suppose we select $Y \subset \pi_T(f)$ such that Y is transversal to $s_T(f)$. Then (2.11) gives a diagram:



where $Q = Q_{X_2 \times T_2}$ and $S = (Q \otimes \pi_T^{\#} \tau_T^*)_Y(-(X_2 \times y))$. The first row defines a section $s_Y \in H^0(R^1 \pi_{Y_*}((Q^2)_Y) \otimes \tau_T^*|_Y(-y))$. If s_Y vanishes at y, then it vanishes at y to the second order when considered as a section of $R^1 \pi_{Y_*}((Q^2)_Y) \otimes \tau_T^*|_Y$. But s_Y equals $s|_Y$ in $H^0(R^1 \pi_{Y_*}((Q^2)_Y) \otimes \tau_T^*|_Y)$, contradicting the fact that s has only simple zeroes. Therefore, F'_y does not split for such Y. When we take $Y \subset s_T(f)$, on the other hand, the resulting F'_y clearly splits. It follows from $\operatorname{codim}(Z_2 \cap \pi_T(f), s_T(f)) = 1$ that $F_{\pi_Z^{-1}(y)}^{(4)}$ splits in a single point not contained in D. One then concludes that $\phi_3|_{\pi_Z^{-1}(y)}$ is stable. This completes the proof of stability of ϕ_3 over V_3 .

Therefore, there exists a morphism $V_3 \to W_1$ induced by the geometric realization of ϕ_3 . We will show in the next section that this morphism factors through two blowings down; the resulting morphism $\alpha_1: U_1 \to W_1$ is a locally free \mathbf{P}^1 bundle.

We can easily see that a point in $D \subset V_3$ represents a Type II bundle, and a point in $V_3 \setminus D$ features Type I. For bundles of Type I in Z_3 , $zero(s') \setminus D \subset I_{sp}$, and $Z_3 \setminus (D \cup zero(s')) \subset I_{ns}$. Away from Z_3, ϕ_3 is isomorphic to ϕ_2 . Thus the types over $V_3 \setminus Z_3$ coincide with that for ϕ_2 , as mentioned immediately after the proof of Proposition 2.9.

REMARK 2.14. For the second component U_2 , we consider the following:

- (i) The smooth moduli $U_{X_2}(2, \mathcal{O}_{X_2}(-q))$ and a universal bundle E over $X_2 \times U_{X_2}(2, \mathcal{O}_{X_2}(-q))$. No modifications will happen to E, as one can see from the construction of U_1 .
- (ii) The moduli $M_{X_1}(2, \mathcal{O}(p))$ (a single point) and the unique bundle F' over X_1 parameterized by $M_{X_1}(2, \mathcal{O}(p))$. The Hecke operation and all the subsequent modifications are applied to this F'.

If $U_{X_2}(2, \mathcal{O}_{X_2}(-q))$ were a single point, then the construction parallels the one we have already discussed. But the magnitude of $U_{X_2}(2, \mathcal{O}_{X_2}(-q))$ does not introduce any new difficulty, because E is essentially fixed during the whole process. In other words, one obtains a family of those constructions parameterized by $U_{X_2}(2, \mathcal{O}_{X_2}(-q))$.

3. Blowings down and related computations

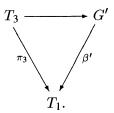
In this section we first blow down V_3 twice to obtain U_1 , the show that the natural map $\alpha_1: U_1 \to W_1$ is a \mathbf{P}^1 -bundle and compute the relative differential sheaf Ω_{α_1} . We will also state the variations for U_2 . In the end, we describe the corresponding degeneration of the generalized theta divisor Θ_t in $\operatorname{Pic}(M_t(2, A_t))$.

The strict transformation T_3 of the first exceptional divisor T_2 under π_3 gains a ruling by blowing up T_2 along G. Contracting T_3 along this ruling constitutes the first blowing down. The second basically contracts Z_3 along the direction $\nu: \mathbf{P}(H) \to J_2$.

LEMMA 3.1. Let \tilde{G} denote the exceptional divisor of $\pi_3|_{T_3}: T_3 \to T_2$. Then $\tilde{G} = G \times_{T_1} G'$ where $G' \xrightarrow{\beta'} T_1$ is a \mathbf{P}^g -bundle. Moreover, there exists a map $T_3 \xrightarrow{\gamma'} G'$ which is a \mathbf{P}^g -bundle.

Proof. We illustrate these by defining G', β' and γ' . Since $Z_1 \cong \mathbf{P}(H) \times \mathbf{P}^1$ and $T_j \cong \nu^{-1}(j) \times \mathbf{P}^1$, it follows that $N_{T_1/Z_1} \cong \mathcal{O}^{\oplus g}$. Hence $G = T_1 \times \mathbf{P}^{g-1}$. Let *s* be any trivial section of the projection $G \to T_1$. Then take $G' = \mathbf{P}(N_{G/T_2}|_s)$ and $\beta': G' \to s \cong T_1$. One checks that $\tilde{G} = G \times_{T_1} G'$.

The map $T_3 \rightarrow T_1$ naturally factors through G':



Then define γ' to be the horizontal map $T_3 \to G'$, which will have the desired property.

PROPOSITION 3.2. V_3 can be blown down along $T_3 \xrightarrow{\gamma'} G'$ to a smooth parameterizing variety $V_4: V_3 \xrightarrow{\pi_4} V_4$.

Proof. We first show $N_{T_3/V_3}|_{\gamma'^{-1}(g)} = \mathcal{O}(-1)$ for every $g \in G'$. From the natural identities: $N_{T_3/V_3} = K_{T_3} \otimes K_{V_3}^{-1}$, $K_{T_3} = \pi_3^* K_{T_2} \otimes \mathcal{O}_{T_3}(g\tilde{G})$, and $K_{V_3} = \pi_3^* K_{V_2} \otimes \mathcal{O}_{V_3}(gZ_3)$, it follows that $N_{T_3/V_3} = \pi_3^* (K_{T_2} \otimes K_{V_2}^{-1})$. Similarly, $K_{T_2} \otimes K_{V_2}^{-1} = \pi_T^* (K_{T_1} \otimes K_{V_1}^{-1} \otimes M) \otimes \mathcal{O}_{T_2}(-\sigma_T)$, where σ_T is the tautological divisor associated to $T_2 \xrightarrow{\pi_T} T_1$ and M a line bundle on T_1 . Thus

$$N_{T_3/V_3} = (\pi_T \circ \pi_3)^* (K_{T_1} \otimes K_{V_1}^{-1} \otimes M) \otimes \pi_3^* (\mathcal{O}_{T_2}(-\sigma_T)).$$

It follows from $\sigma_T|_{\gamma'^{-1}(g)} = 1$ and $(\pi_T \circ \pi_3)^* (K_{T_1} \otimes K_{V_1}^{-1} \otimes M)|_{\gamma'^{-1}(g)} = 0$ that $N_{T_3/V_3|\gamma'^{-1}(g)} = \mathcal{O}(-1)$.

We now prove that every fiber of γ' represents a single stable bundle over X_0 . Choose any $t \in T_1$ and a fiber of γ' over a point in $\beta'^{-1}(t)$. This fiber is represented by a $P \subset \pi_T(f) = \pi_T^{-1}(t), P = \mathbf{P}^g$. If P intersects $s_T(f)$ transversally, then a diagram similar to the one in the proof of Proposition 2.13 shows that $F_P^{(4)}$ is a family of nontrivial extensions of a line bundle R by R^{-1} , with $R \in \text{Jac}(X_2)$ and $R^2 = \mathcal{O}$. Since $h^1(X_2, R^2) = g$, there exists a universal extension over $X_2 \times \mathbf{P}^{g-1}, \mathbf{P}^{g-1} = \mathbf{P}(H^1(X_2, R^2))$. Hence one has a map $P \to \mathbf{P}^{g-1}$, which has to be constant because $P = \mathbf{P}^g$. It follows that P parameterizes a unique nontrivial extension, denoted by F'. On the other hand, Lemma 4.2 (see Section 4) shows that the moduli derived from the original E' over X_1 and this F' has image Q_0 in W_1 , where Q_0 is the blowing down of $\mathbf{P}(\mathcal{O} \oplus \mathcal{O}(2))$ along the (-2)-curve C_0 . Recall that the Type II locus $C_1 \cong \mathbf{P}^1$ in Q_0 is ample. One then simply argues that the induced map $P \to Q_0$ has to be constant.

The first paragraph of the proof says we can blow down V_3 smoothly, and the second asserts that the resulting V_4 remains to parameterize stable bundles over X_0 .

Let Z_4 be the image of Z_3 in V_4 . Since $\pi_3^{-1}(G) = \tilde{G} = T_3 \cap Z_3$ and $\tilde{G} = G \times_{T_1} G', Z_4$ is the blowing down of Z_3 along $\tilde{G} \to G'$. One can show as in Proposition 3.2 that Z_4 is smooth. Moreover, the blowing down $\pi_4: Z_4 \to Z_3$ covers that of $Z_2 \to Z_1$. Namely one has a commutative diagram:

$$\begin{array}{c|c} Z_3 & \xrightarrow{\pi_4} & Z_4 \\ & & & & \\ \pi_3 \\ & & & & \\ Z_2 & \xrightarrow{\pi_2} & Z_1. \end{array}$$

The map π_4'' is a \mathbf{P}^g -bundle. Recall that $Z_1 = \mathbf{P}(H) \times \mathbf{P}^1$.

LEMMA 3.3. $Z_4 = Z_1 \times_{(J_2 \times \mathbf{P}^1)} G''$ where $G'' \xrightarrow{\beta''} J_2 \times \mathbf{P}^1$ is a \mathbf{P}^g -bundle. Furthermore, the map $Z_4 \to G''$, denoted by γ'' , is a \mathbf{P}^{g-1} -bundle.

Proof. For any $j \in J_2$ and $t \in \mathbf{P}^1$, $\pi_4^{\prime\prime^{-1}}(\nu^{-1}(j) \times t) = (\nu^{-1}(j) \times t) \times \mathbf{P}_{(j,t)}^g$. Such $\mathbf{P}_{(j,t)}^g$ fits together to give G''. The rest follows.

PROPOSITION 3.4. V_4 can be smoothly blown down along $Z_4 \xrightarrow{\gamma''} G''$ to a parameterizing variety $U_1: V_4 \xrightarrow{\pi_5} U_1$.

Proof. For fixed $(j,t) \in J_2 \times \mathbf{P}^1$, $(h \times t) \times \mathbf{P}^g_{(j,t)} \subset Z_4$ parameterizes the same family of stable bundles over X_0 for all $h \in \nu^{-1}(j)$. So it suffices to show that $N_{Z_4/V_4}|_{\nu^{-1}(j)\times t} = \mathcal{O}(-1)$, since $\nu_{t,j} := \nu^{-1}(j) \times t = \gamma^{\prime\prime-1}(g)$ for some $g \in G^{\prime\prime}$. It can be further reduced to computing $N_{Z_3/V_3}|_{\nu_{t,j}} = \mathcal{O}(-1)$ for any $j, j^2 \neq 0$, due to the fact that π_4 blows down along T_3 , which is away from such $\nu_{t,j}$. From $N_{Z_3/V_3} = \mathcal{O}(Z_3) \otimes \mathcal{O}_{Z_3} = K_{Z_3} \otimes K_{V_3}^{-1}$, one computes

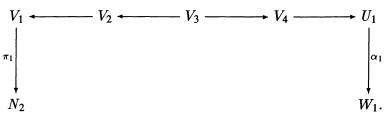
$$N_{Z_3/V_3} = (\pi_2 \circ \pi_3)^* (K_{Z_1} \otimes K_{V_1}^{-1})|_{Z_3} \otimes \omega_{\pi_Z} \otimes \mathcal{O}(-(g+1)\tilde{G}) \otimes \mathcal{O}(-gZ_3).$$

Hence $(g+1)N_{Z_3/V_3} = (\pi_2 \circ \pi_3)^* (K_{Z_1} \otimes K_{V_1}^{-1})|_{Z_3} \otimes \omega_{\pi_Z} \otimes \mathcal{O}(-(g+1)\tilde{G})$. Restricting to $\nu_{t,j}$ gives $(g+1)N_{Z_3/V_3}|_{\nu_{t,j}} = (\pi_2 \circ \pi_3)^* (K_{Z_1} \otimes K_{V_1}^{-1})|_{\nu_{t,j}}$. Thus to show $N_{Z_3/V_3}|_{\nu_{t,j}} = \mathcal{O}(-1)$, it is equivalent to show det $(N_{Z_1/V_1})|_{\nu_{t,j}} = \mathcal{O}(-g-1)$. By the following Lemma 3.5, det $(N_{Z_1/V_1})|_{\nu_{t,j}} = \det(N_{\nu_{t,j}/V_1}) = K_{\nu_{t,j}} \otimes K_{V_1}^{-1} =$ $\mathcal{O}(-g) \otimes (\Theta_{2,\xi}^3 \otimes \Theta_{2,0}^2 \otimes \tau_1^{-4})|_{\nu_{t,j}}$. Consequently, we can complete the proof by verifying that $\Theta_{2,\xi}|_{\nu_{t,j}} = 1, \Theta_{2,0}|_{\nu_{t,j}} = 0$, and $\tau_1|_{\nu_{t,j}} = 1$. First $\Theta_{2,0}|_{\nu_{t,j}} = 0$ stands because when considering $\nu_{t,j}$ as sitting inside $N_2, \rho_0(\nu_{t,j})$ is a single point in $M_{2,0}$. Next after identifying $\nu_{t,j}$ with its image in $M_{2,\xi}$, Lemma 6.22 (i) of [7] shows that det $(N_{\nu_{t,j}/M_{2,\xi}}) = -(g-2)$. But det $(N_{\nu_{t,j}/M_{2,\xi}}) = K_{\nu_{t,j}} \otimes K_{M_{2,\xi}}^{-1} = \mathcal{O}(-g) \otimes \Theta_{2,\xi}^2$, whence $\Theta_{2,\xi}|_{\nu_{t,j}} = 1$. Finally, the universality of (V_1, π_1) and the definition of Z_1 (hence of $\nu_{t,j}$) lead to $\tau_1|_{\nu_{t,j}} = 1$.

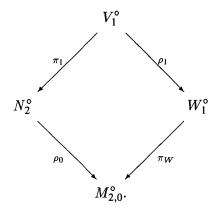
LEMMA 3.5. Let $\Theta_{2,0}$ and $\Theta_{2,\xi}$ be the ample generators of $\operatorname{Pic}(M_{2,0})$ and $\operatorname{Pic}(M_{2,\xi})$ respectively. Denote also by $\Theta_{2,0}$ and $\Theta_{2,\xi}$ their natural pullbacks. Then $K_{V_1} = \Theta_{2,\xi}^{-3} \otimes \Theta_{2,0}^{-2} \otimes \tau_1^4$.

Proof. It is known that $K_{N_2} = \pi_0^* \Theta_{2,\xi}^{-1} \otimes \rho_0^* \Theta_{2,0}^{-2}$ [2]. From the exact sequence over $V_1: 0 \to \tau_1 \to \pi_1^* \operatorname{Hom}(E_p, F_q) \to \tau_1 \otimes \Omega_{\pi_1}^{\vee} \to 0$, one computes $\omega_{\pi_1} = \Theta_{2,\xi}^{-2} \otimes \tau_1^4$. Thus $K_{V_1} = \pi_1^* K_{N_2} \otimes \omega_{\pi_1} = \Theta_{2,\xi}^{-3} \otimes \Theta_{2,0}^{-2} \otimes \tau_1^4$. \Box

THEOREM 3.6. The natural map $\alpha_1: U_1 \to W_1$ is a locally free \mathbf{P}^1 -bundle. So one has a diagram:



We need to establish two lemmas for its proof. Let $\dot{M}_{2,0}^{\circ} \subset M_{2,0}$ and $N_2^{\circ} \subset N_2$ be the open subsets representing stable bundles over X_2 with trivial determinant, and let $V_1^{\circ} = \pi_1^{-1}(N_2^{\circ})$. Denote by Δ_U the final proper transformation of $\Delta \subset V_1$ in U_1 , and write $U_1^{\circ} = U_1 \setminus \Delta_U$, $\Delta_W = \alpha_1(\Delta_U)$, and $W_1^{\circ} = W_1 \setminus \Delta_W$. Notice that $\operatorname{codim}(\Delta, V_1) = \operatorname{codim}(\Delta_U, U_1) = g - 1$. Since Δ_U represents exactly the bundles over X_0 coming from strictly semistable bundles over $X_2, V_1^{\circ} = V_1 \setminus \Delta \cong$ $U_1 \setminus \Delta_U = U_1^{\circ}$. So one has a diagram:



LEMMA 3.7. $Pic(V_1) \cong Pic(U_1)$.

Proof. When g > 2, $\operatorname{Pic}(V_1) = \operatorname{Pic}(V_1^\circ) = \operatorname{Pic}(U_1^\circ) = \operatorname{Pic}(U_1)$, since $\operatorname{codim}(\Delta, V_1) = \operatorname{codim}(\Delta_U, U_1) = g - 1 > 1$. When $g = 2, \Delta$ and Δ_U are divisors in V_1 and U_1 respectively. However, $V_1 \setminus Z_1 \cong U_1 \setminus G''$. It then follows from $\operatorname{codim}(Z_1, V_1) = 3$ and $\operatorname{codim}(G'', U_1) = 2$ that $\operatorname{Pic}(V_1) \cong \operatorname{Pic}(U_1)$. \Box

LEMMA 3.8. Every reduced fiber of the restriction $\alpha_{\Delta} = \alpha_1|_{\Delta_U} : \Delta_U \to \Delta_W$ is isomorphic to \mathbf{P}^1 .

Proof. The proof of this lemma will be the content of Section 4.

Proof of Theorem 3.6. The Hecke correspondence and the isomorphism $V_1^{\circ} \cong U_1^{\circ}$ indicate that the map $\alpha_1|_{U_1^{\circ}}: U_1^{\circ} \to W_1^{\circ}$ is a \mathbf{P}^1 -bundle. This and Lemma 3.8 imply that every reduced fiber of α_1 is isomorphic to \mathbf{P}^1 . By Lemma

3.5, $K_{V_1} = \Theta_{2,\xi}^{-3} \otimes \Theta_{2,0}^{-2} \otimes \tau_1^4$. Restricting to a generic fiber f of ρ_1 produces $-2 = K_{V_1}|_f = \Theta_{2,\xi}^{-3}|_f + \tau_1^4|_f$. Computing from the map ρ_0 , one obtains $\Theta_{2,\xi}|_f = 2$, whence $\tau_1|_f = 1$. It follows from $\operatorname{Pic}(V_1) \cong \operatorname{Pic}(U_1)$ and $\rho_1 \cong \alpha_1|_{U_1^0}$ that τ_1 in $\operatorname{Pic}(U_1)$ also has degree one over a generic fiber of α_1 . But α_1 is obviously flat, since all its fibers have the same dimension (one) and since U_1 and W_1 are both smooth. So τ_1 has degree one over every fiber of α_1 , hence all fibers of α_1 are actually reduced. Furthermore, α_1 is a locally free \mathbf{P}^1 -bundle due to the existence of such a line bundle τ_1 [10].

RELATIVE DIFFERENTIAL SHEAVES

To compute the sheaf of relative differentials, we treat the case of g > 2 which is easy to visualize, but the assertions will stand for g = 2 (Remark 3.11). When g > 2, $\operatorname{Pic}(V_1) = \operatorname{Pic}(V_1^\circ) = \operatorname{Pic}(U_1^\circ) = \operatorname{Pic}(U_1)$. Under these identifications, $\Omega_{\alpha_1} = \Omega_{p_1}$.

LEMMA 3.9. Using the notation in Lemma 3.5, one has

(a) $\Omega_{\rho_1} = \pi_1^* \Omega_{\rho_0}$. (b) $\Omega_{\rho_0} = \pi_0^* \Omega_{2,\xi}^{-1} \otimes \rho_0^* \Theta_{2,0}^2$, hence $\Omega_{\rho_1} = \Theta_{2,\xi}^{-1} \otimes \Theta_{2,0}^2$.

Proof. (a) Equivalently we need to show that the above diagram is a fiber product. Suppose that a scheme T admits two maps $T \stackrel{t_N}{\to} N_2^\circ$ and $T \stackrel{t_W}{\to} W_1^\circ$ such that $\rho_0 \circ t_N = \pi_W \circ t_W$. Then the map t_W says that T represents gluing data derived from stable bundles over X_2 ; whereas the map t_N indicates that the gluing data actually come from bundles parameterized in N_2° . The universality of (V_1°, π_1) then provides a lifting of (t_N, t_W) . Therefore V_1° is the fiber product of π_W and ρ_0 .

(b) One has $\omega_{M_{2,0}} = \Theta_{2,0}^{-4}$ [3], where $\omega_{M_{2,0}}$ denotes the dualizing sheaf of $M_{2,0}$. Since $K_{N_2} = \pi_0^* \Theta_{2,\xi}^{-1} \otimes \rho_0^* \Theta_{2,0}^{-2}$, it follows that $\Omega_{\rho_0} = K_{N_2} \otimes \rho_0^* \omega_{M_{2,0}}^{-1} = \pi_0^* \Theta_{2,\xi}^{-1} \otimes \pi_0^* \Theta_{2,0}^{-2}$.

PROPOSITION 3.10.

(a) $Pic(W_1) = \langle \Theta_{2,0}, D_w \rangle$, where $D_w = \alpha_1(D)$. (b) $K_{W_1} = -4\Theta_{2,0} - 2D_w$.

Proof. (a) ρ_1 is a locally free \mathbf{P}^1 -bundle by Theorem 3.6. Since $D = \Theta_{2,\xi} - 2\tau_1$ by (3.1), $\operatorname{Pic}(V_1) = \langle \Phi_{2,0}, \Phi_{2,\xi}, \tau_1 \rangle = \langle \Theta_{2,0}, D, \tau_1 \rangle$. But $\operatorname{Pic}(V_1) = \operatorname{Pic}(U_1) = \langle \alpha_1^*(\operatorname{Pic}(W_1)), \tau_1 \rangle$, whence $\operatorname{Pic}(W_1) = \langle \Theta_{2,0}, D_w \rangle$. (b) Suppose $K_{W_1} = a\Theta_{2,0} + \alpha_1^*(\operatorname{Pic}(W_1))$

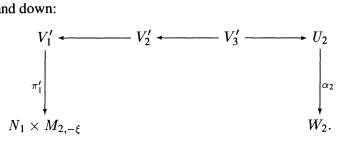
 bD_w . Then $\rho_1^*K_{W_1} = a\Theta_{2,0} + bD = a\Theta_{2,0} + b(\Theta_{2,\xi-2\tau_1})$. On the other hand, $\rho_1^*K_{W_1} = K_{V_1} \otimes \Omega_{\rho_1}^{\vee}$. It follows from Lemma 3.9 and coefficients comparison that a = -4, b = -2.

REMARK 3.11. When $g = 2, M_{2,0} \cong \mathbf{P}^3[6]$. Identifying $\Theta_{2,0}$ with $\mathcal{O}(1)$, the formulas $\Omega_{\alpha_1} = \Theta_{2,\xi}^{-1} \otimes \Theta_{2,0}^2$, $Pic(W_1) = \langle \Theta_{2,0}, D_w \rangle$, and $K_{W_1} = -4\Theta_{2,0} - 2D_w$ still hold true.

For the second component U_2 we start with (cf. Remark 2.14).

- (i) a universal bundle E over $X_2 \times M_{2,-\xi}$ such that $\det(E_q) = \Theta_{2,-\xi}$, where $M_{2,-\xi}$ and $\Theta_{2,-\xi}$ are interpreted similarly as for $M_{2,\xi}$ and $\Theta_{2,\xi}$ respectively;
- (ii) a bundle F over $X_1 \times N_1$ which is a semistable family with trivial determinant. Here $N_1 = \mathbf{P}^1$ is derived similarly as N_2 by the Hecke operation.

Let $V'_1 = \mathbf{P}(\text{Hom}(E_q, F_p)) \xrightarrow{\pi'_1} N_1 \times M_{2,-\xi}$. Here *E* and *F* denote the natural pullbacks by abuse of notation. One has a diagram which summarizes the blowings up and down:



REMARK 3.12. We only need one blowing down for the derivation of U_2 . As mentioned earlier, the second blowing down for U_1 is basically the contraction of Z_3 along the direction $\nu: \mathbf{P}(H) \to J_2$. But the U_2 the corresponding bundle H over J_1 is a line bundle, which implies that the map $\nu: \mathbf{P}(H) \to J_1$ is an isomorphism.

PROPOSITION 3.13.

- (a) $\operatorname{Pic}(W_2) = \langle \mu'_w, \Theta_{2,-\xi}, D'_w \rangle$. Here μ'_w and $\Theta_{2,-\xi}$ are the image of $\pi_1'^*(p_1^*\mathcal{O}_{\mathbf{P}^1}(1))$ and $\pi_1'^*(p_2^*\Theta_{2,-\xi})$ in $\operatorname{Pic}(W_2)$ respectively, with $p_1:\mathbf{P}^1 \times M_{2,-\xi} \to \mathbf{P}^1$ and $p_2:\mathbf{P}^1 \times M_{2,-\xi} \to M_{2,-\xi}$. D'_w is the Type II locus or the divisor at infinity in W_2 .
- (b) $K_{W_2} = -4\mu'_w 2\Theta_{2,-\xi} 2D'_w$.

DEGENERATION OF THE THETA DIVISORS

LEMMA 3.14. Let ω_{M_0} be the dualizing sheaf of M_0 . Then $\omega_{M_0}|_{W_1} = K_{W_1}(D_w) = -4\Theta_{2,0} - D_w$ and $\omega_{M_0}|_{W_2} = K_{W_2}(D'_w) = -4\mu'_w - 2\Theta_{2,-\xi} - D'_w$.

THEOREM 3.15. Let ω_{ϖ} be the relative dualizing sheaf of $M \xrightarrow{\varpi} C$. Then $\omega_{\varpi}^{\vee} \otimes \mathcal{O}_M(W_1) = \Theta_C^2 \otimes \varpi^* L$, where L is a line bundle over C and Θ_C a line bundle over M over C such that $\Theta_{C|t} = \Theta_t$ is the ample generator of $\operatorname{Pic}(M_t)$ for $t \neq 0$. (Therefore Θ_C gives a degeneration of the generalized theta divisor.) The line bundle $\omega_{\varpi}^{\vee} \otimes \mathcal{O}_M(W_2)$ also has such property.

Proof. By Lemma 3.14 and the fact that $K_{M_t} = \Theta_t^{-2}$ for all $t \neq 0$ [9], $\omega_{\varpi}^{\vee} \otimes \mathcal{O}_M(W_1)$ is divisible over every fiber of ϖ .

4. Proof of Lemma 3.8

The proof of Lemma 3.8 is based on the following local analysis. Since the bundle E' over X_1 is fixed for the construction, it suffices to discuss the difference between strict semistable bundles parameterized by N_2 .

Case 4.A. Let E' be the unique rank two stable bundle over X_1 with $det(E') = A_0|_{X_1}$. Let $F' = L \oplus M$ with $M = L^{-1}, L \in Jac(X_2)$ and $L^2 \neq \mathcal{O}_{X_2}$. Applying the construction in Section 2, one obtains the space $V_1 = \mathbf{P}(Hom(E'_p, F'_q))$ and an exact sequence:

$$0\longrightarrow E_p\otimes au_1 \stackrel{\phi_1}{\longrightarrow} F_q \stackrel{\beta_1}{\longrightarrow} Q_D \longrightarrow 0,$$

where E (resp. F) is the pullback of E' (resp. F') to $X_1 \times V_1$ (resp. $X_2 \times V_1$). There exist two distinguished disjoint lines $l, m \in D$, corresponding to $\mathbf{P}(\operatorname{Hom}(E'_p, L_q))$ and $\mathbf{P}(\operatorname{Hom}(E'_p, M_q))$ respectively, such that $l \cup m$ represents exactly the unstable locus for descending ϕ_1 . Blow up V_1 along $l \cup m$ to form $V_3: V_3 \xrightarrow{\pi_3} V_1$ (this notation is chosen for coherence). Let $Z_l = \pi_3^{-1}(l), Z_m = \pi_3^{-1}(m)$, and $Z = Z_l \cup Z_m$. Then Section 2 shows that V_3 admits a morphism to W_1 .

LEMMA 4.1. The image of V_3 inside W_1 is isomorphic to $Q = \mathbf{P}^1 \times \mathbf{P}^1$. Moreover, the map $V_3 \rightarrow Q$, denoted by α_Q , is a \mathbf{P}^1 -bundle.

Proof. The group $G = \mathbb{C}^* \times \mathbb{C}^*$ of automorphisms of F' acts naturally on $\operatorname{Hom}(E'_p, F'_q)$. This action induces a free PG action on $V_1 \setminus (l \cup m) = V_1^\circ$. The geometric quotient of V_1° by PG can be identified with $Q = \mathbb{P}^1 \times \mathbb{P}^1$. Indeed, if we fix a basis $\{f_1, f_2\}$ for F'_q such that f_1 and f_2 generate L_q and M_q respectively, then each orbit in V_1° represents two ordered lines (e_1, e_2) in E'_p by assigning e_i to f_i . Hence such an orbit corresponds to a point in $\mathbb{P}(E'_p) \times \mathbb{P}(E'_p) = \mathbb{P}^1 \times \mathbb{P}^1$. If the two lines e_1 and e_2 are distinct, one obtains a Type I bundle. When they coincide, i.e., representing a point in the diagonal of $\mathbb{P}^1 \times \mathbb{P}^1$, they provide a bundle of Type II.

We can be more precise. Tensoring the above exact sequence by τ_1^{-1} , followed by restricting to V_1° , one can descend $(\phi_1 \otimes \tau_1^{-1})|_{V_1^{\circ}}$ to a map $\overline{\phi_1^{\tau}}$ over Q. So we have an exact sequence:

$$0 \longrightarrow \overline{E}_p \xrightarrow{\overline{\phi_1^\tau}} \overline{F_q^\tau} \xrightarrow{\overline{\beta_1^\tau}} \overline{Q_D^\tau} \longrightarrow 0.$$

Here the superscript " τ " denotes the corresponding twisting by τ_1^{-1} . One checks that the geometric realization of $\overline{\phi_1^{\tau}}$ is stable.

The natural map α_Q is just the fiberwise compactification of the projection $V_1^{\circ} \to Q$, which has fiber \mathbb{C}^* .

Case 4.B. Replace F' in Case 4.A by a nontrivial extension $0 \to L \to F' \to L \to 0$, with $L^2 = \mathcal{O}_{X_2}$. We still write the extension as $0 \to L \to F' \to M \to 0$ with L = M for convenience. Then, unlike the above case, one locates a single distinguished line $l \subset D$, corresponding to $\mathbf{P}(\operatorname{Hom}(E'_p, L_q))$, such that l constitutes the unstable locus when descending ϕ_1 .

Blow up V_1 along l to create $V_2: V_2 \xrightarrow{\pi_2} V_1$. Let $Z_l = \pi_2^{-1}(l)$ The main difference, however, is that we need to further blow up V_2 along $D \cap Z_l =: m$ to achieve $V_3: V_3 \xrightarrow{\pi_3} V_2$. Let $Z_m = \pi_3^{-1}(m)$, and denote the strict transformation of Z_l again by Z_l . Then one has a morphism $V_3 \to W_1$.

LEMMA 4.2.

- (a) $Z_m \cong \mathbf{P}(\mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1}(2))$. Assume Q_0 represents the blowing down of Z_m along the (-2)-curve C_0 . Then Q_0 is isomorphic to the image of V_3 in W_1 .
- (b) V_3 admits a map α_{Z_m} to Z_m with fiber \mathbf{P}^1 . Moreover, the section $C_1 = \mathbf{P}(\mathcal{O}_{\mathbf{P}^1}) \subset Z_m$ corresponds to bundles of Type II, and $Z_m \setminus C_1$ of Type I.
- (c) V_3 can be also blown down along Z_l to a singular variety V_0 . Moreover, V_0 admits a map α_{Q_0} to Q_0 with fiber \mathbf{P}^1 .
- (d) The two composite maps $V_3 \xrightarrow{Bl_{Z_l}} V_0 \xrightarrow{\alpha_{Q_0}} Q_0$ and $V_3 \xrightarrow{\alpha_{Z_m}} Z_m \xrightarrow{Bl_{C_0}} Q_0$ coincide.

Proof. (a) One computes directly that $N_{m/V_2} = \mathcal{O} \oplus \mathcal{O}(2)$, so $Z_m = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(2))$. Denote the quotient map $F' \to M$ by δ . Then the automorphism group of F' is $G = \{\lambda I + \mu \delta | \lambda \in \mathbb{C}^*, \mu \in \mathbb{C}\}$. G acts on $\operatorname{Hom}(E'_p, F'_q)$ naturally, and induces a free PG action on $V_1 \setminus l = V_1^{\circ}$. The orbit space V_1°/PG can be identified with the geometric bundle \mathbf{L} of $\mathcal{O}_{\mathbf{P}^1}(2)$. To demonstrate this, we choose a basis $\{f_1, f_2\}$ for F'_q such that f_1 generates L_q and f_2 is linearly independent of f_1 . Assigning to f_1 a line $e_1 \in \mathbf{P}(E'_p)$, the choices for assigning to f_2 correspond effectively to the maps in $\operatorname{Hom}(e_1, e_1^{\vee})$. Here e_1^{\vee} is the quotient of $E'_p: 0 \to e_1 \to E'_p \to e_1^{\vee} \to 0$. The totality of such assignments is $\operatorname{Hom}(\gamma, \gamma^{\vee}) = \mathcal{O}_{\mathbf{P}^1}(2)$, where γ is the tautological line bundle over $\mathbf{P}^1 = \mathbf{P}(E'_p)$. This shows that V_1°/PG coincides with \mathbf{L} .

Clearly $V_3 \setminus Z_l \xrightarrow{\alpha_L} \mathbf{L}$ is the fiberwise compactification of $V_1^{\circ} \to \mathbf{L}$, which has fiber \mathbf{C} , and $Z_m \setminus C_0$ provides a section of α_L . Hence $Z_m \setminus C_0 \cong \mathbf{L}$, and Z_m compactifies \mathbf{L} . On the other hand, Z_l hence $Z_m \cap Z_l = C_0$ represents the single stable bundle obtained by gluing E' (over X_1) to $\mathcal{O}_{X_2} \oplus \mathcal{O}_{X_2}$ (over X_2) along the fibers over p and q. Therefore the blowing down of Z_m along C_0 parameterizes all the different stable bundles arising from the bundles E' over X_1 and F' over X_2 .

(b) The blowings up show that α_{Z_m} is just the union of $V_3 \setminus Z_l \to \mathbf{L}$ and $Z_l \to C_0$, where the fiber of $Z_l \to C_0$ is the ruling l of Z_l . Further, one can readily check that $D \cap Z_m = C_1$. Hence C_1 exactly locates bundles of Type II in Z_m .

(c) By the adjunction formula and the formula for canonical line bundles under blowing up, $N_{Z_l/V_3} = \mathcal{O}_{Z_l}(-2l)$. Here again we consider l as a ruling on Z_l . Hence V_3 can be blown down by contracting the fibering $Z_l \rightarrow l$ to yield a singular V_0 . The natural map α_{Q_0} is a \mathbf{P}^1 -bundle away from l, the image of Z_l . But l has to be mapped to the vertex of Q_0 . $l = \mathbf{P}^1$ and the commutativity (see (d)) assure that α_{Q_0} is a \mathbf{P}^1 -bundle everywhere.

(d) Obvious.

REMARK 4.3. When $g(X_2) = 1$, Cases 4.A and 4.B show that W_1 admits a map to \mathbf{P}^1 . Its fibers are isomorphic to Q, except at four points where the fibers are Q_0 .

Case 4.C. Replace F' in Case 4.A by a nontrivial extension of L^{-1} by L.

LEMMA 4.4. Blowing up one line in V_1 will yield an effectively parameterizing space V_3 ; in other words, $V_3 \rightarrow W_1$ is an embedding.

LEMMA 4.5. Let $L \in J_2$ be not of order two and $Y_{eff} = \mathbf{P}(H^1(X_2, L^2)) \cong \mathbf{P}^{g-2}$. From the universal extension \mathcal{F} over $X_2 \times Y_{eff}$, we create $V_{eff} = \mathbf{P}(\operatorname{Hom}(E_p, \mathcal{F}_q)) \to Y_{eff}$, where E is the pull back of E' to $X_1 \times Y_{eff}$. Then the corresponding geometric realization is unstable at $Z_{eff} \cong Y_{eff} \times \mathbf{P}^1$. Blow up V_{eff} along Z_{eff} to form V'_{eff} . Then V'_{eff} parameterizes stable bundles, and can be smoothly blown down along Z'_{eff} , the exceptional divisor, in the direction of $Z'_{eff} \to \mathbf{P}^1 \times \mathbf{P}^1$ to an effectively parameterizing space \overline{V}_{eff} .

Proof. The blowing up comes from Case 4.C; the blowing down from Case 4.A, since all points $y \in Z'_{eff}$ correspond to the same trivial extension $0 \to L \to L \oplus L^{-1} \to L^{-1} \to 0$.

Now recall the map $\nu: \mathbf{P}(H) \to J_2$ and the diagram (3.2). Let $t \in J_2$ and $Y_t = \nu^{-1}(t)$. From E' over X_1 and \mathcal{E}'_{Y_t} over $X_2 \times Y_t$, we form $V_t = \mathbf{P}(\operatorname{Hom}(E_p, \mathcal{E}'_q)) \xrightarrow{\pi_t} Y_t$, which induces an exact sequence: $0 \to \pi_t^* E_p \otimes \tau_t \xrightarrow{\phi_t} \pi_t^* \mathcal{E}'_q \xrightarrow{\beta_t} Q_{D_t} \to 0$. Suppose first that t is not of order two. Let $y_0 \in Y_t$ corresponds to the unique point

representing the trivial extension of t^{-1} by t. Then the geometric realization of ϕ_t yields unstable bundles at $Z_t \cong Y_t \times \mathbf{P}^1$ and $Z_0 \cong \mathbf{P}^1 \subset \pi_t^{-1}(y_0), Z_t \cap Z_0 = \emptyset$. Blow up V_t along Z_t and Z_0 simultaneously to obtain V'_t . Let Z'_0 and Z'_t be the two (disjoint) exceptional divisors.

LEMMA 4.6.

- (a) V'_t parameterizes stable bundles.
- (b) V'_t can be blown down along Z'_t to a smooth variety \overline{V}_t .
- (c) Every reduced fibers of the induced map $\overline{V}_t \xrightarrow{\alpha_t} W_1$ over its image is isomorphic to \mathbb{P}^1 .

Proof. (a) and (b) follow from Sections 2 and 3. (c) $Y_t \setminus y_0$ admits a map to Y_{eff} , which has fiber C. It follows that for every line $l \subset Y_t$ through y_0 , $l \setminus y_0$ represents a single bundle over X_2 . Any lifting of such an $l \setminus y_0$ in V'_t extends over to Z'_0 . So $Z'_0 \to \overline{V}_{eff}$ is surjective. Both being \mathbf{P}^g bundles over \mathbf{P}^1 shows they are isomorphic. Thus away from the closure of \mathbf{I}_{sp} , $\alpha_t \colon \overline{V_t} \to \overline{V}_{eff}$ is a \mathbf{P}^1 -bundle. On the other hand, the closure of \mathbf{I}_{sp} in $\overline{V_t}$ is $\overline{\pi_t^{-1}(y_0)}$, the proper transformation of $\pi_t^{-1}(y_0)$ in $\overline{V_t}$, and the closure of \mathbf{I}_{sp} in \overline{V}_{eff} is isomorphic to blowing down image of Z'_{eff} , which is $\mathbf{P}^1 \times \mathbf{P}^1$. By Case 4.A, $\overline{\pi_t^{-1}(y_0)} \to \mathbf{P}^1 \times \mathbf{P}^1$ is also a \mathbf{P}^1 -bundle. Therefore every reduced fiber of α_t equals a \mathbf{P}^1 .

When $t \in J_2$ is of order two, change the subscript t to n. The unstable locus for the geometric realization of ϕ_n is $Z \cong Y_n \times \mathbf{P}^1$. Blow up V_n along Z to achieve V'_n , then the unstable locus for the new geometric realization is $D \cap Z' \stackrel{\text{def}}{=} T$. Blow up V'_n along T to obtain V''_n . Let Z'' be the strict transformation of Z'. Then $Z'' \cong Z'$.

LEMMA 4.7.

- (a) V_n'' represents stable bundles over X_0 .
- (b) V''_n can be blown down along $Z'' \to Z$ to a singular variety S''.
- (c) S'' can be (small) contracted along $Z = Y_n \times \mathbf{P}^1 \to \mathbf{P}^1$ to a variety \overline{S} .
- (d) Every reduced fibers of the induced map $\overline{V_n} \xrightarrow{\alpha_n} W_1$ over its image is isomorphic to \mathbf{P}^1 .

Proof. (a), (b) and (c) follow from Sections 2 and 3. (d) is a global version of Case 4.B. \Box

Proof of Lemma 3.8. Lemmas 4.6 and 4.7 show that a fiber of $\alpha_{\Delta}: \Delta_U \to \Delta_W$ is either a fiber of α_t or that of α_n . Hence every reduced fiber of α_{Δ} is isomorphic to \mathbf{P}^1 .

5. Generalizations

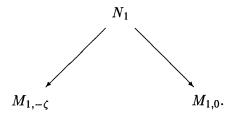
All constructions can be easily extended to cases of $g(X_1) > 1$ and $g(X_2) > 1$, and all assertions have more symmetrical flavor. We only sketch the final picture here. To describe the first component W_1 , we begin with $M_{1,\zeta}$ which is the moduli space of rank two stable bundles over X_1 with determinant $\zeta = \mathcal{O}_{X_1}(-p)$. Take a Poincare bundle E over $X_1 \times M_{1,\zeta}$ such that $\det(E_p) = \Theta_{1,\zeta}$, the ample generator of Pic $(M_{1,\zeta})$. Retain the data $M_{2,\xi}$, $M_{2,0}$, N_2 and so on for X_2 , and form $\pi_1: V_1 \to$ $M_{1,\zeta} \times N_2$ as before.

THEOREM 5.1. The rational map $\rho_1: V_1 \to W_1$ can be resolved by two blowings up to a morphism $V_3 \to W_1$. Furthermore, V_3 can be blown down twice to a smooth variety U_1 and the resulting map $\alpha_1: U_1 \to W_1$ is a locally free \mathbf{P}^1 -bundle. \Box

PROPOSITION 5.2.

(1) $\operatorname{Pic}(W_1) = \langle \Theta_{1,\zeta}, \Theta_{2,0}, D_w \rangle$, where D_w is the divisor of Type II locus in W_1 . (2) $K_{W_1} = -2\Theta_{1,\zeta} - 4\Theta_{2,0} - 2D_w$.

For the second component W_2 , we start with the moduli space $M_{1,-\zeta}$ and $M_{2,-\xi}$. But this time we need to form the Hecke triangle over X_1 :



But the derivation of U_2 is almost identical to the case in Theorem 5.1.

PROPOSITION 5.2'.

(1) $\operatorname{Pic}(W_2) = \langle \Theta_{1,0}, \Theta_{2,-\xi}, D'_w \rangle$, where D'_w is the divisor of Type II locus in W_2 . (2) $K_{W_2} = -4\Theta_{1,0} - 2\Theta_{2,-\xi} - 2D'_w$.

THEOREM 5.3. The generalized theta divisor Θ_t in $Pic(M_t)$ degenerates correspondingly to a Θ_0 over M_0 , whose restrictions are $\Theta_0|_{W_1} = \Theta_{1,\zeta} + 2\Theta_{2,0} + \delta D_w$ and $\Theta_0|_{W_2} = 2\Theta_{1,0} + \Theta_{2,-\xi} + (1-\delta)D'_w$ with $\delta = 0$ or 1.

REMARK 5.4. For cases $g(X_i) \ge 1$, i = 1, 2, all statements in this section hold true with the following conventions:

(i) If $N_i = \mathbf{P}^1$, then replace two blowings down by one in Theorem 5.1 (see Remark 4.3) and $\Theta_{i,0}$ by μ_w or μ'_w (see Proposition 3.13).

(ii) If $M_{1,\zeta}$ or $M_{2,-\xi}$ is a single point, think of $\Theta_{1,\zeta}$ or $\Theta_{2,-\xi}$ as being trivial.

References

- 1. Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J., Geometry of algebraic curves I, Springer-Verlag, 1985.
- 2. Bertram, A. and Szenes, A., Hilbert polynomials of moduli spaces of rank two bundles II, Preprint, November 1991.
- 3. Drezet, J.-M. and Narasimhan, M. S., Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, *Invent. Math.* 97, 1989.
- 4. Gieseker, D., A degeneration of the moduli space of stable bundles, J. Diff. Geom. 19, 1984.
- 5. Gieseker, D. and Morrison, I., Hilbert stability of rank two bundles on curves, J. Diff. Geom. 19, 1984.
- 6. Narasimhan, M. S. and Ramanan, S., Moduli of vector bundles on a compact Riemann surface, *Ann. Math.* 89, 1969.
- 7. Narasimhan, M. S. and Ramanan, S., Geometry of Hecke cycles I, C. P. Ramanujam A Tribute, Springer, Berlin, 1978.
- 8. Newstead, P. E., Introduction to moduli problems and orbit spaces, *Tata Lecture Notes*, Narosa, 1978.
- 9. Ramanan, S., The moduli spaces of vector bundles over an algebraic curve, *Math. Ann.* 200, 1973.
- 10. Serre, J. P., Espaces fibrés algébriques, Exposé 1, Seminaire Chevalley, 1958.
- 11. Seshadri, C. S., Fibrés vectoriel sur les courbes algébriques, Astérisques 96, 1982.