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0. Introduction

Let X be a smooth projective curve of genus g  2 over C. For an odd integer
d, let M(2, d) (resp. M(2, 03BE)) denote the space of isomorphism classes of rank
two semistable bundles of degree d (resp. degree d with determinant e), which
is nonsingular and projective. Consider a family of smooth projective curves Xt
degenerating to a singular one Xo. Then the space Mt(2, d) (resp. Mt(2, et» over
Xt will subsequently degenerate to a variety Mo(2, d) (resp. Mo). This limit mod-
uli is in no way canonical, depending on what objects over Xo to be considered.
One way to construct such a Mo(2, d) (resp. Mo) is to use torsion free sheaves
over the singular curve Xo, as studied by Newstead [8] and Seshadri [11]. Another,
introduced by Gieseker [4], utilizes vector bundles over Xo, together with bundles
over certain semistable models of Xo. The second method has certain advantages.
Indeed, when Xo is an irreducible curve with a single node, Gieseker has con-
structed the moduli Mo(2, d) which is irreducible and has only normal crossing
singularities.

In this paper we continue Gieseker’s work to study the limit of Mt(2, d) and
Mt(2, et) when Xo consists of two smooth irreducible components meeting at a
simple node. Assume that Xo is obtained by identifying p e XI and q E X2. We
first show (Section 1) that the resulting Mo(2, d) has also two smooth irreducible
components, intersecting transversally along a divisor (Remark 1.4). Next we prove
(Corollary 1.6) that the same is true for Mo (which will be our main object of study).
Denote the two components of Mo by Wl and W2. Then, by interpreting a point
in Mo in terms of semistable bundles over Xi and X2, we explicitly build up
two smooth projective varieties Ul and U2 from the moduli spaces of semistable
bundles over Xi and X2 (Sections 2 and 3). The natural maps 03B1i: U2 ~ Wi (i =
1, 2) tum out to be locally free Pl-bundles (Theorems 3.6 and 5.1). Finally, these
maps ai enable us to derive certain properties of Wi, especially the corresponding
degeneration of the generalized theta divisor 0t in Mt(2, et) (Theorems 3.15 and
5.3).
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The construction of U1 and U2 is based on a proposition (Proposition 1.1 ) that
relates Hilbert semistability of a bundle E on Xo to the semistability of the restric-
tions E|X1 and E|X2. (For the definition of Hilbert semistability, see [5].) It states
that a vector bundle E of degree d over Xo is Hilbert semistable if and only if Ei =

E|Xi are semistable with appropriate degrees (di, d2) = (deg( E1 ), deg(E2)).
There are two choices for such (d1, d2 ) for odd d, corresponding to the fact that Mo
has two components Wl and W2. Suppose Wl corresponds to one of the choices
(d1, d2) = (e1, e2), and assume (e1, e2) = ( -1, 0) for simplicity. Let B be a gener-
ic bundle in Wl, and write det(B|X1) = e and det(B|X2) = ~. Denote by Mi,, the
moduli of rank two semistable bundles with determinant 03C3 over Xi. There exists
a universal bundle E over X 1 x M1,03BE, but none over X2 X M2,~ [9]. However,
starting from a universal bundle F’ over X2 X M2,~(q), we can use the Hecke
operation to produce a family of semistable bundles F over X2 with determinant
~, parameterized by N2 = P(F’*q). This operation is defined as follows. A point t
in N2 corresponds to a pair ( G, /), where G is a bundle in F’ and q is a quotient
Gq ~ Oq ~ 0. The bundle Ft is then the modification Ker(G 1 0 q ). Since G
is stable with det(G) = ~(q), Ft is semistable with determinant ~. Now a Hilbert
semistable bundle over Xo can be obtained by gluing a bundle BI in Ml,e with a
bundle B2 in N2 along the two fibers Bllp and B2|q. This allows us to construct a
projective bundle VI = P(Hom(Ep, Fq ) ) ~ M1,03BE X N2, where E and F are pull-
backs to Xi X M1,03BE X N2. V1 contains all the gluing data, hence there is a natural
rational map a : VI ~ Wl. The locus Zl C VI where a is not defined comes from
the strictly semistable bundles parameterized in N2. Indeed, if a family of gluing
data degenerates to a rank one map ~0: Bllp ~ B2lq;the cokemel of ~0 provides a
quotient qo : B2|q ~ Oq - 0. To produce a Hilbert semistable bundle, we need to
modify B2 again by /0. When /0 coincides with a semistabilizing quotient of B2,
the modification will be an unstable bundle over X2, which will subsequently give
a bundle which is not Hilbert semistable.

To describe Zl , we further assume that gl = 1 for simplicity. So M1,03BE is

a single point. Let L be a Poincare bundle over X 2 x J2, J2 = Jac(X2), and
pj:X2 x J2 ~ J2 the second projection. Let H = R1pJ*(L2(-q x J2)) and
consider P(H)  J2 . A point in P( H ) over j e J2 represent a nontrivial extension
of j -1 by j. Thus P(H) parameterizes a family of nontrivial extensions given by
the bundle E over X 2 x P( H ) :

where Tv denotes the tautological subline bundle of v* H, p2: X2 X P( H ) ~ P(H),
and 03BD# = (1 03BD)*. 03B5 defines a map P(H)  M2,03BE, which lifts to a map 03C80: P(H) ~
N2. The lifting is induced by a bundle E’ (plus certain quotient) over X2 x P(H),
given by the following extension:
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which is a modification of the previous one by a natural quotient. E’ is a family
of strictly semistable bundles, and 03C80(P(H)) C N2 will be the strictly semistable
locus in N2. Let E be the pullback of E and consider 03C0h: Zh = P(Hom( Ep, (03BD# L Q9
p*2*03BD)q) ~ P( H ) . Then Zh admits a map 9h to V1, and Zl = 03C8h(Zh). We verify
that eh is actually an embedding.

Let Ti be the preimage in Zh of the locus where £’ is an extension of line
bundles of order two. We then show that the induced map Z1 ~ N2 ramifies along
Tl . Hence we first blow up Tl , then blow up the strict transformation of Z1. These
two blowings up will resolve the rational map a. The resulting morphism can be
further blown down twice. The first is to blow down the strict transformation of the
first exceptional divisor in another direction; the second is essentially to contract
along the direction v: P(H ) - J2. The final space we obtain is Ul , and the natural
map U1 ~ Wl will be a locally free Pl -bundle. The construction for U2 and the
natural map 03B12: U2 ~ W2 are similar.

1. Moduli of Hilbert semistable bundles and geometric realizations

Let X and X2 be two smooth projective curves of genus g1  1 and g2  1 with
fixed points p e X and q C X2 respectively. Assume that 7r: X ~ C is a family
of curves of genus g  2 with both X and C smooth and projective, such that
for some 0 E C, Xo = 03C0-1 (0) is the singular curve with one node, obtained by
identifying p e Xi with q E X2, but for 0 ~ t e C, Xt = 03C0-1(t) is smooth. As
mentioned in the introduction, we will use the theory of Hilbert stability, developed
by Gieseker-Morrison [5], to construct a moduli Mo(2, d) over Xo. Such Mo(2, d)
respects the degeneration of the curves Xt, and a generic point in it represents a
Hilbert semistable bundle over Xo.

Points in Mo(2, d) are characterized by the following two propositions. They
can be verified, in one direction, through computations analogous to those carried
out in the end of [5], and in the other, by arguments parallel to ([4], Proposition
3.1 ). Let Xi = X U X2 U Pl such that X n Pl = p, X2n Pl = q, and no other
intersections. Write ci = 2-qi -1d and assume d is large.

PROPOSITION 1.1 (Bundles of Type I). A rank two bundle E of degree d over
Xo is Hilbert semistable if and only if

(i) for i = 1, 2, Ei = E|Xi is semistable over Xi, and
(ii) di = deg(Ei) satisfies the inequality ci - 1  di  ci + 1. ~

PROPOSITION 1.2 (Bundles of Type II). A rank two bundle E’ of degree d over
X’ 0 is Hilbert semistable if and only if

(i) E’|P1 = O ~ O(1), and for i = 1, 2, Ei = E’ ixt is semistable,
(ii) di = deg( Ei ) satisfies the inequality ci - 1  d’i  ci , and
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(iii) E’ has the following property: E’1 (resp. E’2) has no semistabilizing quotient
identified with the trivial quotient of EP1 over p (resp. q). ~

PROPOSITION 1.3. There exists a smooth projective variety M(2, d) and a map
M(2, d)  C, such that w-l(t) = Mt(2, d) for all t ~ 0, and M0(2, d) =
03C9-1(0) C M(2, d) is a divisor with normal crossing singularities.

Proof. All arguments in ([4], Sect. 4) hold true for our context. ~

REMARK 1.4. Since d is odd and d1 + d2 = d, (dl, d2) has exactly two solutions
by Proposition 1.1. So the moduli space Mo(2, d) has two components, denoted by
Wi(2, d), i = 1, 2. Because the inequalities in both propositions are strict for odd d,
every Hilbert semistable bundle over Xo or X’0 is actually Hilbert stable (which will
be simply referred to as stable). Bundles of Type 1 constitute a Zariski open subset
of each component, and those of Type II correspond to the boundary. Wl(2, d)
and W2(2, d) naturally glue along these boundaries to form Mo(2, d), since the
boundary points in both W1(2, d) and W2(2, d) have the same degree distribution
by Proposition 1.2 and since X’0 has two ways to deform to Xo by smoothing away
the two nodes separately. Furthermore, the normal crossing property implies that
W1(2, d) and W2(2, d) are smooth along the boundaries. Since Wi(2, d) (i = 1, 2)
are clearly smooth away from the boundaries, they are smooth everywhere.

FIXING DETERMINANTS

Let (e1, e2) and (h1, h2) be the two choices for (d1, d2). Then |ei - hi| = 1, i = 1,2.
One can assume el = hl - 1 and e2 = h2 + 1, and arrange Wi (2, d) to correspond
to (ci, e2) and W2(2, d) to (hl, h2). Let Jk be the k-th Jacobian of Xi, i = 1, 2.

PROPOSITION 1.5. There exists a natural surjective map det1 : W1(2, d) - Jl 
Je22 (resp. det2 : W2(2, d) ~ Jh11 x Jh22), and all the fibers of detl (resp. det2) are
isomorphic.

Proof. Suppose E e Wl(2, d). If E is of Type I, then define deti(E) =
(det(Ei), det(E2)). If E is of Type II, define det1(E) = (det(El), det(E2)(q)).
One sees that deti is a morphism. Assume now Mi and M2 are two fibers of deti
and let Ml and M2 be their Type 1 loci. One finds a line bundle Lover Xo which
induces a map M1 ~ M2 by assigning to E e M1 the bundle E Q9 L E M2 .
This map can be extended to Type II bundles by similarly tensoring L’, where L’
is the pull back of L to X’0 through the standard map X’0 ~ Xo. One checks that
the resulting map M1 ~ M2 is an isomorphism. The surjectivity follows from
Proposition 1.1. The claims for det2 are derived by parallel arguments. ~

COROLLARY 1.6. The fibers of detl (resp., det2) are smooth and transversal to
the Type II locus of W1(2, d) (resp., W2(2, d)). Hence Mo = WI U W2, with Wi
smooth and meeting transversally along the divisor of Type II bundles. Here Mo
and Wi are as in the introduction.
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Proof. This follows directly from the smoothness of Wl (2, d) (resp. W2 ( 2, d)),
Ji 1 x Je22 (resp. Jl 1 X Jh22), and the Type II loci. 0

We assume e1 is odd in the sequel for convenience. Then e2 is even, and the
bundle E2 (resp. E1) as in Proposition 1.1 is semistable (resp. stable). Divide Type
I into three classes:

Ist : E2 is stable.

Isp : E2 = L EB M, where L and M are line bundles of degree e2 / 2.
1,,: E2 is a nontrivial extension: 0 ~ L ~ E ~ M ~ 0, with L and M as
above.

GEOMETRIC REALIZATIONS

The construction of the spaces Ul and U2 employs the method of geometric real-
ization introduced in [4], which we now review and modify in order to serve our
context. Let S be a smooth curve and R ~ S a fixed point. Let E and F be two
vector bundles over S. Call an isomorphism 0 from E to F over U = SBR a
rational isomorphism. For such a ~, there is a unique r E Z so that 0 induces a
morphism ~’: E(r R) - F which is nonzero at R. There also exists a uniques E Z
so that (coker(~’))R = OR/msR. We say (r, s ) is the type of ~.
Now suppose that E (resp. F) is a rank two bundle over X x S (resp. X2 x S),

which is a semistable family of degree el (resp. e2) over Xi (resp. X2). Let 0 be a
rational isomorphism of type (r, s) between Ep = E|p s and Fq - F|q s. Then
~: (Ep) ju EÉ (Fq ) ju glues EU to Fu to yield a stable family of Type 1 bundles
over Xo, parameterized by U. We will extend this U-family to a stable S-family;
the latter is called the geometric realization of 0. (When dim S &#x3E; 1 and U C S
a Zariski open subset, we will also refer to each step of extending the stable U-
family as a geometric realization.) Notice that we may assume r = 0, since we
can always replace the family E by E ~ OX1 S(r(X1 X R)) when performing the
geometric realization. One notational remark: If E is a vector bundle over X x T,
then Ey = E|Y T and EV = EX V for Y C X and V C T.

LEMMA 1.7 (Case (0, 1)). Suppose s = 1. One then has an exact sequence

0 - Ep  Fq -0 QR ~ 0. Distinguish two subcases:
(a) If FR has no semistabilizing quotient coinciding with 03B2|R, then the geometric

realization of 0 gives a bundle of Type II at R E S.
(b) If FR has a semistabilizing quotient FR ~ M ~ 0 coinciding with 03B2|R, then

the geometric realization of 0 gives a bundles of Type I at RES.

Proof (b) Modify F by the (X2 x R)-supported M: 0 ~ F’ ~ F ~ M ~ 0.
Then F’q ~ ker(Fq, QR), which provides an isomorphism ~’: Ep ~ Fq. Using 0’
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as decent data, one produces a stable family of Type 1 bundles over Xo, since FR
is evidently semistable.

(a) Blow up X2 x S at q x R to form a surface X’: X’  X2 x S. Let
D2 = 03C0-1(q x R), and let X2 and q x S be the proper transformations of
X 2 x R and q x S respectively. Modify 7r*(F) by 03C0* (QR) over X’ : 0 ~ F’ ~
03C0*(F) ~ 03C0*(QR) ~ 0, where 03C0*(QR) = OD2. Write Fq = F’q S. Then
F’q ~ ker(Fq, QR), whence 4J/: Ep ~ Fq. Since F(D2 = Opl EB OP1(1) and Fj’x2 is
stable, gluing E and F’ through ~’: Ep ~ F’q forms a stable family over S, whose
fiber over R is clearly of Type II. ~

LEMMA 1.8 (Case (0, 2)). Suppose s = 2. Then one has an exact sequence: 0 ~

Ep  Fq .! Q2R ---t 0. Suppose FR has a semistabilizing quotient FR ---t M ---t 0
coinciding with f3 Q9 OR. Then it reduces to the case (0, 1).

Proof. Modify F by the (X2 x R)-supported M to attain F’ : 0 ~ F’ ~ F ~
M ~ 0. Then F’q fits in the diagram:

Hence replacing F by F’ transfers the problem to the geometric realization of ~’
in the first row, which is of type (o,1 ). 1--l
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REMARK 1.9. Lemmas 1.7 and 1.8 work for the derivation of Ul , due to the
choice of degrees. If one starts with the pair (h1, h2), the only modification one
needs is to interchange the roles of X and X2.

2. Basic constructions

Let X and X2 be as in the setting of Section 1 and let A be a line bundle over X
over C such that for any t ~ 0, deg(At) = d, where At = AIXt. For the clarity of
exposition, we assume e 1 = -1 and e2 = 0, since one can conveniently translate
the construction to appropriate ( e 1, e2 ) by tensoring line bundles. So deg(At) = - 1
for any t e C, t ~ 0. We choose A such that AoIxl = OXI (-p) and AOlx2 = OX2.
Let the corresponding component in Mo be Wl . Now modify A over X by A0|X1 to
produce a new line bundle A’: 0 ~ A’ - A - A0|X1 ~ 0, so that A’0|X1 = OX1
and AÓlx2 = OX2(-q). Then the corresponding component in Mo is W2.

This section is the first step to establish Ul and U2 under the above assumptions.
We will focus on Ul , since the same construction works for U2 (see Remark 2.14).
We will work on the case g(X1) = 1 and g(X2) = g &#x3E; 1; other cases can be
obtained by easy generalization. Hence we assume that E’ stands for the unique
stable rank two bundle over Xi with det(E’) = Aoix, -

Denoting A0|X2(q) = OX2(q) by e, one has a moduli space M2,e of rank
two stable bundles over X2 with determinant e. Choose a Poincare bundle F’
over X2 x M2,e such that det(F’q) is the ample generator of Pic(M2,ç). Consider
N2 = P(F’*q)  M2,03BE. Then one obtains a vector bundle F through the following
exact sequence over X2 x N2: 0 ~ F ~ 03C0#0F’ ~ To ~ 0, with To supported
at q x N2. Here Tg is the dual of the tautological subline bundle of 03C0*0(F’q*).
Since F’ is a stable family, F represents a family of semistable bundles over X2,
parameterized by N2. Moreover, det( Fv ) = OX2 for all v E N2. Hence F defines a
map po : N2 - M2,o, where M2,o denotes the moduli space of rank two semistable
bundles over X2 with trivial determinant (modulo S-equivalence). The two maps
r() and po are related as in the following diagram:

Write E = 03C0*X1 E’, where 7r Xl: X1  N2 - X is the first projection. Introduce

Yl = P(Hom(Ep, Fq ) )  N2, and let Ti be the tautological subline bundle. One
then has an exact sequence over VI :
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with D the rank dropping locus of 01: O((D) = A2 01.
We want to determine the subvariety Zl C Vi at which the geometric realization

of ~1 produces unstable bundles. Notice that a point z E Vi belongs to Zl if and
only if 03B21|z results from the restriction to q x z of a semistabilizing quotient
(03C0#1F)z ~ M ~ 0. Thus to understand Zl, we first need to locate the strictly
semistable bundles in the family F.

Let L be a Poincare bundle overX2 x J2, J2 = Jac(X2), andpj: X2 x J2 ~ Jz
the second projection. Consider H = RlpJ.(L2( -q x J2)) and P(H)  J2.
A fiber P(Hj) = P(H1(X2, j2(-q))) over any j E J2 represents all nontrivial
extensions: 0 ~ j ~ * ~ j-1(q) --j 0. All such are accommodated in a universal
extension over X2 P(H):0 ~ v#L ~ p*2* ~ 03B5  03BD#(L-1(q  J2)) ~ 0, where
T" denotes the tautological subline bundle of v*H, and p2: X2 x P(H) ~ P(H)
the second projection. £ is a family of triangular bundles [7], parameterized by
P(H). It supplies a map P(H)  M2,ç, and a lifting 03C80: P(H) ~ N2. To define
the lifting, it suffices to observe that for every u e P(H), £u is a stable bundle
endowed with a linear form /1lqxu on 03B5|q u. One can describe the map 03C80 in
more detail. Notice that a point (E, 03B3: E ~ Oq - 0) in N2 can be interpreted
equivalently as a semistable bundle F plus a quotient /1: F ~ Oq ~ 0, where F
is the modification of E by y and /1 is the canonical quotient corresponding to y.
Define a family E’ over X2 x P(H) through the following diagram:
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where S = 03BD#(L-1 (q  J2))|q P(H). Consider the canonical quotient 03B5’ ~ T ~ 0
corresponding to 03B5 ~ S ~ 0. Then the map 03C80 is induced from 03B5’ plus the quotient
03B5’ ~ T.

Evidently, 03B5’ is a family of strictly semistable bundles, and 03B5’ = 03C8#0F. Fur-
ther, Lemma 7.3 of [7] claims that ’l/Jo(P(H)) C N2 is isomorphic to the strictly
semistable locus in N2.

Let Eh = 7rxIE’, where 7rXI is the first projection Xi x P(H) ~ Xi, and
let 7rh: Zh = P(Hom((Eh)p, (03BD#L ~ p*2*03BD)q) ~ P(H). Then Zh admits a map
03C8h to V1, and the destabilizing locus Zi = 03C8h(Zh). We want to show that
03C8h is actually an embedding. The first row in (2.2) provides a section Oh E

H°(P(H), R1p2*(03BD#L2) ~ *03BD). The sheaf R1p2* (03BD#L2) over P(H) is locally free
of rank 9 - 1 away from v-I (j), j2 = 0, and locally free of rank g over such
03BD-1(j). Lemma 7.4 of [7] asserts that Oh is generic. More specifically, Oh van-
ishes at a unique,point Sj when restricted to the fiber 03BD-1(j) for any j, j2 ~ 0.
Furthermore, the same lemma shows that 03C80: 03BD-1(j) ~ N2 is an embedding for
ail j and 03C80(03BD-1(j)) meets 03C80(03BD-1(j*)) (j2 =1 0) at the unique point where
Oh vanishes. But Sj and Sj. correspond to two distinct destabilizing quotients of
the same bundle 03B5’sj = 03B5’sj*. Thus when lifted to V1, 03C8h(03C0-1h(03BD-1(j))) does not
meet 03C8h(03C0-1h(03BD-1(j*))). Moreover, there is no other intersections between the
03C8h-images of two fibers of v o 7rh. Consequently, we have proved the following
proposition.

PROPOSITION 2.3. The destablizing subvariety ZI in V1 for the geometric real-
ization of ~1 is isomorphic to Zh ~ P(H) x P1. 0

Before extending the morphism V1BZ1 ~ WI, we digress for a moment to
describe the types of bundles parameterized by VlBZl. By the above discussion,
the zeroes of 03B8h defines a section s of v away from j E Jz, j2 = 0.

LEMMA 2.4. The schematic closure 0 of s in P( H ) is isomorphic to the blowing up
of J2 simultaneously at all points of order two. (So 03B8n =: 03B8Bs = Uj~J2,j2=0Pg-1j,
where Pg-1j is the. exceptional divisor over j.)

Proof. by functoriality R1p2*(03BD#L2) = 03BD*(R1pJ*(L2)). Choose the Poincare
bundle L over X2 x J2 such that Lq = OJ2 for simplicity. Taking direct image of
the exact sequence: 0 ~ L2(2013(q  J2)) ~ L2 ~ L2q ~ 0 produces another one
over J2:0 ~ OJ2 ~ R1pJ*(L2(-(q x J2))) ~ R1pJ*(L2) ~ 0. Pulling back to
P(H) then tensoring by *03BD, one has
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Write 03BD*(R1pJ*(L2(-(q x J2)))) ~ *03BD = R and 03BD*(R1pJ*(L2)) ~ *03BD = r. ThenR is locally free of rank g and T = R1p2*(03BD#L2) ~ *03BD. The section 03B8h induces aR is locally free of rank g and T = R1p2* (03BD#L2) ~ *03BD. The section 03B8h induces a
diagram:

u u.

We claim that the nonlocally free support 0’ = s(j~J2,j2=003BD-1(j)) of T/O is
reduced and irreducible, hence isomorphic to J2 blown up at all points of order two.
Indeed, the above diagram says that 03B8’ equals the first degeneracy locus associated
to 03C3h, and 03C3h is locally represented by a 2 x g matrix. But 03C3h|*03BD = id implies that
this matrix takes the form

with respect to suitable bases. So 0’ is cut out by at most (g - 1) functions, so every
component of 0’ has dimension  ( 2g - 1) - (g - 1) = g. In particular 0’ has no
v-1 ( j ) as component, since v-1 ( j ) has dimension g - 1. Thus 0’ is irreducible, g
dimensional, and Cohen-Macaulay [1]. It follows that 03B8’ has no embedded com-

ponents, hence is reduced along each v-1(j). This shows that 0’ can be identified
with the blown up of J2 at all j, j2 = 0. But the irreducibility of 03B8 and the inclusion
03B8 C 03B8’ immediately imply 0 = 0’. 0
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For the mentioned description of types, we also need to form Ph =

P(Hom((Eh)p, 03B5’q))  P(H). Then we have an exact sequence analogous to
(2.1) over Ph:

0 ~ 03C1*h((Eh)p) ~ Th !!; 03C1*h(03B5’q)  QDh ~ 0, (2.5)

with Th the tautological subline bundle associated to ph. There exists a natural
lifting of 03C80 to a map 03C81 :

so that (2.5) is the pullback of (2.1) by 03C81.
Let A = 03C81(Ph), 0398 = 03C01(03C1-1h(03B8)), and 0n = 03C81(03C1-1h(03B8n)). Then, under the

geometric realization of ~1, DBZ1 C II, V1B(D U A) C Ist, 0394B(D U (0398B0398n)) C
Ins, and (0398B0398n)BD ~ Isp.
Now we go back to resolve the rational map V1 ~ WI. It will take two steps.

First we blow up a subvariety T1 C ZI, then blow up the strict transformation of
Z1. Write Tj = 03C8h((03BD o 03C0h)-1(j)) for j E J2. Then Ti = j~J2,j2=0Tj.
LEMMA 2.6. TI can be characterized by the property that d03C80 fails to inject
along 03C0h(T1). Moreover, ker(d03C80)|T1 is a line bundle overTl.

Proof. A point in P(H) gives a bundle E which is an extension 0 ~ j ~
E ~ j* ~ 0. The subline bundle j deforms infinitesimally inside E if and only
if H0(X2, j2) ~ 0, or j2 = 0. This will imply that d03C80 drops rank along T1.
The assertion that ker(d03C80)|T1 is locally free of rank 1 is due to the fact that

H0(X2, j2) = C for j2 = 0 (cf. Proposition 6.8, [7]). ~

Blow up Vi along T1 to achieve V2: V2  Vi. Let T2 = 03C0-12(T1) and Z2 be
the proper transformation of Z1. The exact sequence (2.1) becomes: 0 ~ E(1)p ~
F(1)q ~ Q(1)D ~ 0 when pulled back to V2. It induces an exact sequence:

Let Q’ be the invertible (X2 x T1)-quotient 1rf(F) a Q’ ~ 0 over X2 x V1, such
that /?!gxïi = f3IITB. Let QX2 T2 = 03C0#2(Q’). Then F(2)q is the restriction to q x V2
of the bundle modification over X2 x V2 :


