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Abstract. Let Ratd denote the set of rational maps pl ~ P1 of degree d, let PGL2 act on Ratd
by conjugation, of = f -1  ~ o f, and let Md be the quotient of Ratd by this action. A field of
definition for a ç E Md is a field over which at least one rational map in ç is defined. The field of
moduli of 03BE is the fixed field of {03C3 E GK : ÇU == 03BE}. Every field of definition contains the field
of moduli. This paper treats the converse problem. We prove that if d is even, or if e contains a
polynomial map, then the field of moduli of 03BE is a field of definition. However, if d is odd, we
show that there are numerous 03BE’s whose field of moduli is not a field of definition.
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Introduction

Let 4;( z) E K(z) be a rational function with coefficients in a field K, or equiv-
alently a rational map 4;: pl ~ pl defined over K. Recently there has been a
spurt of interest in the number theoretic properties of the iterates of 0 when K
is taken to be an arithmetic field, such as a p-adic field or a number field. See
for example [3, 6, 10-12, 14-17, 25-28]. Most of these cited papers deal with
the dynamics of 0, by which we mean the behavior of points in pl under the
iterates of 0. In particular, the points in P1 are classified according to various
properties they have. Some of these properties, such as periodicity, are purely
algebraic, while others such as attracting/repelling depend on the field K having
an absolute value, which may be either archimedean or non-archimedean.

The dynamics of a rational map ~(z) are unchanged if it is conjugated by
an automorphism of P1. In other words, if f(z) = (az + b)/(cz + d) e PGL2
is a non-trivial linear fractional transformation, then the rational maps 4;( z) and
4;1 == f-1  ~  f have equivalent dynamics. This is clear, since if a point P
has some property for 0, then /-1 P will have the same property for q;1. Thus it
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makes sense to consider the set of rational maps modulo conjugation by linear
fractional transformations. We will call a conjugacy class of rational maps a
dynamical system, and for a given rational map cp, we will denote the associated
dynamical system by 101.

In order to study arithmetic properties of a rational map 0, one needs to start
with a field which contains the coefficients of 0. For example, the rational map

is certainly defined over the field Q(2). However, if we conjugate this ~ by the
linear map f (z) = z - V2, then we obtain the rational function Çf (z) = z2 - 2,
which is defined over Q. So the dynamical system [0] is defined over Q, since it
contains a map with coefficients in Q. We say that a field K is a field of definition
for a dynamical system 03BE if 03BE contains a rational map 0 which is defined over K.
Clearly, for a given dynamical system 03BE, we would like to find the smallest field
of definition, if such a smallest field exists.

On the other hand, we can attach to any dynamical system 03BE a unique
field which is minimal in a moduli-theoretic sense. Briefly, choose any ratio-
nal map 0 e g with coefficients in the algebraic closure K of K. Then the field
of moduli of 03BE is the fixed field in K of

tu e Gal(KIK): 0’ e 03BE}.
In other words, the field of moduli of [0] is the smallest field L with the prop-
erty that for every (j E Gal(K/L) there is an automorphism f E PGL2 such
that Ou = c/Jf.

It is not hard to see that the field of moduli of 03BE must be contained in any
field of definition for 03BE. So our main question becomes:

Is the field of moduli of 03BE also a field of definition for 03BE?

In many important situations we will show that this question has an affirmative
answer.

THEOREM A. Let K be a field of characteristic 0, and let = [~] be a dynami-
cal system whose field of moduli is contained in K. Then K is a field of definition
for g in either of the following situations:

(a) The degree deg(~) is even.
(b) The map 0 is a polynomial map (i.e., O(z) E K[z]).

In contrast to this positive result, we will show that our question has a negative
answer for dynamical systems of odd degree.

THEOREM B. Let K be a field of characteristic 0. Then for every odd inte-
ger d  3 there exist (many) rational maps 0 of degree d such that K is the field
of moduli for [0], but K is not a field of definition for [0].
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An important ingredient in the proofs of Theorems A and B is an analysis of the
stabilizer A~ of a rational map 0, where the stabilizer is defined to be

Not surprisingly, it tums out to be much easier to analyze [0] if its stabilizer is
trivial. Thus we will actually prove Theorem B by giving an explicit description
of all maps 0 with A~ = 1 whose field of moduli is not a field of definition. As
an example we cite the rational map

Letting T denote complex conjugation and f(z) = -1/z, it is easy to check that
01 = ~f , which proves that Q is the field of moduli of [0]. On the other hand,
we will see in Section 6 that K is a field of definition for this [0] if and only
if -1 is a sum of two squares in K. In particular, there are no fields of definition
for [0] contained in R.

In general, if 0 has trivial stabilizer, we will construct a cohomology class c4J E
Hl (GK, PGL2) with the property ’that c4J = 1 if and only if K is a field of
definition for [0]. Associated to such a cohomology class is a Brauer-Severi
curve i: P1 ~ X~, where X~ is defined over K and i is an isomorphism defined
over K. We will show that there is a morphism 03C8: X4J -t X4J defined over K
so that the following diagram commutes:

This cohomological/geometric construction quickly leads to a proof of Theo-
rem A in the case that A~ = 1.

If the stabilizer Ao is not trivial, then the situation becomes much more
complicated. In Sections 3 and 4 we will analyze the finite subgroups of PGL2
and prove a cohomology lifting theorem which will allow us to construct Xç
and the diagram (2) in certain situations. We will show in Section 5 that the
lifting theorem applies to maps of even degree and to polynomial maps, which
will complete the proof of Theorem A in all cases.

Couveignes [5] has recently studied the field of moduli for maps P1 ~ Pl
subject to the equivalence relation ~ = ~ o f. This is similar in many ways to
the subject of this paper, but the different equivalence relation leads to some
strikingly different results. For example, Couveignes gives an example in [5] of
a polynomial whose field of moduli is not a field of definition, a possibility that is
ruled out in our situation by Theorem A. We note that the work of Couveignes has
interesting applications to Belyi functions and Grothendieck’s "dessins", while
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the results in this paper are intended for the study of the arithmetic theory of
dynamical systems. We also want to mention that there is a corresponding theory
of fields of definition and moduli for abelian varieties and the maps connecting
them. See for example [20], [21, § 5.5C], [22], and [23].

Although we have restricted our discussion in this introduction to fields of
characteristic 0, most of our results are also valid for fields of characteristic
p &#x3E; 0. More precisely, we will prove our main results for general fields subject
to the condition that the stabilizer group Aç have order prime to p. We also
observe that the question of field of definition versus field of moduli can be
formulated more generally for rational maps on Pn or on other varieties. Much
of the basic set-up in Sections 1 and 2 carries over to this more general setting.
But the proofs of our deeper results, such as Theorems A and B, do not seem to
directly carry over, so we have been content in this paper to concentrate on the
one-dimensional situation.
We conclude this introduction with a brief organizational survey of the paper.

In Section 1 we give basic definitions, set notation, and prove a general cohomo-
logical sort of criterion describing fields of definition. We also discuss Brauer-
Severi curves. In Section 2 we prove Theorem A (Corollary 2.2) for rational
maps with trivial stabilizer. Section 3 contains a description of the finite sub-
groups of PGL2, their normalizers, and a lifting theorem for their cohomology.
In Section 4 we give a number of preliminary results concerning dynamical sys-
tems whose stabilizer group is non-trivial, and in Section 5 we use these results
to complete the proof of Theorem A (Theorem 5.1). In section 6 we take up the
question of dynamical systems whose field of moduli is not a field of definition,
and by an explicit construction we prove a strengthened version of Theorem B
(Theorem 6.1). Finally, in Section 7 we consider the K/K-twists of a ratio-
nal map 0 E K(z). We give the usual cohomological description of the set of
twists and present some examples, including one which involves twisting by a
non-abelian extension of K.

1. Field of définition and field of moduli

We begin by setting the following notation which will be used for the remainder
of this paper:
d an integer d  2.
K a field. Later we may make the assumption that K is a local field

(a finite extension of R, Qp or Fp((T))) or global field (a finite
extension of Q or Fp(T)).

GK the Galois group of a separable closure K of K.

Ratd the set of rational maps P1 ~ P1 of degree d. We will often identify
Ratd with a subset of K(z). Notice that Ratd has a natural structure
as an affine subvariety of P2d+1.
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Ratd(K) the set of rational maps P1 - P1 of degree d defined over K. We
identify Ratd(K) with a subset of K(z).

PGL2 the projective linear group. We will often use the natural
identifications

We will say that two rational maps 0, e E Ratd are (linearly) conjugate if
they differ by an automorphism of P1,

We define an action of f E PGL2 on 0 e Ratd by

and then the linear conjugacy class of 0 is the set of all of as f ranges over
PGL2. Notice this is a right action,

Linearly conjugate maps have equivalent dynamics, so we define the dynam-
ical system of ~, denoted [~], to be the image of 0 in the quotient space

Thus Md is the moduli space of (algebraic) dynamical systems of degree d on P1,
and [.] : Ratd ~ Md is the natural map.

Remark. We will treat Md as an abstract quotient space with no additional
structure. Ultimately, of course, one would like to give Md the structure of an
algebraic variety and to find a "good" completion. For example, it seems to be
well known among dynamicists that M2 EÉ A2, at least as analytic spaces over C.
There is a general method for constructing moduli spaces described in [13] which
will be used in a subsequent paper to construct Md as a moduli space over Z
and to show that M2 ~ A2 over Z. However, we will not concem ourselves with
such matters in this paper.

For any rational map 0 e Ratd, we define the following two important sets:

Fix(~) the fixed set of cp, that is, {P e P1: ~(P) = P}.
A~ the stabilizer of ~, that is, {f e PGL2: cpt = ~}.

For future reference we note the easy equalities
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In particular, we define the stabilizer or (automorphism group) A03BE of a dynamical
system 03BE E Md to be A~ for any map 0 E 03BE. Then 4e is well-defined as an
abstract group, although as a subgroup of PGL2 it is only determined up to
conjugation.
We now tum to the question of fields of definition. An element Q e GK acts

on a rational map 0 E Ratd = Ratd(K) by acting on its coefficients. We denote
this action by ~03C3. Note, however, that in spite of our notation, this is actually
a left action, cp(1T = (~)03C3, because 01 (P) = Q 0 cp o 03C3-1(P). It is not hard to

show, using Hilbert’s theorem 90, that 0 is defined over K if and only if cp(1 = ~
for all 03C3 E GK, see for example [24, Exercise 1.12].

The matter is much less clear when we consider the dynamical system 101
associated to 0. Notice that if lb = cpf, then ’ljJ(1 = (~03C3)f03C3. This shows that the
action of GK on Ratd descends to an action on Md = Md(K), so we might say
that a dynamical system 03BE E Md is "defined" over K if ç(1 = 03BE for all Q E GK.
Another possible definition would be to require that the equivalence class 03BE
contain a rational map 0 which is defined over K. This leads to the following
two fundamental concepts.

DEFINITION. Let 03BE E Md(K) be a dynamical system. The field of moduli off
is the fixed field of the group

{03C3 ~ GK: 03BE03C3 = 03BE}.
We denote by Md(K) the set of dynamical systems whose field of moduli is
contained in K. A field of definition for 03BE is any field L such that 03BE contains a
map 0 e Ratd defined over L. Equivalently, L is a field of definition for 03BE if e
is in the image of the natural map Ratd(L) -3 Md(L).

It is clear that the field of moduli of 03BE is contained in any field of definition. The
question of whether the field of moduli is itself a field of definition is far more
subtle, and it is this question that we will be trying to answer in the rest of this
paper.
We now describe a construction which will be essential for all of our future

analysis. For dynamical systems 03BE whose stabilizer A03BE is trivial, this construction
immediately gives a cohomology class whose triviality is equivalent to the field
of moduli of 03BE being a field of definition. However, if A03BE is not trivial, then we
only get a "cocycle modulo A03BE", which unfortunately doesn’t even make sense
since 4e will not generally be a normal subgroup of PGL2.
PROPOSITION 1.1. Let g E Md(K) be a dynamical system whose field of mod-
uli is contained in K, and let 0 E ç be any rational map in the system ç.

(a) For every o, E GK there exists an f03C3 E PGL2 such that
~03C3 = ~f03C3 . (4)

The map fo is determined by 0 and 03C3 up to (left) multiplication by an
element of A4J.
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(b) Having chosen fu s as in (a), the resulting map f : GK ~ PGL2 satisfies
f03C3 f03C3 f-103C3 E A~ for all a., T E GK. (5)

We will say that f is a GK-to-PGL2 cocycle relative to A~.
(c) Let 03A6 ~ 03BE be any other rational map in the system 03BE, and for each
a E GK choose an automorphism F, E PGL2 as in (a) so that 03A603C3 = 03A6F03C3.
Then there exists a g E PGL2 such that

g-1 F03C3g03C3 f-103C3 1 E A~ for all a E GK. (6)
We will say that f and F are GK-to-PGL2 cohomologous relative to A~.

(d) The field K is a field of definition for 03BE if and only if there exists a
g E PGL2 such that

g-lgu f;1 1 E A~ for all a E GK. (7)

Remark. If a dynamical system 03BE has trivial stabilizer 4e = 1, then Proposi-
tion 1.1 says that the map f : GK ~ PGL2 is a one-cocycle whose cohomology
class in the cohomology set H1(GK,PGL2) depends only on 03BE. On the other
hand, if A03BE ~ 1, then the criterion described in (6) is not an equivalence rela-
tion, so one cannot even define a "cohomology set relative to A~". If A~ is

abelian, one can try to use the fact that the map (u, T) ~ f03C3 f03C3 f-103C3 is a GK-to-
A~ two-cocycle to modify f into a true GK-to-PGL2 cocycle. But if A~ is not
abelian, then H2 (GK, 40) does not exist and this approach will not work.

Proof. (a) We are given that 03BE E Md(K), so for any a E GK,

This says precisely that there is an automorphism fa E PGL2 such that ~03C3 = ~f03C3.
Suppose that f’03C3 E PGL2 has the same property. Then

which proves that f’03C3f-103C3 1 E 40.
(b) Let cr, T E GK. We compute

Hence f03C3f03C3f-103C3 E A~.
(c) Since [~] = 03BE = [03A6], we can find some g E PGL2 so that 0 = 03A6g. Then

for any cr e GK we compute

Hence g-1F03C3g03C3f-103C3 1 E A~.
(d) Suppose first that K is a field of definition for 03BE, so there is a map -1) E ç

which is defined over K. Then 03A603C3 = 03A6 for all u E GK, so in (c) we can take
Fa = 1, which gives the desired result.



276

Next suppose that there is a g E PGL2 such that (7) holds. We write ha
g-1 g03C3 f-103C3 E A~ and let $ = ~g-1 

1 

E 03BE. Then

Hence (P is defined over K, so K is a field of definition for e.

One of the main results of this paper says that for polynomial maps, the field of
moduli is always a field of definition. However, since we do not have a preferred
"point at infinity", we will use the following characterization.

DEFINITION. Let 0 e Ratd be a rational map of degree d  2. A point P E P1
is called an exceptional point for 0 if cp-l (P) = {P}. A rational map 0 is said to
be a polynomial map if it has an exceptional point. A dynamical system e E Md
of degree d  2 is said to be polynomial if it contains a polynomial map.

Notice that if 03BE is a polynomial dynamical system, then every 0 e e will be
polynomial. This is clear, since if P is an exceptional point for 0 and if f e PGL2,
then f -1 (P) is an exceptional point for cpf. We also observe that if we choose
a coordinate function z on P1 so that the exceptional point P of 0 is at infinity
(i.e., z(P) = oo), then 0 is a polynomial in z in the usual sense, 0 E K[z].
Further, if 0: P1 - P1 is separable (e.g., if char(K) = 0), then an exceptional
point is a totally ramified fixed point.
We conclude this section with a brief discussion of HI(GK,PGL2) and the

associated twists of P1.

DEFINITION. A curve X/K is called a Brauer-Severi curve if there is an iso-
morphism j : P1 ~ X defined over K. Two Brauer-Severi curves are considered
equivalent if they are isomorphic over K.

PROPOSITION 1.2. (a) There is a one-to-one correspondence between the set of
Brauer-Severi curves up to equivalence and the cohomology set Hl (GK, PGL2).
This correspondence is defined as follows. Let XIK be a Brauer-Severi curve,
and choose a K-isomorphism j : pl ~ X. Then the associated cohomology class
cx E Hl (GK, PGL2) is given by the cocycle

(b) The following three conditions are equivalent:
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Proof. Brauer-Severi varieties for P’ are discussed in [18, X §6], and twisting
of curves is discussed in [24, X §2]. In particular, Proposition 1.2(a) is a special
case of [24, X.2.2]. The equivalence of (i) and (iii) in (b) then follows from (a),
while the equivalence of (i) and (ii) is an immediate consequence of the Riemann-
Roch theorem.

The following elementary result, valid for arbitrary fields, gives a useful criterion
for a Brauer-Severi curve to split. We note that if K is a local or global field,
then a much stronger result is available, see Theorem 1.4 below.

PROPOSITION 1.3. Let XIK be a Brauer-Severi curve. If there is a divi-
sor D E Div(X) such that D is defined over K and deg(D) is odd, then

X(K) ~ 0.
Proof. We begin by taking cohomology of the exact sequences

and

to obtain maps

HI(GK,PGL2)  H2(GK,03BC2)  Br(K)[2] C Br(K).
Note that Hi (GK, SL2) = 0 from [18, Chapter X, corollary to Proposition 3].

Let cX E H1(GK, PGL2) be the cohomology class associated to X, and
choose a Galois extension M/K such that X(M) =10. Proposition 1.2(b) tells
us that the restriction of cx to H1(GM,PGL2) is trivial, so ex comes from an
element in H1(GM/K,PGL2(M)), which by abuse of notation we will again
denote by cx.

For any odd prime p, let Gp be the p-Sylow subgroup of GM/K, and let Mp =
MGP be the fixed field of Gp. Taking various inflation and restriction maps, we
obtain the following commutative diagram:

Here the bottom row comes from taking Gp = G M/Mp cohomology of the exact
sequence
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If we start with cx E H1(GM/K, PGL2(M)) and trace it around the diagram
to Br(Mp), we find that it has order dividing 2 since it maps through Br(K) [2],
and it has order a power of p since it maps through H1 (Gp, M*). Hence the image
of cx in Br(Mp) is zero. Now the injectivity of the maps along the bottom and
up the right-hand side shows that Res (cx) = 0 in HI(Gp,PGL2(M)). It follows
from Proposition 1.2(b) that X(Mp) ~ 0, so there is a divisor Dp E Div(X)
defined over K whose degree is prime to p. (To see this, take any P E X(Mp)
and let Pl,..., Pn be the complete set of MPIK conjugates of P. Then n is
prime to p, since it divides [Mp : K], and the divisor (P1) + ··· + (Pn) is defined
over K.)
We have proven that the greatest common divisor of the set

{deg(Dp): p an odd prime}

is a power of 2, and deg(D) is odd by assumption, so we can find a (finite) linear
combination

Notice that E is defined over K. The Riemann-Roch theorem tells us that the

linear system lEI is isomorphic to P1K and that we have a K-isomorphism

Therefore X is K-isomorphic to P1, so X(K) = P1 (K) is not empty.

When K is a local or global field, the following result greatly strengthens Propo-
sition 1.3. In particular, it says that a Brauer-Severi curve X/K always has
points defined over some quadratic extension of K.

THEOREM 1.4. Let K be a local or global field. For each b E K* and each
quadratic extension L/K, define a map

(a) Every element of Hl (GK, PGL2) is represented by a cocycle [b, L/K].
(b) The cocycle [b, L/K] is cohomologous to 1 if and only if b E NL/K(L*).
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(c) Let Br(K)[2] denote the 2-torsion in the Brauer group of K, and let
Inf denote the inflation map on cohomology from K to L. Then there is a
commutative diagram

Proof. The exact sequences (8) already used above give

Hl (GK, PGL2)  H2(GK,03BC2)  Br(K)[2].
(Note that the left-hand map is only injective as a map of pointed sets.) For
local and global fields, every element of Br(K) of order 2 splits over a quadratic
extension of K. This is a special case of the more general result that an element
of Br(K) of order n splits over a cyclic extension of K of degree dividing n.
For local fields this is immediate from [18, Chapter XIII, Proposition 7], which
says that any extension of degree n will work. For global fields the desired result
is [1, Chapter 10, corollary to Theorem 5].

Hence every element of H1 (GK, PGL2) is represented by a cocycle W: GL/K
-3 PGL2(L) for some quadratic extension L/K. If we write GL / K = {1,},
then w is determined by its value at T, say Wi = (Az + B)/(Cz + D). The
condition that W be a cocycle is the single relation 7» = z It is now an

exercise to determine the exact form of Wi, but lacking a suitable reference, we
give the details.

First, if c ~ 0, then we let f = z + d/c and replace W by the cohomologous
cocycle f03C9f-1 = (az + b)/cz. Then the condition WiW; = z forces a = 0
and (b/c)T = (b/c). Hence w = [b/c, L/K] with blc E K*.

Second, suppose that c = 0. Then wT has the form az + b, so W is a 1-cocycle
with values in the affine linear group

Taking cohomology of the exact sequence

and using [18, Chapter X, Propositions 1, 2] gives
0 = H1(GL/K, L+) ~ H1(GL/K, AGL2(L)) ~ H1(GL/K, L*) = 0.

Hence in this case LV is cohomologous to 1, so it equals [1, L / K]. This completes
the proof of (a). We will use the following lemma to verify (b).
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LEMMA 1.5. Let L/K be a Galois extension, let w: GL/K ~ PGLm(L) be
a cocycle. Then w is cohomologous to 1 if and only if it lifts to a cocycle
: GL/K -+ GLm(L).

Proof. We take cohomology of the exact sequence

and use the fact that Hl(GL/K,GLm(L)) = 0 [18, Chapter X, Proposition 3].
This gives a map

with the property that 03B4(c) = 0 if and only if c = 0. Letting c;v: GL/K ~ GLm(L)
be any lifting of cv, the cohomology class 03B4(03C9) is represented by the cocycle

03B4(03C9)03C3, = 03C903C303C903C303C903C3-1 (mod coboundaries).
If W is a cocycle, then 03B4(03C9) = 1, so w is cohomologous to 1. Conversely, if

03B4(03C9) = 1, then there is a map a: GL/K ~ L* such that

(Elements of L* are identified with scalar matrices.) It follows that the map a-lw
is a cocycle GLIK -+ GLm(L) which is a lifting of 03C9. This completes the proof
of Lemma 1.5.

We now resume the proof of Theorem 1.4. According to Lemma 1.5, the cocycle
[b, L / K]: G LI K -+ PGL2(L) is cohomologous to 1 if and only if it can be lifted
to a cocycle with values in GL2 (L). Since GL/K = {1, }, this is equivalent to
the existence of an element u e L* such that

This equality holds exactly when uu’ = b, which proves that [b, L/K] is coho-
mologous to 1 if and only if b E NL/K(L*). This completes the proof of (b).

It remains to check the commutative diagram in (c). The isomorphism of
K* INLIK (L*) and H2(GL/K’ L*) is the usual isomorphism of H° and H2 for
cyclic groups. The surjectivity of the two connecting maps labeled "onto" follows
from [ 18, Chapter X, Propositions 8, 9 and Lemma 1 ]. Finally, an easy calculation
which we leave for the reader shows that the map along the bottom row is given
by b ~ [b, L/K].

2. Rational maps with trivial stabilizer

In this section we will use the material developed in section 1 to analyze dynami-
cal systems with trivial stabilizer. We refer the reader to [ 18, appendix to Chapter
VII] for a general discussion of non-abelian group cohomology.
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THEOREM 2.1. Let 03BE E Md (K) be a dynamical system with trivial stabilizer
A03BE = 1.

(a) There is a cohomology class ce E HI(GK,PGL2) with the following
property: For any rational map 0 ~ 03BE there is a one-cocycle f : GK ~
PGL2 in the class of ce so that

0’ = ofo’ for aZZ a E GK. (9)
(b) Let XEIK be the Brauer-Severi curve associated to the cohomology
class ce. (See Proposition 1.2.) Then for any rational map 0 e e there
exists an isomorphism i: pl ~ Xç defined over K and a rational map
03A6: X03BE ~ Xç defined over K so that the following diagram commutes:

(c) The following are equivalent:
(i) K is a field of definition for 03BE.
(ii) X03BE (K) ~ 0.
(iii) ce = 1.

Proof. (a) This is immediate from Proposition 1.1 and our assumption that
Ai = 1. Thus Proposition 1.1(a) says that f: GK ~ PGL2 is determined by 0,
Proposition 1.1(b) says that f is a one-cocycle, and Proposition 1.1(c) says that
any other choice of 0 ~ 03BE leads to a cohomologous cocycle, so the associated
cohomology class depends only on 03BE.

(b) Let j: P1 ~ Xi be a K-isomorphism, so ci is the cohomology class
associated to the cocycle Q H j-1 j03C3. On the other hand, we know from (a)
that ci is associated to the cocycle a e fa. Hence these two cocycles are
cohomologous, so there is an element g E PGL2 so that

We let i = jg and define 03A6 = i~i-1. Then the diagram (10) clearly commutes,
and it only remains to verify thàt (P is defined over K. For any E GK we
compute

(c) The equivalence of (ii) and (iii) is immediate from Proposition 1.2(b),
and the equivalence of (i) and (iii) follows from Proposition 1.1 (d) and our
assumption that 4e = 1.
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The following corollary will serve to illustrate the strength of Theorem 2.1.
We will later prove that these results hold more generally without the assumption
that the stabilizer be trivial.

COROLLARY 2.2. Let £ E Md(K) be a dynamical system with 4e = 1.
(a) If d - 0 (mod 2), then K is a field of definition for ç.
(b) If the dynamical system 03BE is polynomial (i.e., 03BE contains a polynomial
map), then K is a field of definition for ç.

Proof. Take any rational map 0 E ç, and choose i : P1 ~ X03BE and lF: Xi -
X03BE as in Theorem 2.1(b) so that the diagram (10) commutes.

(a) Let Fix(03A6) be the set of fixed points of -1) taken with multiplicity. We will
treat Fix(03A6) as a divisor on P1. More formally, if we let F$ be the graph of (b and
A: Xi - Xe x Xe the diagonal map, then Fix(q» E Div(Xe) is the pull-back
divisor Fix(03A6) = 0394*(039303A6). Note that the divisor Fix(q» is defined over K.
We further observe that the divisor Fix(03A6) has degree d + 1. This follows from

the fact that 039303A6 is a divisor of type (1, d) and the diagonal 0394(X03BE) is a divisor
of type (1, 1) in Num(X x X) = Z x Z. Equivalently, if we write 03A6 = [03A61, 03A62],
where 03A61, 03A62 are homogeneous forms of degree d, then Fix(03A6) is the divisor of
zeros for the d + 1 form y03A61(x, y) - x03A62(x, y), so deg(Fix(03A6)) = d + 1.

Recalling that d is even by assumption, this proves that X03BE has a divisor of
odd degree defined over K, namely Fix(03A6). It follows from Proposition 1.2 that
X03BE(K) ~ 0, and then Theorem 2.1 (c) tells us that K is a field of definition

for 03BE.
(b) Let 0 E ç, so 0 is a polynomial map. By definition, this means that 0 has

an exceptional point P E P1. Let Q = i(P) E Xe. Then Q is an exceptional
point of 03A6. This is clear from (10), since i: P1 ~ Xi is an isomorphism. But
for any Q E GK we have

since -D is defined over K. Thus QU is also an exceptional point of -1). We

consider two cases.

First, suppose that P is the only exceptional point of 0. Then Q is the unique
exceptional point of 4l, so from above we have QU = Q for all Q E GK. Hence
Q E X03BE(K), and then Theorem 2.1(c) says that K is a field of definition for ç.

Next, suppose that 0 has a second exceptional point P’. Let g E PGL2 be a
transformation with g(0) = P and g(oo) = P’. Then 0 and oo are exceptional
points of cj;9, so cj;9 must have the form 0 = azd for some a e K*. Letting
h(z) = a-1/(d-1)z, we find that ogh = zd E ç, which shows directly that K is
a field of definition for 03BE.
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3. Cohomology of finite subgroups of PGL2

In order to analyze rational maps with non-trivial stabilizers, it is necessary to

describe the finite subgroups of PGL2 and their normalizers. The classification
of finite subgroups of PGL2 is, of course, quite classical, and the subsequent
description of their normalizers is a simple exercise.

THEOREM 3.1. Let A be a finite subgroup of PGL2(K), and suppose either
that char(K) = 0 or that the order of A is prime to char(K).

(a) The group A is isomorphic to one of the following groups:

(b) More precisely, if we let (n denote a primitive nth root of unity, then A is
linearly conjugate to one of the following subgroups of PGL2, where we identify
PGL2 with Ratl:

(Here ~f1,..., fr) denotes the group generated by fl, ... , f,.) In particular, A
is linearly conjugate to a subgroup of PGL2 which is defined over K.

(c) Let D~ denote the infinite dihedral group Gm  J.-L2, which we think of as
embedded in PGL2 via

For each of the finite groups A listed in (b), the normalizer N(A) of A in PGL2
is as follows:

Proof. (a) For K = C, this is a classical result which may be found, for

example, in [29, Chapter 9 §68]. The proof for K = C uses the fact that S03(R)
is the maximal compact subgroup of PGL2(C), which explains why the sym-
metry groups of the regular solids make their appearance. As explained in [19,
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Proposition 16], one can prove the more general result by reworking the classical
proof, or, in the case that char(K) = 0, one can appeal to the result over C and
use the Lefschetz principle.

(b) One finds in [29, 9 §§71-78] the explicit representations listed in (b). Again
one can either rework the derivation in [29] in the general case, or if working in
characteristic 0, reduce directly to K = C. There remains the assertion that the
given groups are defined over K. This is clear for Cn and 1)2n, and for U4, 64,
and 2t5 it is a simple matter using the given generators to write out all of the
elements and check that they are GK invariant.

(c) Let A be one of the groups listed in (b), and let f = (az + b)/(cz + d)
be an element of N(A). Further, let 0,,(z) = 03B6nz and 03C8(z) = 1/z.
We begin with the cyclic group Cn, which is generated by the map 0,,. It

is clear that N(C1) = PGL2, so we will assume that n  2. We are given that
~fn ~ Cn, which means that ~fn = ok for some integer k. Written out explicitly,
this says that

It follows that ac = bd = 0, since 03B6n ~ 1. On the other hand, we know that
ad - bc ~ 0, since otherwise f is constant, so we are left with two possibilities,
namely a = d = 0 or b = c = 0. If a = d = 0, then (11) reduces to ~fn = 03B6-1nz,
and if b = c = 0, then (11) becomes ~fn = 03B6nz, so both are possible. This proves
that

Next we consider the dihedral group D2n, which is generated by Çn and 0.
We are given that Of E i)2n, so Of is equal to either some ok or some oke.
Suppose first that Of = ok. Then (11) says that f has the form f = az or
f = b/z. If f = az, then 03C8f = 1/a2z will be in i)2n if and only if a 2n = 1; and
similarly if f = b/z, then 03C8f = b2 / z will be in D2n if and only if b2n = 1.

Next suppose that Ç( = ~kn03C8. Writing this out gives the equality

Hence ad03B6n - bc = ad - bc03B6n = 0, which implies that

If n  3 (i.e., 03B6n ~- 1), then (13) implies that ad = bc = 0, contradicting the
assumption that f has degree 1. Hence if n  3, then we cannot have Of = ~kn03C8,
and so
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Similarly, if n = 2, then (12) tells us that ad + bc = 0 and that ac = ±bd.
Further, we know that 03C8f C D4, say lbf = 0’. Writing this out yields

Thus f must also satisfy a2 = C2 and b2 = d2. Taking the various sign choices
leads to N(T4) = 64. We leave the algebra for the reader. Altematively, the
given restrictions on f show that N(D4) is a finite group, it is well known
that 64 contains 2)4 as a normal subgroup, and 2l5 is simple, so the equality
N(T4) = 64 follows from the list in (b).
A similar analysis shows that the normalizers of 2t4, 64, and U5 are finite.

Then using the fact that 2t4 a 64, that 215 is simple, and that none of 2l4, 64, or 2l5
is contained in a dihedral group, it is clear from the list in (b) that N(2l4) = 64,
N(G4) = 64, and N(2(5) = U5.

The following lifting theorem will be crucial when we attempt to extend
Theorem 2.1 to dynamical systems with non-trivial stabilizer groups. We remark
that in general, neither part of Theorem 3.2 is true for even values of n.

THEOREM 3.2. Let A be one’of the finite subgroups of PGL2(K) listed in
Theorem 3.1(b), and let N be the normalizer of A in PGL2 (K). Then the natural
map

is surjective in the following two cases:
(i) A = Cn with n - 1 (mod 2).
(ii) A 02n with n - 1 (mod 2).

Remark. The group N in Theorem 3.2 is not abelian, so Hl (GK, N) is only
a cohomology set, not a group. Further, even in the case that A is abelian, it will
not be in the center of N, so there is no connecting map from H1(GK, N/A) to
H2 (GK, A). Thus in order to prove Theorem 3.2, we will have to explicitly lift
a cocycle from N/A to N.

Remark. Amplifying on the proceeding remark, we observe that the twisted
product D~ = Gm  M2 sits in the exact sequence

Taking cohomology and using Hilbert’s theorem 90 gives an exact sequence
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However, (15) is an exact sequence of pointed sets, not of groups. In particular,
suppose that ci: 01 H (a03C3, t03C3) is a G K-to-11 00 cocycle. Then c2 : (j e (1, t03C3) is
also a cocycle, the cocycles ci and c2 clearly have the same image in H1 (GK, 03BC2),
yet in general ci and c2 will not be cohomologous in Hl (GK, This shows
that one needs to be careful when dealing with exact sequences in non-abelian
cohomology.

Proof. We start with the cyclic group Cn. If n = 1, then N(Ci) = PGL2
and (14) is the identity map, so we may assume that n  3. Theorem 3.1(c) tells
us that N(Cn) = D~ = Gm  03BC2. Note that the group law on D~, which we
will denote by *, is given by the twisted product

The image of Cn in D~ is pn x 1, so there is a natural isomorphism

With this identification, (14) becomes the map

We need to prove that Fn is surjective when n is odd.
Let C E H1(GK, D~) be a cohomology class, say represented by the cocy-

cle

The cocycle condition says that

so we find that

Notice that A is almost, but not quite, a G K-to-Gm cocycle.
On the other hand, T : GK - 03BC2 is a homomorphism. We consider two

cases. First, if T, = 1 for all 03C3 E GK, then A: GK ~ Gm is an honest cocycle.
Hilbert’s theorem 90 then tells us that A is a coboundary, say A = B03C3/B for
some B ~ K*. Hence C is represented by the cocycle

Thus C is the trivial class in H1 (GK, D~), so it can certainly be lifted in (16).
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Second, suppose that T : GK ~ p2 is surjective, and let L be the fixed field
of the kemel of T. Writing

we consider the inflation-restriction sequence

(N.B. This is an exact sequence of pointed sets, not of groups.) The class Res(C)
is represented by the cocycle Q H (Au, 1), so using the above argument with L
in place of K, we see that Res(C) = 0. This means that we can write C = Inf(c),
where c E H1(GL/K,D~(L)) is represented by some cocycle

It thus suffices to show the surjectivity of the map

induced by the homomorphism

Let GL/K = {1,03BD}. Then a GL/K-to-D~(L) cocycle is uniquely determined
by the image (x, u) of v. There is only one cocycle condition, namely

In other words, (x, u) defines a cocycle if and only if either

But if u = 1 and NL/K(x) = 1, then Hilbert’s theorem 90 tells us that x = yv/y
for some y E L*, and so

is the trivial class. Thus the cocycles (x, 1) with NL/K(x) = 1 all represent the
trivial cohomology class in H1(GL/K,D~(L)).

On the other hand, two cocycles (x, -1) and (x’, -1) are cohomologous if
and only if there is a (y, w) such that
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Thus (x, -1) and (x, -1) are cohomologous if and only if there is a y E L*
such that x’ = x±1NL/K(y). Summarizing our discussion, we have shown that
there is a bijection

With this identification, the map Fn,L in (17) becomes

The group K*/NL/K(L*) is a group of exponent 2 and n is odd by assumption,
so this last map is clearly surjective. This completes the proof of Theorem 3.2
in the case (i) that A = Cn with n odd.

Next we consider the case (ii) that A = 02n = /-Ln )4 03BC2. Theorem 3.1(c) says
that N = D4n = p2n x 03BC2 with the natural inclusion 3J2n a 04n, and thus we
have an isomorphism

We thus need to show the surjectivity of the map

Hilbert’s theorem 90 implies that every cocycle in HI (Gx, 03BC2) has the form
o- H a(j / a for some a E K* such that a = a2 E K. Then the map

is clearly a cocycle, so it represents an element of H1 (Gx, D4n). Its image under
the map (18) is represented by the cocycle

since n is odd and a = a2 E K. Hence (18) is surjective, which completes the
proof of Theorem 3.2 in the case (ii) that A = On with n odd.

4. Rational maps with non-trivial stabilizers

In this section we will prove a number of preliminary results conceming dynam-
ical systems with non-trivial stabilizers. These will be used in the next section
to generalize Corollary 2.2 to arbitrary dynamical systems.
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PROPOSITION 4.1. Let 03BE E Md. Then the stabilizer A03BE is a finite group.
Proof. This result is well known, at least when K c C. It appears, for exam-

ple, as exercise 6.2.5 in [2]. We briefly sketch the proof. Let

be the primitive n-periodic points of 0. (Note we are taking all points defined
over an algebraic closure Ka of K.) For any g E PGL2 we have

so in particular, if g e A~, then g permutes the points in Pern (0).
It is not hard to prove that Per*n(~) is non-empty for infinitely many values

of n. There is an elementary proof in [2, §6.1] in the case that K C C, and the
exact same proof works in general if one considers only points whose period is a
prime q with q ~ char(K). (See also [11, Lemma 3.4].) We choose three values
n1, n2, n3 of n for which Pern (~) is non-empty, and consider the set

As explained above, each g E 4,0 will permute the points in W, so g deter-
mines a permutation 03C0g e 6r according to the rule f(Pi) = P03C0g(i). In this way
we get a homomorphism 03C0 : Aç - Sr. Further, the fact that r  3 implies
that 03C0 is injective, since an element of PGL2 is uniquely determined by its value
at three distinct points. Hence Aç sits as a subgroup of 6r, so it is finite.

Next we show that the fa ’s attached to a given rational map 0 lie in the normalizer
of its stabilizer.

LEMMA 4.2. Let 03BE E Md(K) and choose a ~ 03BE whose stabilizer 40 is defined
over K. For each 03C3 E GK, write ~03C3 = ~f03C3 as usual.

(a) fu E N(A~).
(b) The map

is a well-defined 1-cocycle.
Proof. (a) For any u E GK we use (3) and the fact that Ao is defined over K

to compute

Therefore fa E N (,4,0).
(b) Proposition 1.1 says that f03C3f03C3f-103C3 e 40, and (a) says that f : GK

N(A~), so f defines a 1-cocycle with values in the quotient group N(A~)/A~.

We next prove the following somewhat strange looking result which has a very
useful corollary. The notation is taken from Theorem 3.1(b).
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PROPOSITION 4.3. Let 03BE E Md, and suppose that there is a rational map 0 E ç
with the following two properties:

(i) Cn = ~03B6nz~ c Ao.
(ii) There is a cr E GK and an f = b/z E PGL2 such that ~03C3 = ~f.

Then

COROLLARY 4.4. Let 03BE E Md by a dynamical system, and if char(K) = p &#x3E; 0,
assume that #A03BE is prime to p.

(a) If d - 0 (mod 2), then the stabilizer of 03BE is either

(b) If the dynamical system 03BE is polynomial (i.e., 03BE contains a polynomial
map), then the stabilizer of e is either

Further, the following three conditions are equivalent:
(i) A03BE = i)2d-2.
(ii) zd E 03BE.
(iii) Some (every) 0 E ç has more than one exceptional point.
Proof of Proposition 4.3. If n = 1 then (19) is trivial, so we assume that

n  2. The fact that 03B6nz e Aç means that 03B6-1n~(03B6nz) = cP(z), so the rational
function z-1~(z) is invariant under the substitution z e (n z. Hence z-l 10 (z) is
a function of Zn say

Note that (20) does not itself imply that d - 1 (mod n). For example, the rational
function Z/(Zn + 1) has degree n.

However, (20) does give some information about the order of 0 at z = 0 and
at z = oo. Thus

The fact that n  2 then implies that

In other words, 0 maps the set {0, oo} to itself.
Next we write out the given property 0’ = cpf to obtain
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Putting z = 0 and using the fact that 03C3 fixes 0 and oo, we find that ~(0)~(~) = b.
This means that ~(0) and ~(~) cannot both be 0 and cannot both be oo, so 0
permutes the two elements in the set {0, oo}. This leads to two cases, depending
on whether 0 fixes 0 and oo or switches them.

Suppose first that ~(0) = 0 and ~(~) = oo. Then (21) and (22) tell us that
ord0(03A6)  0 and ord~(03A6)  0, so lll must have the form

Hence

Similarly, suppose that ~(0) = oo and 0(oo) = 0. Then (21) and (22) give
ordo «P)  0 and ord~(03A6) &#x3E; 0, so 4l must have the form

Then 0 looks like

and now the fact that ns - 1  n(r + 1) - 1 &#x3E; nr implies that

Proof of Corollary 4.4. (a) It is easy to see that each of the groups D4n, 214,
64, and 215 contains a copy of the four group D4. Hence it suffices to show that
if the stabilizer of 03BE E Md contains D4, then d must be odd.

So we make the assumption that D4 C 4e. Then Theorem 3.1 says that we
can find a rational map 0 ~ 03BE so that

In particular, C2 = {±z} c 4o, and if we let f(z) = 1/z, then 0 = cpt.
Thus we can apply Proposition 4.3 with n = 2 and u = 1 to conclude that
d = ±1 (mod 2), which is the desired result.

(b) Take any 0 E 03BE, and let P be an exceptional point for 0. Then for
any f E PGL2, the point f-1(P) is an exceptional point for cpt. In particular, if
f E 40, then f-1(P) is an exceptional point for 0. We consider two cases.

First, suppose that 0 has only one exceptional point. Then f (P) = P for all
f E 40. In other words, the maps in Ap have a common fixed point. Propo-
sition 4.1 says that A~ is a finite group, and looking at the list of possibilities
described in Theorem 3.1(b), we see that A~ must be a cyclic group (tn.
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Next, suppose that 0 has a second exceptional point P’. Let g e PGL2 be a
transformation with g(0) = P and g(oo) = P’. Then 0 and oo are exceptional
points of cp9, so cp9 must have the form 0 = azd for some a E K*. Letting
h(z) = a-1/(d-1)z, we find that ~gh = zd E ç, which proves that (iii) implies (ii).
Next we note that any element of Azd must either fix or permute 0 and oo, from
which it is easy to see that

This shows that (ii) implies (i).
Finally, suppose that A03BE = D2d-2. Theorem 3.1(b) says that we can find a

~ ~ 03BE whose stabilizer Aç contains the maps f (z) = (z and g(z) = 1/z, where (
is a primitive nth root of unity. Then P, f(P), and g(P) are all exceptional
points of 0. They cannot all be equal, since f and g have no common fixed
points, so 0 has at least two exceptional points. This proves that (i) implies (iii),
which completes the proof of Corollary 4.4

In the case that a dynamical system 03BE ~ Md(K) has trivial stabilizer, Theorem 2.1
and Corollary 2.2 gave powerful tools for proving that K is a field of definition
for 03BE. The following two results give similar, but weaker, tools in the case that
A03BE is non-trivial. Essentially, they say that Theorem 2.1 and Corollary 2.2 are
still true provided that the fa’s can be chosen to give a true cocycle, instead of
a cocycle relative to 4e. This will explain why our lifting result (Theorem 3.2)
will be so useful.

PROPOSITION 4.5. Let 03BE E Md (K), let 0 E ç, and suppose that there is a map
f : GK - PGL2 with the following two properties:

0’ Ofo’ and f03C3 = f03C3f03C3 for all 03C3,  ~ GK. (23)

(N.B. f is required to be a true cocycle, not merely a cocycle modulo A~.) Let
c E H1(GK, PGL2) be the associated cohomology class, and let X/K be the
associated Brauer-Severi curve (Proposition 1.2).

(a) There exists an isomorphism i: P1 ~ X03BE defined over K and a rational
map 03A6: Xi - X03BE defined over K so that the following diagram commutes:

(b) The following are equivalent:
(i) K is a field of definition for ç.
(ii) X(K) ~ .
(iii) c = 1.
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COROLLARY 4.6. Let 03BE E Md(K), and suppose that there is a 0 E ç, and a
map f: GK ~ PGL2 satisfying the two conditions in (23).

(a) If d - 0 (mod 2), then K is a field of definition for 03BE.
(b) If the dynamical system 03BE is polynomial (i.e., 03BE contains a polynomial

map), then K is a field of definition for ç.
Proof. The proof of Proposition 4.5 follows, word-for-word, the proof of

Theorem 2.1(b,c). Similarly, the proof of Corollary 4.6 is identical to the proof
of Corollary 2.2

5. Field of moduli equals field of definition

In this section we will prove Corollary 2.2 without the assumption that the
stabilizer be trivial. The proof will use all of the tools we have developed in the
previous four sections.

THEOREM 5.1. Let 03BE E Md(K) be a dynamical system, and if char(K) = p &#x3E;

0, assume that #A03BE is prime to p.
(a) If d ~ 0 (mod 2), then K is a field of definition for 03BE.
(b) If the dynamical system 03BE is polynomial (i.e., e contains a polynomial

map), then K is a field of definition for ç.
Proof. (a) Corollary 4.4(a) says that A03BE is either cyclic or dihedral. Suppose

first that Ae = Cn. The case n = 1 is already covered by Corollary 2.2, so we
may assume that n  2. Then Theorem 3.1(b) tells us that we can find a map
~ ~ 03BE with

Further, Theorem 3.1 (c) says that

Writing 01 = ÇfOE as usual, Lemma 4.2 says that f, E N(A~) and that f
induces a 1-cocycle with values in N(A~)/A~. We consider two subcases. First,
suppose that every fa has the form fa = auz. The a,’s are well-defined modu-
Io pn, so we get a well-defined 1-cocycle

But there is an isomorphism of Galois modules

and Hilbert’s theorem 90 tells us that H1(GK, K*/03BCn) ~ H1(GK, K*) = 0.
Thus there is an a E K* satisfying
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Setting g = az, we find that g-1 g03C3 f-103C3 1 = (03B1-1 03B103C3 03B1-103C3)z E A~. Now Proposi-
tion 1.1 (d) tells us that K is a field of definition for 03BE.

Second, suppose that there is some T e GK such that fr = br / z. We now have
the situation that «,,z) = 40 and 0’ = ~f with fT = bT/z. This is exactly the
situation in which we can apply Proposition 4.3 to deduce that d - ±1 (mod n).
Since we have assumed that the degree d of 03BE is even, it follows that n is odd.
This means we can use case (i) of our lifting result Theorem 3.2 to deduce that
the map

is surjective. Thus the map f : GK ~ N(A~), which a priori is only a "cocycle
modulo A~," can be modified to yield a true cocycle. In other words, although
the condition 01 = ofa only determines the f,’s up to left multiplication by
an element of 4,0, it is possible to choose the fa’s in such a way that they
satisfy fa fq = fUT. Having successfully lifted f, it only remains to apply Corol-
lary 4.6(a) to conclude that K is a field of definition for 03BE. This completes the
proof in the case that Ai is cyclic.

Next suppose that Ag = f)2n. Corollary 4.4(a) and our assumption that d
is even implies that n is odd, and then Theorem 3.2 tells us that the map (24)
is surjective. So again we can lift f to be a true cocycle, and then another
application of Corollary 4.6(a) tells us that K is a field of definition for 03BE.

(b) Corollary 4.4(b) says that Ai is either Q:n or 1)n. Further, if Ai = 1)n,
then zd ~ 03BE, so any field K will be a field of definition for 03BE. It thus suffices to
consider the case that A03BE = Cn. Further, we already dealt with the case n = 1
in Corollary 2.2(b), so we may assume that n  2. Then Theorem 3.1 allows us
to choose a 0 ~ 03BE such that

Corollary 4.4(b) also tells us that 0 has a unique exceptional point, and since 40
sends exceptional points to exceptional points, that unique exceptional point must
be z = ~.

For any e GK we have

Thus f-103C3(~) is an exceptional point of 0, which means we must have f-103C3(~) =
oo. In other words, every f03C3 must have the form f03C3 = aaz; none of the f03C3’s can
have the form b/z. Now just as in the proof of (a), the a03C3’s give a cocycle G K -+
K*/03BCn which is a coboundary by Hilbert’s theorem 90, say 03B1-1 03B103C3 03B1-103C3 E pn.
Then g = az gives g-1 g03C3 f-103C3 1 E 4,o, and we use Proposition 1.1(d) to conclude
that K is a field of definition for 03BE.
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6. Field of moduli not equal to field of definition

In the last section we showed that the field of moduli of a dynamical system
of even degree is always a field of definition. We are now going to construct a
large class of examples of odd degree whose field of moduli is not a field of
definition. Recall from Theorem 2.1 that for each dynamical system 03BE E Md(K)
with trivial stabilizer, we constructed a cohomology class ce e Hl (G K, PGLz)
whose triviality is equivalent to the assertion that K is a field of definition for 03BE.
In other words, if we let

and

Md(K, 1) = {03BE ~ Md(K): A03BE = 1},
then we have an exact sequence of sets

Thus the image of Md(K, 1) in H1(GK,PGL2) measures the extent to which
there exist dynamical systems whose field of moduli is not a field of definition.

THEOREM 6.1. Let d - 1 (mod 2), and let K be a local or a global fceld. Then
the map

is surjective. In particular, there exist dynamical systems 03BE E Md(K) with trivial
stabilizer such that the field of moduli of 03BE is not a field of definition.

Proof. The second statement follows from the surjectivity of (25), the surjec-
tivity of the connecting map from H1(GK, PGL2) to Br(K) [2] (Theorem 1.4(c)),
and the fact that Br(K)[2] ~ 0 for local and global fields. More precisely, for
a local field Br(K)[2] = Z/2Z, see [18, Chapter XIII, Proposition 6]; and for
a global field Br(K)[2] is a countable direct sum of copies of Z/2Z, see [1,
Chapter VII].
We will prove the surjectivity of (25) by explicitly constructing, for each

element of H1 (GK, PGL2), a family of rational maps of degree d whose corre-
sponding cocycle is the given cohomology class. All of this, and considerably
more, is contained in the following proposition and corollary.

PROPOSITION 6.2. Let d - 1 (mod 2), and let K be a local or a global field.
(a) Let L/K be a quadratic extension, say with GLIK = {1,}, let b E K*,

let ,0, ... , yd E L, and let 03BE be the dynamical system containing the map
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Suppose further that 4e = 1. Then

where ce is the cohomology class associated to 03BE in Theorem 2.1 and [b, L / K]
is the cocycle described in Theorem 1.4.

(b) Conversely, let 03BE E Md(K, 1) be a dynamical system whose associated
cohomology class ce is non-trivial. Then there exists an L/K, a b E K*, and
elements 03B30, ..., 03B3d E L as in (a) so that the map cp(z) defined by (26) is in ç.

In order to apply Proposition 6.2(a), we need to find maps (26) which have
trivial stabilizer. It’s not hard to produce many examples of such maps, as in the
following result.

COROLLARY 6.3. Let d - 1 (mod 2), let K be a local or a global field, let

L/K be a quadratic extension, say with GL/K = {1, }, let b E K*, and let
-y E L*. Suppose that these quantities satisfy the following three conditions:

Then the dynamical system ç, containing the rational map

satisfies

In particular, for any quadratic extension L/K and any element b E K* with
b e NL/K(L*), there are infinitely many 03B3 E L* such that the field of moduli of
03BE03B3 is contained in K, but K is not a field of definition for ç,.

EXAMPLE. We can use Proposition 6.2 to construct many examples of dynam-
ical systems whose field of moduli is not a field of definition, in addition to the
examples given in Corollary 6.3. An interesting example arises by taking b = -1
and 03B3j = (1 +i)d+l (d j) in (26). Then (1 + i)T = -i(1 + i), so after a little algebra
the rational map (26) becomes

We will leave it to the reader to prove that if d is odd, then A4J = 1. (The proof is
very similar to the proof of Corollary 6.3.) So for odd values of d, the map cp(z)
has field of moduli Q, but every field of definition has degree at least 2.

More precisely, Proposition 6.2, Theorem 1.4, and Theorem 2.1, imply that
a quadratic extension K/Q is a field of definition for this 0 if and only if
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-1 E NK(i)/K(K(i)*). For example, the field K = Q(-2) is a field of
définition for ~, since

We can also see this directly by conjugating 0 by the map

A rather messy computation then shows that of E Q(-2)(z). It is possible to
give an explicit (but complicated) formula for Çf which displays it as a rational
map with coefficients in Q(-2). We will be content to give the result for d = 3,
in which case one can check that

Proof of Proposition 6.2. (a) Let ~(z) be defined by (26) and let f (z) = b/z.
Then 01 = ~f by a trivial computation, so the cohomology class ce obtained
from 0 is precisely [b, L / K].

(b) Theorem 1.4 says that the non-trivial cohomology class ce is represented by
a cocycle [b, L / K] for some quadratic extension L/K and some element b E K*
with b fi- NL/K(L*). Then the restriction ResL/K(c03BE) E H1(GL,PGL2) is clearly
trivial, so Theorem 2.1(c) tells us that L is a field of definition for 03BE. More
precisely, we can find a rational map o E ç n Ratd(L) whose associated cocycle
is [b, L / K]. In other words, if we let f(z) = b/z as before, then 0’ = of.
We write ~ = 03A303B1jzj/03A303B2jzj as a rational function with coefficients in L.

The condition ~ = cpl becomes

so we find that there exists a À e L* such that

Applying T to the first formula and then using the second yields

Certainly the 03B1j’s cannot all equal zero, so we conclude that ÀÀTbd+l 1 = 1.
The fact that d is odd means we can write this last equality as
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Now Hilbert’s theorem 90 tells us that there is a v E L* such that Àb(d+l)/2 =
v/vT . Substituting this into the left-hand equality of (29) gives

So if we set qj = 03BD03B2j, then we have

Substituting this into the formula for 0, canceling v-1 from numerator and
denominator, and doing a little algebra, we find that 0 has the desired form (26).

Proof of Corollary 6.3. The map Cp-y is a particular case of the map (26), so
once we prove that ~03B3 has degree d and trivial stabilizer, the second statement
in (28) will follow from Proposition 6.2. Further, the fact that K is not a field
of definition for ç-y will then follow from Theorem 1.4(b), Theorem 2.1(c), and
our assumption (27) that b ~ NL/K(L*).

The assumption NL/K(03B3) = "T =1 bd from (27) implies that the polynomials
zd + 03B3 and, zd + bd do not have a common root, which shows that Oy has
degree d. Next we observe that 0 and oo satisfy

and that these are the only two points in P1 with this property. It follows that

any g e A~03B3 must either fix or permute 0 and oo, which leads to the usual two
cases.

First, if g fixes 0 and oo, then g(z) = az. Evaluating the identity

at z = oo gives 0(oo) = a-10(oo). This implies that a = 1, since 0(oo) =
b(d+1)/2/03B3 ~ O.

Next, if g switches 0 and oo, then g(z) = a/z. This gives the identity ~(z) =
~g(z) = a/~(a/z), so ~(z)~(a/z) = a. Multiplying this out, we find that

This identity holds for all z, so all three coefficients must vanish. The first and
third coefficients tell us that a = (03B3/03B3)b, and if we substitute this into the
second coefficient, we find after some algebra that
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This contradicts the last two assumptions in (27). Therefore cp, cannot be stabi-
lized by a map of the form a/z, which concludes the proof that A~03B3 = 1.

Next we observe that since K is a local or global field, the norm map

NLIK: L* ~ K* is not surjective, so there are lots of choices for b. It remains
to show that there are infinitely many q E L* satisfying the three conditions
in (27). Write L = K ( VJ5) with D E K, and set 7 = x + VJ5 for some x E K.
We want to choose x so that NL/K(03B3) ~ bd and (03B3/03B303C3)d-1 ~ 1. In order to

satisfy these two conditions, we merely need to choose x so that

As long as d  2, these are non-trivial polynomial inequalities, so the fact that K
has infinitely many elements allows us to find infinitely many x’s.

7. Non-trivial stabilizers and twists

Let 03BE E Md be a dynamical system, and suppose that ~, ~’ E ç are rational maps
defined over K. Then 0 and 0’ are linearly conjugate, which means that 0’ = qyf
for some f E PGL2(K). However, the arithmetic properties of 0 and 0’ as
applied to P’(K) will not be equivalent unless the automorphism f is defined
over K. To see that this is not a moot question, consider the maps

All of the 0,,,’s are PGL2(K)-conjugate, since if we let f(z) = fl z, then 0,, =

~f1. But Oa is PGL2(K)-conjugate to ~1 if and only if a is a square in K. This
prompts the following definition.

DEFINITION 7.1. Let 0 e Ratd(K) be a rational map defined over K. The set
of K-twists of 0 is the set

The next result gives the usual sort of cohomological description of such twists.
Notice in particular that if A~ = 1, then 0 has no non-trivial twists.

PROPOSITION 7.2. Let ~ E Ratd(K) be a rational map defined over K. Then
there is a natural inclusion

defined as follows: Let 03C8 E [0] be defined over K, and write ~ = 03C8f for
some f E PGL2(K). Then 03C8 is sent to the cohomology class associated to the
cocycle U H f-1 f03C3.
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The image of (30) is precisely the kernel of the map

H1(GK, A~) ~ Hl(GK,PGL2) induced by the inclusion

A~  PGL2.
Proof. Since 0 and 0 are defined over K, we have

so f-1 f03C3 ~ A4J. One easily checks that the map Q H f -1 f03C3 is a cocycle, so we
get a well-defined cohomology class in Hl (GK, A~).

Next suppose that el and 03C82 give the same cohomology class. Writing 0 =
03C8fii, this means that there is a g e A4J such that

which shows that 1/;1 and e2 are PGL2(K)-conjugate. This proves that the

map (30) is injective. Further, its image is clearly contained in the kemel of
the map H1(GK,A~) ~ Hl(GK,PGL2), since a - f-1 f03C3 is a coboundary
for PGL2.

Finally, let c: GK - Aç be a cocycle representing a cohomology class in
Hl (GK, 4,0) whose image in Hl (GK, PGL2) is trivial. This means that we can
find an f e PGL2 (K) such that c, = f-1 f03C3. We define 1b e [0] by 1/; = ~f-1.
Using the fact that 0 is defined over K and that c, fixes ~, we compute

so e is defined over K. And it is clear from the definitions that (30) sends 1/J to
the cohomology class of the cocycle a - f - 1 f 1 = ca, so we have proven that
the image of (30) equals the kemel of H1(GK, A~) ~ HI ( G K , PGL2). This
completes the proof of Proposition 7.1.

In order to give some examples of interesting twists, we need to find rational
maps with non-trivial stabilizer groups.

PROPOSITION 7.3. Let 03BE E Md be a dynamical system.
(a) Cn c Ax for some n à 2 if and only if there is a rational map 03C8 ~ K(z)

such that z03C8(zn) E ç.
(b) 3J2n C Ag for some n  2 if and only if there is a rational map ~ K(z)

such that
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Proof. (a) Let ( be a primitive nth root of unity. Theorem 3.1 tells us that
there is a rational map ~(z) ~ 03BE whose stabilizer contains the map (z. In other
words, ~(z) = 03B6-1 ~(03B6z). This means that the function z-1~(z) is invariant under
the substitution z ~ 03B6z, so this function is in K (zn), say z-1~(z)=_ 03C8(zn).
Hence z’ljJ(zn) == ~(z) E 03BE.

(b) In this case Theorem 3.1 tells us that there is a rational map ~(z) e g
whose stabilizer contains 03B6z and z-1. The argument in (a) shows that 0 must have
the form ~(z) = z’ljJ(zn) for some 0(w) E K(w). Then the fact that z-1 e A~
implies that 03C8(03C9)03C8(03C9-1) = 1. Consider the function

It is invariant under the substitution w - w-1, so it must be a polynomial in
w + w-1, say equal to À(w + w-1). Solving for e gives

and then using ~(z) = ze(zn) gives the desired result.

EXAMPLE. Let ~(z) = z03C8(zn) E K(z) be a rational map whose stabilizer
contains the cyclic group Gn = «z) as described in Proposition 7.2. Then

For any element a E K*, we can produce a twist of 0 by setting a = a lin and
conjugating 0 by the map f(z) = az. This is the right map to use because if
03C3 E GK satisfies a’ = 03B603B1, then f-1 f03C3(z) = (z. The corresponding twist is

In this way we get a map

EXAMPLE. In a similar way one can write down twists for rational maps with
other stabilizer groups. In general, this will get quite complicated, so we will be
content to analyze the map cp(z) = z-2 obtained by setting n = 3 and 03BB(z) = 1
in Proposition 7.2(b). Then 40 = «z, z-1), where 03B6 is a primitive cube root of
unity. Notice that the stabilizer 40 = 1)6 is the symmetry group of a triangle,
which is isomorphic to the symmetric group 63 on three letters.

It tums out to be easier to describe the twists of 0 if we move its fixed points
from 1, 03B6, 03B62 to 0, 1, ~. So we conjugate 0 by the map (03B6z + 1)/(z + (), which
after some calculation gives a new 0, namely
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Notice that each map in A~ is now defined over K, so

H1(GK, A~) = H1(GK, G3) = Hom(GK, G3).
Proposition 7.1 says that the twists of 0 are classified by the kemel of the map
HI (GK, 40) ~ H1 (GK, PGL2). Let c: GK ~ 63 be a homomorphism whose
image has order 3 or 6. We are going to construct the twist of 0 corresponding
to c.

Let L be the fixed field of the kemel of c, and let

be an irreducible polynomial in K[X] whose splitting field is L. We have used
the set Fix ( cp) == {0, 1, ~} to label the roots of 0 so that

Define a linear fractional transformation f E PGL2 by

so

This map f satisfies

We claim that

To verify this, we let t e {0, 1, ~} and compute

This proves that f - 1 o f03C3 and c, agree on the set {0, 1, ~}. But an element
of PGL2 is determined by its values at three points, which completes the verifi-
cation that f -1 o f03C3 = c03C3.

It is now a simple (but tedious) matter to compute the twist
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This is the twist of 4J( z) = (z2 - 2z)/(-2z + 1) by the splitting field L of
the irreducible polynomial X3 - pX - q E K[X]. Proposition 7.1 tells us that

two twists will be PGL2(K)-equivalent if and only if their cocycles are coho-
mologous. In our case, the cocycles are homomorphisms, so ~c and ~c’ will be
equivalent if and only if their associated fields L and L’ are the same.

Remark. The twists of the map ~(z) = (z2 - 2z)/(-2z + 1) considered in
the last example have an interesting property. Continuing with the notation of
that example, let

Then

which shows that Fix(~c) = {03B10,03B11,03B1~}. Further,

consists of the six elements of PGL2 which permute the set tao, al, 03B1~}. Thus
the map Çc is defined over K, but the non-trivial elements in its stabilizer group
are only defined over K(03B10, 03B11, 03B1~) = L. This is similar to the situation that
arises for elliptic curves, where an elliptic curve may be defined over K but have
endomorphisms which are only defined over a quadratic extension of K.
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