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Abstract. Let X be a smooth projective algebraic variety over C, and let Z be a scheme of finite type
over C, all of the connected components of which are complete normal varieties. Suppose further
that 0 : Z ~ X is a morphism whose image is a connected closed subscheme Y of X, and that
7r’g (Y) maps onto 03C0alg1(X). Let N be the normal subgroup of 03C01(X) generated by the images of
the fundamental groups of the connected components of Z. In this paper we prove results about the
finite dimensional complex representations of xi (X)/N that suggest that it is small. In particular we
prove that all the finite dimensional complex representations of 7ri (X) IN are unitary.
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1. Introduction

M. V. Nori, in his paper [13], proves the following result:

THEOREM 1.1. Let X be a smooth projective algebraic surface over the complex
numbers, let C be an irreducible nodal curve on X with r nodes, let f : C - C
be the non-singular model for C, and choose base points do for C and xo for C,
with f (do) = xo. Then if C · C &#x3E; 2r, [7rl(X, xo) : f*03C01(C, do)]  oo. Here C - C
denotes the self intersection of C on X.

This result is a consequence of Nori’s "weak Lefschetz theorem," which he
proves in [13]. The Lefschetz hyperplane theorem says that in the situation of The-
orem 1.1, 03C01(C, x0) maps onto 03C01(X, x0). Elementary arguments show, however,
that 03C01(C,x0) ~ 03C01(C, d0) * F, where F is the free group on r generators, so
that the normal subgroup of 03C01(C, x0) generated by f*(03C01(C, d0)) is of infinite
index. Theorem l.l says then that if C has sufficiently positive self-intersection,
then only a finite shadow of the infinite contribution of the singularities of C to
its fundamental group can be seen in the fundamental group of the smooth surface
X.

More generally, suppose X is any smooth projective algebraic variety over
the complex numbers, and Y is a closed connected subscheme of X such that

03C0alg1(Y, yo ) maps onto 03C0alg1(X, yo ) for some yo in Y. Suppose further that f : Z - Y
is a morphism from a scheme Z of finite type over the complex numbers, all of the
connected components of which are complete and normal varieties, onto Y. We
denote by N the normal subgroup of 7r1(X, yo) generated by images under f* of
the fundamental groups of the connected components of Z. The normal subgroup
N is independent of the choice of base points for the connected components of Z.
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Considering theorem 1.1, it is reasonable to ask whether [1rI(X, yo) : N]  oo.

If f : Z - Y is a normalization of Y, this question is again whether the con-
tribution of the non-normal singularities of Y to the fundamental group of Y can
cast more than a finite shadow on the fundamental group of X. In this paper we

prove that in general 03C01(X, yo)/N has at most finitely many isomorphism classes
of complex representations of any given finite dimension (Corollary 6.2.) In fact
we prove a stronger technical result (Theorem 6.1), which also has as a corol-
lary, as pointed out to me by Professor Nori, that the finite dimensional complex
representations of 03C01(X, yo)/N are unitary (Corollary 6.5.) These results provide
support for the belief that x 1 ( X , yo) IN may be finite, inasmuch as they show that
its finite dimensional complex representations theory shares some properties with
the representation theory of finite groups. There are, however, examples of finitely
presented infinite groups which have at most finitely many isomorphism classes of
complex representations of any given dimension, such that all these representations
are unitary. We give some of these examples in 7.

Note that there are theorems which give conditions for a closed subscheme Y
of a complex projective variety X to be connected and for the map induced by
the inclusion of Y in X to send 7r 1 (Y, yo) onto 03C01(X, yo) for any choice of base
point yo for Y. See W. Fulton and B. Lazarsfeld’s article [4]. For example, if X is
a normal and irreducible closed subvariety of Pr(C) and W is closed subvariety of
Pr(C) such that dim X + dim W &#x3E; r, then X fl W is connected and 1rI(X n W)
maps onto 03C01(X), for any choice of base points (p. 27 of [4].)

The proof of the main result (6.1) of this paper uses results from a number of
different areas of research, and once we realize the possibility of bringing them
together to cooperate, our theorem follows easily. Because of this, we devote a
substantial portion of this paper to explaining how results we use can be extracted
from the work of other authors, in the process repeating some of their work. In
Section 2 we discuss schemes of representations of a finitely generated group, and
give proofs of facts about the relation of the tangent spaces of these schemes to
group cohomology. In this section we follow Weil’s papers [ 18] and [19]. Section 3
is concemed with results of C. Simpson in [ 15] and [16] about those representations
of the fundamental group of a smooth projective variety over the complex numbers
which underlie variations of Hodge structure, considered as points on the moduli
spaces of semi-simple complex local systems on the variety. We give definitions of
variations of Hodge structure and of the moduli space of semi-simple complex local
systems in that section. Section 4 is devoted to an application we make of ideas
of P. Deligne and B. Saint-Donat in [14], previously applied in Deligne’s papers
[3]. Finally, in Section 5 we discuss P. Griffiths’ classifying spaces for polarized
real Hodge structures (see [5]), which we use to prove Corollary 6.5. Again, we
give the relevant definitions in the section itself. By including these sections as
the bulk of the paper, and only proceeding with the proof of Theorem 6.1 after the
necessary aspects of previous work are isolated, I hope to clarify how research in
diverse areas cooperates to give the main theorem. Also, since many readers are
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likely to be unfamiliar with some of the results which we use, I hope that these
sections will help them to more completely understand the proof of the main result
without an extensive search through the literature.

l’d like to thank Professor Nori, who first suggested to me the essential outline
of the proof of Theorem 6.1 in the case where Y is a curve with only normal
crossings for singularities and with positive self-intersection on a surface X, and
Z is its normalization. The proof of Theorem 6.1 is based on this outline. I’d also
like to thank Proféssor Alex Lubotzky for a number of helpful conversations.

2. Schemes of representations

In this section we recall work of Weil in [ 18] and [ 19] on schemes of representations
of a finitely generated group. The main result of this section, which we employ in
the proof of Theorem 6.1, is Proposition 2.6. In addition to the papers of Weil, the
memoir [10] offers a good discussion of these results. This memoir is our primary
source for this section, and any proofs we omit here may be found in the first two
sections of [10].

DEFINITION 2.1. Let G be a finitely generated group and let n be a positive
integer. Let {03B31,..., qr) be a generating set for G, and let f rqlqEQ be a defining
set of relations for G for some index set Q. Let A = C[xij.det(xij)-1] be the
coordinate ring of GLn ((C), where x ij denotes the i j coordinate function on GLn (C)
for 1  i, j  n. Denote the coordinate functions corresponding to the kth factor
in A0r by x(k)ij, and let X(k) be the matrix (x(k)ij) in Mn(A0r). Then each relation
rq defines a matrix

If IG is ideal of A~r generated by

then we define Rn(G) = Spec( A6"° /IG ) .

Up to isomorphism this definition is independent of the choice of presentation
for G.

Note that the complex points of this scheme correspond to representations of G
in Cn, since they are exactly those points (Xl, ..., X r ) in GLn(Cn)r which satisfy
the equality

Given such a point, we can define a representation p of G by
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and conversely, given a representation p : G - GLn(C), we can define a point
(X1,..., Xr) in Rn(G)(C) by

It is clear that this gives a bijective correspondence. The complex points of Rn(G)
do not, however, completely describe it, since in general it is not reduced.

The construction in Definition 2.1 is functorial. If H is another finitely generated
group and f : G ~ H is a group homomorphism, then there is a natural morphism
of schemes over C:

On the level of complex points, f * takes a representation p of H in en to the
representation p o f of G in CI. It is not hard to write down an explicit formula for
the map on coordinate rings associated to f*.

While the complex points of Rn (G) parameterize all representations of G in CP ,
we are interested only in isomorphism classes of n-dimensional representations of
G. If (Xl, ... , XT) is in Rn (G) (C), then the set of points of Rn(G)(C) which
correspond to isomorphic representations is exactly

So isomorphism classes of n-dimensional complex representations of G are param-
eterized by points in the topological space GLn((C)BRn(G)(C), where GLn(C) acts
as above the conjugation. This action in fact comes from an action of the reductive
algebraic group GLn on the affine scheme Rn(G). According to Theorem 1.1 on
page 27 in [12] we can form an affine scheme of finite type over C which is a
universal categorical quotient (Definition .7 on page 4 of [12]) of Rn(G) by the
action of GLn. We denote this scheme by SSn(G). It is not in general a geometric
quotient; that is to say that if xG : Rn(G) - SSn(G) is the quotient morphism,
then in general some of the fibers of the induced map on complex points contain
more than one GLn(C)-orbit. We have, however, the following result, which is
Proposition 1.12 in [10].

PROPOSITION 2.1. Let Rsn(G) denote the open subscheme of Rn(G) the complex
points ofwhich correspond to irreducible representations ofG in en and let Sn (G)
be its categorical quotient by the action of GLn. (See pp. 11-14 in [10] for precise
definitions of these schemes.) Then Sn(G) is an open subscheme of SSn(G), and
7rG is a geometric quotient when restricted to Rsn(G)(C).

This proposition says that complex points of Sn(G) correspond exactly to iso-
morphism classes of irreducible n-dimensional complex representations of G.

As for the complex points of SSn(G), we have the following, which is Theorem
1.28 in [10].
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THEOREM 2.2. Every fiber of the map

contains a unique GLn (C) orbit O(03C1) of a point corresponding to a semi-simple
representation p of G in CP, and this orbit is closed. Furthermore, if 03C3 is a

representation of G on en corresponding to a complex point in this fiber, then the
closure of the orbit O(03C3) meets O(03C1), and p is isomorphic to a semi-simplification
of (J. (For any G-representation 03C4 : G ~ GL(V), where V is a finite dimensional
complex vector space, if

is a filtration of V by G-invariant subspaces Vi such that Vi-1/Vi is irreducible
for 1  i  m, then the "semi-simplification " of 03C4 is

This is well-defined up to isomorphism.)

The complex points of SSn(G) thus correspond to isomorphism classes of
semisimple representations of G.

If f : G - H is a homomorphism of finitely generated groups, then f* :
Rn(H) ~ Rn(G) is GLn-equavariant, so that f * induces a morphism of universal
categorical quotients from 03C0H : Rn(H) ---+ SSn(H) to 03C0G: Rn(G) ~ SSn(G).
In particular there is a morphism f* : SSn(H) ~ SSn(G), which sends a point
on SSn(H) corresponding to a semi-simple representation o,: H - GLn(C) to
the point on S Sn( G) corresponding to a semi-simplification of (J o f.

The final basic results about these schemes which are important to us are
those proved by Weil in [19], which describe tangent spaces. Recall that for a
not necessarily reduced scheme X over C, the tangent space Tx(X) to X at a
complex point x of X is the space of morphisms of Spec(C[T]/(T2)) into X over
the point x. If U = Spec(A) is an affine open neighborhood of x in X, then x
corresponds to a C-linear homomorphism ix : A ~ C, and Tc(X) is the space of
all C-linear homomorphisms j : A ~ C[T]/(T2) such that the following diagram
commutes:
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Here p: C[T]/(T2) ~ C is the C-algebra homomorphism which sends T to 0. If
X is reduced and of finite type over C, then this is the usual tangent space, and in

general Tx(X) contains Tz(Xred). A morphism of schemes 0: X ~ Y induces in
the obvious way a morphism Do,,: Tx(X) ~ T~(x)(Y) for any complex point x
in X.

For schemes of representations, we have the following two results due to Weil,
which are Propositions 2.2 and 2.3 in [10]. In stating these results, we identify a
representation p: G ~ GLn(C) with a complex point on Rn(G).

PROPOSITION 2.3. Let p be in Rn(G)(C). Then there is a natural isomorphism

where Ad o p is the representation of G on Mn(C) given by:

for any g in G and any M in Mn(C), and Z1(G, Ad o p) is the group of 1-cocyles
for this representation.

PROPOSITION 2.4. Let p be in Rn(G)(C) and let Op : GLn ~ Rn(G) be the
morphism of schemes defined by the action ofGLn on the orbit of p. (For any A in
GLn(C), ’t/J p ( A ): G - GLn(C) is given by:

03C803C1(A)(g) = A03C1(g)A-1

for any g in G.) Then the image of the composite

where the isomorphism is that in Proposition 2.3, is B1(G, Ad o p), the space of
1-coboundaries for the representation Ad o p.

COROLLARY 2.5. If for every semi-simple complex representation p of G of
dimension n, H1(G, Ad o p) = 0, then there are only finitely many isomorphism
classes of n-dimensional complex representations of G, and all of them are semi-
simple.

Proof. By the previous two propositions, all the orbits of GLn (C) on Rn (G)(C)
corresponding to semi-simple representations are open, while by Theorem 2.2 these
orbits are closed, and the closure of any orbit of GLn(C) meets one of these orbits.
Therefore Rn(G)(C) is a disjoint union of a finite number of orbits of GLn((C)
corresponding to semi-simple representations of G. 0

These results combine to give us the result which we apply in the proof of
Theorem 6.1. Before stating the result, we introduce some notation.
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Let f : G ~ H be a homomorphism of finitely generated groups, and let
p : G ~ GLn(C) be a semi-simple representation. We denote by p the correspond-
ing complex point of SSn(G)(C). The fiber of 1*: SSn(H) ~ SSn(G) over p
is a subscheme the complex points of which correspond to isomorphism classes of
semi-simple representations o,: H ~ GLn(C) such that all semi-simplifications
of Q o f are isomorphic to p. (see Lemma 1.26 in [10].) For the proof of Theorem
6.1, however, we are interested in isomorphism classes of representatioms u such
that (7 o f is itself isomorphic to p. These correspond to complex points in a closed
subscheme Wp of f*-1(03C1), which we describe as follows. If O(p) denotes the
orbit of p in Rn(G) under GLn, then by Theorem 2.2 0(p) is a closed subscheme
of Rn(G), and so 1*-I(O(p)) is a closed GLn-invariant subscheme of Rn(H).
Therefore there is a closed subscheme of SSn(H) which is the categorical quo-
tient of f*-1(O(p)) by GLn. (This follows from arguments used in the proof of
Theorem 1.1 on pages 25-27 of [12].) The complex points of this scheme are those
corresponding to semi-simplifications (J ss of representations 03C3 : H ~ GLn(C)
such that o, o f is isomorphic to p. Then (1 ss o p is also isomorphic to p, so that this
scheme is the Wp we want.

Note that by construction and Theorem 2.2, the map on complex points induced
by the morphism

has connected fibers. For if 03C4 : H ~ GLn(C) is semi-simple and T is in Wp,
then O(03C4) is connected and contained in (03C0H|f*-1(O(03C1)))-1(03C4), and if r’ is also in
(03C0H|f*-1(O(03C1)))-1(03C4), then the closure of 0(T’), which is also connected, meets
0(,F).

PROPOSITION 2.6. In the situation described immediately above, if every con-
nected component of the topological space associated to the complex points of Wp
contains a point corresponding to a semi-simple representation 0’: H ~ GLn (C)
such that f induces an injection

then Wp has only finitely many complex points.
Proof. Suppose the theorem is false. Then there is a complex point 03C3 in Wp

corresponding to a semi-simple representation o,: H ~ GLn (C) with

such that 0-1 is contained in an irreducible component V of WP of positive dimension.
Let
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The Hausdorff space formed by the complex points of U is connected, since the
fibers of 03C0H|f*-1(O(03C1)) are connected. Because V is of positive dimension, and
03C0H(O(03C3)) is the point 0-, we have T, (0 (o,» C: Tu(U). However f*(U) g O(p),
so that

Then the kemel of the composite:

contains the non-zero subgroup T03C3(U) T03C3(O(03C3)). But by the naturality of the morphisms
in Propositions 2.3 and 2.4, this composite is the natural map:

which is injective by assumption. This completes the proof of the proposition. ~

3. Local systems underlying variations of Hodge structure

For any analytic space X over the complex numbers, and any positive integer n, if
{Xi}1ir is the set of connected components of X, we denote by MB,n(X) the
Hausdorff topological space consisting of the complex points of the scheme

for some choice of base points xi for each of the Xi. MB,n(X) is then well-defined
up to homeomorphism, and by the correspondence between representations of fun-
damental groups and local systems, along with Theorem 2.2, the points of MB,n(X)
correspond naturally to isomorphism classes of semi-simple n-dimensional com-
plex local systems on X. In the proof of Theorem 6.1, we apply Proposition 2.6 to
schemes SSn(03C01(X, x0)) for smooth projective algebraic varieties X, viewed as
analytic spaces. To verify the hypotheses of Proposition 2.6, we use certain results
from the work of C. Simpson in [15] and [16] about the spaces MB,n(X) when X
is a smooth projective algebraic variety. This section is devoted to a discussion of
these results.

First we give some definitions from [5] and [15].

DEFINITION 3.1. A complex variation of Hodge structure on a complex manifold
M is a C°° complex vector bundle V on M with the following data.

( 1 ) A Coo decomposition
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(2) A flat connection DY satisfying

(3) A Hermitian form QY on V which is flat with respect to D, positive definite
on V’,’ is r is even, negative definite on Y’’,S if r is odd, and such that
QV(Vr1,s1, yr2,S2) = 0 unless ri = r2 and si = 82.

Here Ap,q(Vr,s) denotes the bundle of Coo 1-forms on M with coefficients in
Vr,s. Note that the (0,1)-component of the connection Dv defines a holomorphic
structure on V such that for any integer the subbundle

is holomorphic.
DEFINITION 3.2. Let V be a complex variation of Hodge structure on a complex
manifold M, and suppose we are given a real structure on the underlying CI
vector bundle. We define the conjugate variation of Hodge structure V to V to
be the complex variation of Hodge structure with the same underlying CI vector
bundle given by the following data.

( 1 ) For any pair of integers ( r, s ) , Vu = Vs,r.

(2) The connection Dv on V is the complex conjugate of the connection Dv
on V; that is to say that for any CI section f of V, Dç( f) is the complex
conjugate of DV(f).

(3) For any two CI sections f and g of Vr,S = Vs,r, the Hermitian form Qy on
V is such that Q V (f, g) is the complex conjugate of (-1)r+sQ(f, g).

DEFINITION 3.3. We say that a complex variation of Hodge structure on a com-
plex manifold .M is a real variation of Hodge structure if the underlying CI vector
bundle is given a real structure so that V = V.

If V is a real variation of Hodge structure, then there is a local system of
R-vector spaces VR such that VR 0 C is the flat bundle defined by Dv, and the
complex conjugate of V’,’ with respect to this structure is V’,’ for any pair of
integers (r, s ) . Furthermore, there is a flat bilinear form S on V, defined over VR,
such that S restricted to ~r+s=m Vr,s is symmetric if m is even and skew is m is
odd, S(Vr1,s1, vr2,S2) = Ounless ri = s2 and s 1 = r2, and i-r-sS(f,g) = Q(f,g)
for any pair ( f , g ) of CI sections of Vr,s.

Let V and W be any two complex variations of Hodge structure on a complex
manifold M.

DEFINITION 3.4. The complex variation of Hodge structure Hom(V, W ) is the
variation of Hodge structure with underlying CI vector bundle Hom(V, W ) given
by the following data.
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(1) Hom(V, w)r,s = {03BB E CI (M, Hom(V, W)) 1 A(Vp,q) g Wp+r,q+-9 for all
pairs of integers p and q}.

(2) DHom(V,W)(03BB) = DW À - ADv.
(3) OHom(V,W) is on each fiber the natural Hermitian form induced by Qv and

Qw.
With Definition 3.4 we can define the dual variation of Hodge structure V* =

Hom(V, C), where C denotes the trivial variation of Hodge structure on M with
C0,0 = (C, and thus we can also define the tensor product V (D W of V and W.
Since the complex conjugate of Hom(V, W ) is Hom(V, W ), all these constructions
apply to real variations of Hodge structure as well.

DEFINITION 3.5. The direct sum V e W of the complex variations of Hodge
structure V and W is the complex variation of Hodge structure with underlying
CI vector bundle structure V (B W given by the following data.

Note that for any complex variation of Hodge structure V on a complex manifold
M, and any choice of real structure on the ClO vector bundle underlying V, V ~ V
is a real variation of Hodge structure.

For the remainder of this section we denote by X any smooth projective alge-
braic variety over the complex numbers, which we consider as a complex manifold.

Now we can state what for our purposes are the main results in [ 15] and [16].

THEOREM 3.1. There is a continuous action of C’ on MB,n(X) the fixed points
of which are those points on M B,n (X) corresponding to semi-simple complex local
systems on X which underlie variations of Hodge structure.

THEOREM 3.2. For any point p in MB,n(X) corresponding to a semi-simple
complex local system on X,

exists.

The limit point which exists by Theorem 3.2 is C« -invariant, so by Theorem
3.1 the corresponding semi-simple local system underlies a variation of Hodge
structure.

The complete proofs of Theorems 3.1 and 3.2 are well beyond the scope of
this paper. For our applications, though, we need to know more precisely how the
C*-action is defined. For this we need first more definitions given in [15].
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DEFINITION 3.6. A Higgs bundle on X is a pair ( E, 0), where E is a holomorphic
vector bundle and 0: E - E 0 03A91X is a map of holomorphic vector bundles such
that 0 A 0 = 0. Here 03A31X is the bundle of holomorphic differentials on X.

DEFINITION 3.7. A Higgs bundle (E, 0) is stable if for any non-zero proper
holomorphic subbundle F of E such that 0(F) g F 0 il k’ we have

where the degree of a vector bundle on X is the product of its first Chem class
with an appropriate power of the class of a hyperplane section of X, viewed as an
integer via the canonical isomorphism

In [16], for any positive integer, n, Simpson constructs a complex algebraic
variety with points corresponding to the isomorphism classes of direct sums of
stable Higgs bundles (E, 0) such that all the Chem classes of E are trivial. We
denote the Hausdorff topological space associated to this variety by MDol,n(X).
There is a natural action of C* on MOol,n(X), which sends the point corresponding
to a Higgs bundle (E, 8) to the point corresponding to (E, t03B8). This action tums out
to be continuous, and we get the C* -action on MB,n(X) via the following theorem
from [16].

THEOREM 3.3. There is a functorial bijective correspondence between isomor-
phism classes of semi-simple complex local systems of dimension n on X and
isomorphism classes of direct sums of stable Higgs bundles of dimension n on X,
and this bijection induces a homeomorphism between MOol,n(X) and MB,n(X).

Explicitly, we get the semi-simple local system corresponding via Theorem 3.3
to a Higgs bundle (E, 0) of dimension n which is a direct sum of stable Higgs
bundles with trivial Chem classes as follows. First, for any Hermitian metric K on
E, let 8 + ~K be the connection on E which is compatible with both the complex
structure and the metric K on E, and let

be the unique map of vector bundles such that

for any two C~ sections e and f of E. Then we set D’K = ~K+03B8K, D" = ~+03B8, and
Dx = DK + D". The metric l( is called harmonic if DK = 0. If K is harmonic,
then the fiat connection DK defines a local system which has C°° bundle E. By a
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theorem of K. Corlette in [2], this local system is semi-simple. A result in nonlinear
analysis due to several authors shows that an arbitrary Higgs bundle has a harmonic
metric if and only if it is a direct sum of stable Higgs bundles with trivial Chern
classes. For references see [15]. Therefore our Higgs bundle (E, 03B8) has a harmonic
metric. Finally, the semi-simple local system so obtained is well-defined up to
isomorphism, independent of the choice of harmonic metric. In this way we get the
isomorphism class of semi-simple local systems corresponding to the isomorphism
class of the Higgs bundle (E, 03B8).

Using this explicit form of the homeomorphism MDoi,n(X) - MB,n(X)
we can prove a result which applies to the situation we’re interested in. Let
f : (Z, zo) ~ (X, xo) be a morphism of smooth projective algebraic varieties
over the complex numbers with base points. Then the map

induces a morphism of schemes

and so also a continuous map

If Z isn’t a variety, but is simply a smooth projective scheme, all the connected
components of which are varieties, then we let {Zi}1ir be the set of components
of Z. By considering each component of Z separately, we still have a continuous
map f* : MB,n(X) ~ MB,n(Z), a C*-action on MB,n(Z) with fixed points
corresponding to local systems on Z underlying complex variations of Hodge
structure, and, as in section 2, for any semi-simple complex local system V of
dimension n on Z we have a closed subscheme Wv of f*-1(V) with points
corresponding to those local systems U on X for which f*(U) ~ V. Here we
identify such a local system V with its corresponding point on MB,n(Z).

PROPOSITION 3.4. Wv = f*-1(V). and f * is C-equivariant.
Proof. It clearly suffices to prove the proposition when Z is a variety.

Let V be the semi-simple local system on Z corresponding to a representation
p : 03C01(Z, zo) ~ GLn(C). Let U be semi-simple local system on X, associated to
a Higgs bundle ( E, 0) with a harmonic metric K, such that the point in MB,n(X)
corresponding to U is in f*-1(V). We define the pullback to (E, 0) to be the
Higgs bundle ( f *E, f*03B8), where f *E is the CI pullback bundle of E and f *0
is the global holomorphic section of End(f*E) 0 03A91Z obtained by pulling back 8,
a global holomorphic section of End( E ) ~ 03A91X. In the notation use in describing
the construction of U from (E, 0) and K, we have f*(~K) = ~f*(K) and f*03B8K =
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(f*03B8) f*(K), so that f*(DK) = D f - (K) - It follows that f*K is a harmonic metric
for ( f * E, f*03B8), and the local system we construct with f * K is f * U. By the theorem
in non-linear analysis cited above, since it has a harmonic metric, f*(E,03B8) is a
direct sum of stable Higgs bundles with trivial Chem classes, and by the theorem
of Corlette in [2] referred to above, f*U is semi-simple. Since we assume that
the point on MB,n(X) corresponding to U is in f*-1(V), this shows that f * U is
isomorphic to V, and so U is in Wv. This completes the proof of the first part of
the proposition.

From the above we also see that the correspondence between Higgs bundles and
local systems commutes with pullbacks, and because f*(E,t03B8) = tf*(E,03B8) for
any Higgs bundle ( E, B) on X and any t in C*, it follows that f * is C* -equivariant. D

COROLLARY 3.5. If V is a local system on Z which underlies a variation of
Hodge structure, then every connected component of Wv = f*-1(V) contains a
point corresponding to a local system underlying a variation of Hodge structure
on X.

Proof. By Proposition 3.4, f*-1(V) is C*-invariant. Therefore if U is any
semisimple local system on X corresponding to a point in MB n(X), the point

given by Theorem 3.2 is contained in the same connected component of f*-1(V)
as U, and corresponds to a local system underlying a variation of Hodge structure
on Z by Theorem 3.1. D

4. The necessary mixed Hodge theory

Recall the general situation of the introduction. We have the following data:

(1) A smooth projective variety over the complex numbers X.
(2) A connected closed subscheme Y of X such that xi (Y, yo) - ’!rI (Y, yo) for

any choice of base point yo for Y.
(3) A scheme Z of finite type over C, all the connected components of which are

complete normal varieties.
(4) A morphism ~ from Z onto Y.

We want to apply Proposition 2.6 in an appropriate way to this situation. To do this
we will need to show that for certain local systems V on X, the natural map
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is injective. Since X is smooth and the singularities of Z are normal, we can
hope to apply differential geometric results from Hodge theory fairly easily to
these varieties, as indeed we do in Section 3 when Z is smooth. To use the

assumption Y, however, presents greater difficulties, since its singularities are
arbitrary. To overcome these difficulties, we follow Deligne in considering mixed
Hodge structures on cohomologies. The result we need is Theorem 4.1. A detailed
proof may be found in [9]. In this section we merely sketch the relevant arguments,
which follow arguments in [ 14] and [3], leaving out the plentiful technical detail.

First we recall. the relevant definitions.

DEFINITION 4.1. Let m be an integer. Then a real Hodge structure of weight m
is a finite dimensional real vector space H with a decomposition

such that Hp,q = Hq’p.

DEFINITION 4.2. A real mixed Hodge structure is a finite dimensional real vector
space with the following data:

(1) An increasing filtration (the "weight filtration") W of H such that Wk = 0
for some k and Wl = H for some 1 ; and

(2) A decreasing filtration (the "Hodge filtration") F of Hc = H~RC;

such that for any j, if we define

then GrW (H) is a real Hodge structure of weight j with decomposition

In [3], Deligne proves that there are contravariant functors that assign to every
separated scheme X of finite type over the complex numbers a real mixed Hodge
structure of weight m on Hm(X(C),R). These functors are defined in [3] using
so-called "simplicial hypercoverrings" of schemes. A smooth simplicial hyper-
coverring of a scheme X is a certain kind of augmented simplicial object in the
category of schemes.

In general, an (augmented) simplicial object in a category is a contravariant
functor from the (augmented) standard simplicial category to that category. The
(augmented) standard simplicial category is the category whose objects are the
standard simplexes of all positive dimensions (resp. all dimensions greater than or
equal to -1, the standard -1-simplex being the empty set), and whose morphisms
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are all face and degeneracy maps and their composites. Thus a simplicial set (that
is a simplicial object in the category of sets) is just a choice of sets of n-simplexes
for every n, along with rules for how they should be pasted together to form a
topological space. A simplicial set, together with the associated topological space,
forms an augmented simplicial topological space: the space of -1-simplexes is
defined to be the associated topological space, while for n  0 the space of
n-simplexes is the product of the given set of n-simplexes with the standard n-
simplex. The cohomology of a topological space associated to a given simplicial
set is of course easy to compute in terms of the cohomologies of each space of
n-simplexes and the maps between them given by the simplicial set.

Deligne, in [3], generalizes this to augmented simplicial schemes, showing
that under certain conditions the cohomology of a sheaf on the "scheme of -1-
simplexes" may be computed in terms of the cohomologies of the pullback of
that sheaf to each scheme of n-simplexes. When these conditions are satisfied,
the simplicial scheme is called a simplicial hypercoverring of its scheme of -1-
simplexes. The homological algebra in the more general situation is, however,
much more complicated than in the situation of simplicial sets, since the higher
cohomologies of the sheaves on schemes of n-simplexes are not necessarily zero.
The cohomology of simplicial schemes is discussed in detail in [14].

For the purposes of defining mixed Hodge structures on cohomologies of a
proper scheme X over the complex numbers, Deligne uses the fact, proved in [14],
that there is a simplicial hypercoverring of X such that for n  0, the scheme
of n-simplexes is a smooth projective (possibly not connected) variety. Then the
cohomology of each of the schemes of n-simplexes with coefficients in R has
a natural real Hodge structure. When the cohomology of X with coefficients in
R is expressed in terms of that of its simplicial hypercoverring, using a spectral
sequence, the Hodge structures on the cohomologies of the schemes of n-simplexes
define a mixed Hodge structure on the cohomology of X. The (m - j)th weight
graded piece of the mth real cohomology of X essentially is that coming from the
scheme of j-simplexes. See [3] for details.

The existence of a smooth projective simplicial hypercoverring of a proper
scheme is established in [14] inductively. the scheme of o-simplexes may be defined
to be any smooth projective variety Y which surjects onto X. Such a variety exists
by Hironaka’s resolution of singularities. (See [8].) If the fibre product Y Z Y
is smooth and projective, then the scheme of 1-simplexes may be defined to be
Y XY, with face maps given by the two natural projections

and degeneracy map given by the diagonal map

In general, let
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be a resolution of singularities of Y XY. Then the scheme of 1-simplexes may be
defined to be Y II W. This process may be continued indefinitely, at the nth stage
defining the scheme of n-simplexes as a disjoint union of:

(1) a resolution of singularities of a certain projective limit of schemes of k-
simplexes for k  n - 1 ; and

(2) a disjoint union of certain copies of k-simplexes for k  n - 1.

In this way one defines a smooth projective simplicial hypercoverring of X. We
refer an interested reader to Saint-Donat’s article [14] or the author’s detailed
treatment in section four of [9].

In our situation, we are concemed with cohomologies of proper schemes over
the complex numbers not just with coefficients in the real numbers, but with
coefficients in some real variation of Hodge structure V of weight k. Deligne’s
approach applies to this situation as well, giving functorial mixed Hodge structures
on the mth cohomologies of proper schemes over C with coefficients in a real
variation of Hodge structure. The idea is to replace the proper scheme X with a
smooth projective simplicial hypercoverring and compute the cohomology of X
with coefficients in V by pulling V back to this hypercoverring. Then for any
j  0, the mth cohomology of the scheme of j-simplexes with coefficients in the
pullback of V has a natural Hodge structure of weight m + k (see [20]), and as for
the case with real coefficients, a spectral sequence gives a mixed Hodge structure
on the mth cohomology of X with coefficients in V. The (m + k - j) weight
graded piece of this cohomology essentially is that coming from the scheme of
j-simplexes. These mixed Hodge structures are discussed in detail in section five
of [9].

The following is result using mixed Hodge theory that we need for this paper.

THEOREM 4.1. Under assumptions (1)-(4) at the beginning of this section, if V
is a complex variation of Hodge structure on X, then the map

is injective.

This is an immediate consequence of Corollary 5.7 in [9], and a detailed proof
may be found there. Here we will simply indicate why Theorem 4.1 is true.

First, we may easily reduce to showing that if V is a real variation of Hodge
structure of weight k on X, then the map

is injective. This map is in fact a morphism of real mixed Hodge structures. As indi-
cated above, we may compute the mixed Hodge structure on H1(Y, V) by using
a simplicial hypercoverring of Y whose scheme of 0-simplexes is any smooth
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projective variety mapping onto Y. In particular we may use a simplicial hyper-
coverring whose scheme of o-simplexes is Z. Since the scheme of o-simplexes of
a simplicial hypercoverring of Y essentially gives the weight k + 1 graded part of
H1(Y, V), and all other weights are at most k, the kemel of the map

has weights at most k. By assumption, the fundamental group of Y surjects onto
that of X, so that the map

is injective. (We use here the identification of the first sheaf cohomology of a local
system with the first group cohomology of the corresponding representation of the
fundamental group.) As Hl (X, V ) is pure of weight k +1 (that is, WkH I (X, V) =
0 and Wk+1H1(X,V) = H1(X, V)), the image of H1(X, V) in H1(Y,V) does
not meet the kemel of the map

and so the composite

is injective.

5. Classifying spaces for polarized real Hodge structures

In this section we give the definitions from [5] of P. Griffiths’ classifying spaces
for polarized real Hodge structures and the so-called period maps defined by a real
variation of Hodge structure, and state a result of Griffiths and W. Schmid from [6]
about these objects, which we employ in the proof of Corollary 6.5.

DEFINITION 5.1. Let m be a positive integer, let HR be a real vector space of
dimension h with a bilinear form S which is symmetric if m is even and skew if m
is odd. Let {hr,s}r+s=m be a set of non-negative integers, all but a finite number of
which are zero, such that 03A3r+s=m hr,s = h and hr,s = hs,r for all pairs of integers
( r, s ) with r + s = m. We denote by D the closed subvariety of a partial flag variety
consisting of filtrations

such that
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The orthogonal group of S operates transitively on D, so that D is smooth.

DEFINITION 5.2. Under the same assumptions as in Definition 5.1, we denote by
D the open submanifold of D consisting of filtrations

which satisfy conditions ( 1 ) and (2), above, and for which i2p-mS(v, v)  0 for
any non-zero v in Fp n F"z-p .

The points of D correspond bijectively to polarized real Hodge structures of
weight m on HR with dim Hr,sC = hr,s and with polarization S. A point on D
corresponding to a filtration

defines a polarized real Hodge structure on HR with Hcr" = Fr n Fm-s for any
pair of integers (r, s) with r + s = m.

DEFINITION 5.3. For any integer p, let FP be the universal bundle on D corre-
sponding to the subspace FP of H at a point in D given by a filtration

The bundle FP is a holomorphic subbundle of the trivial bundle 73 x Hc. We define
the horizontal tangent bundle Th () of D to be the subbundle consisting at a point
x of D of those holomorphic tangent vectors X such that

for all integers p, where V is the trivial flat connection on D x Hc. This is in fact
a holomorphic subbundle of T(), since the notion of a horizontal tangent vector
is invariant with respect to the action of the orthogonal group of S on D x Hc.

Suppose that M is a complex manifold and V is a real variation of Hodge
structure of weight m on M, with holomorphic subbundles Fp as in Section 3.
If ù 1 M is the universal cover for M, then p*V is a real variation of Hodge
structure of weight m on M. Since M is simply connected, p*VR is canonically
trivial on M. Let HI! by the space of global sections of p*VR, let S be the bilinear
form on Hllt defined by that of p*V, and let hr,s = dim(Vr,S) for all pairs of
integers ( r, s ) with r + s = m. We let D be the classifying space for polarized real
Hodge structures corresponding to this data, as in Definition 5.2. The holomorphic
subbundles p*Fp of the trivial bundle p*(Vllt) then define a holomorphic map.
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The transversality condition ((2) in Definition 3.1), that

for the flat connection Dv on V, means that the image of the map on tangent
spaces

is contained in Th ( D ) . The map f is Griffiths’ "period mapping" for the variation
of Hodge structure V.

Finally, we need to record for future reference a result, which is Corollary 8.3
in [6].

PROPOSITION 5.1. A holomorphic map f : M ~ D from a connected compact
complex manifold M to a classifying space for polari,zed real Hodge structures D,
as in Definition 5.2, such that the image of T(M) under f* is contained in Th(D)
is constant.

COROLLARY 5.2. If V is a real variation of Hodge structure on a connected
compact complex manifold M such that the local system Vil is trivial, then the
period mapping f :  ~ D, is constant.

Proof Since VR is trivial on M, the period mapping factors through a horizontal
holomorphic map from M to D, which by Proposition 5.1 must be constant. o

6. Proofs of our main results

We retum in this section to the situation outlined in the introduction and apply the
results of the previous sections to prove Theorem 6.1, which is the focus of this
paper, and its corollaries.

Let X be a smooth projective algebraic variety over the complex numbers,
let Y be a connected closed subscheme of X with a base point yo, such that
03C01(Y, y0) ~ 03C01(X, yo), and let Z be a scheme of finite type over the complex
numbers, all the connected components of which are smooth projective varieties,
with a surjective morphism 0: Z - Y.

As in Section 3, for any positive integer n, we let MB,n(X) and MB,n(Z)
be the Hausdorff topological spaces with points corresponding to n-dimensional
semisimple complex local systems on X and Z, respectively, where n is a positive
integer. Let {Zi} be the set of connected components of Z, so that
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THEOREM 6.1. The fibers of the natural map

are finite.
Proof. In the language of Corollary 3.5, we show first that if U is any complex

variation of Hodge structure on Z of dimension n,

is finite. By Corollary 3.5, every connected component of Wuc contains a point
Vc corresponding to a complex variation of Hodge structure V on X. According
to Proposition 2.6, applied to each connected component Zi of Z and using the
standard identification of the first cohomology of a representation of a fundamental
group and the first sheaf cohomology of the associated local system, if the map

is an injection, then the finiteness of the fiber of ~* and Ue follows. But this map
is an injection by Theorem 4.1.

According to Theorem 3.3, it follows from the above that the natural morphism
of schemes:

has finite fibers over points corresponding to Higgs bundles which come from
variations of Hodge structure. But since there are points in the closures of each C*-
orbit corresponding on these moduli spaces corresponding to variations of Hodge
structure, and the action of C* is algebraic, the morphism 0* is necessarily finite
on every irreducible component of MDol,n(X). Again, by Theorem 3.3 it follows
that the map

has finite fibers. 1--l

COROLLARY 6.2. Let n be a positive integer, let X and Y be as above, let Z be
a scheme offinite type over the complex numbers, all the connected components of
which are complete normal varieties, and let 0: Z ~ Y be a surjective morphism.
If N is the normal subgroup of 7ri (X, yo) generated by the images under 0 of the
fundamental groups of the connected components of Z, then 03C01 (X, y0)/N has only
finitely many isomorphism classes of n-dimensional complex representations, all
of which are semi-simple.
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Proof. By Corollary 2.5, this corollary would follow if we could show that

for any finite dimensional semi-simple complex representation p of x (X, yo). This
in tum would follow if we could show that any complex local system V on X the
map

is injective. If Z is smooth and projective, then since a trivial local system on Z
underlies a variation of Hodge structure, the corollary follows immediately from
the proof of Theorem 6.1.

For a general Z, let {Zi} be the set of connected components of Z, and let
pi : Zi ~ Zi be a projective resolution of singularities for Zi, which exists
according to [8]. If Ui is a Zarski-open subset of Zi such that pi restricted to p2 1 ( Ui )
is an isomorphism, then since both Zi and Zi are normal, the homomorphisms

are surjective for any choice of base points ui of Ui and U,7 of 03C1-1i(Ui) with
03C1i(ui) = uj . Therefore the induced map

is surjective. Let

and let

be the map given by pi on Zi for each i. Then the normal subgroup generated by
the images of the fundamental groups of the connected components of Z under
~ o p is N, and we can proceed as before to prove the corollary. 0

We don’t in fact need to assume that the connected components Zi of Z are
normal to conclude that the homomorphisms

are surjective for any Zariski open subset Ui of Zi and any choice of base point ui.
We can assume simply that the universal cover of each Zi is an irreducible analytic
space. See [4].

There is a version of Corollary 6.2 using algebraic fundamental groups. Before
giving this version, we recall some definitions and a general theorem of A.
Grothendieck in [7].
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DEFINITION 6.1. Let G be any group. Then we can topologize G by taking the set
of all finite index subgroups of G as a fundamental system of open neighborhoods
of the identity, and we define Û, the profinite completion of G, to be the completion
of G with respect to this topology.

The topological group Û is totally disconnected and compact, and there is a
natural homomorphism from G to à with dense image. We denote by G the quotient
of G by the kemel of this homomorphism. Clearly the natural homomorphism
q : G ~ G induces an isomorphism g : G - G.

For any commutative ring A we denote by RepA(G) the category of finitely
generated A-modules with a G-action.

THEOREM 6.3. ([7]). Let A be commutative ring and let u : G’ ~ G be a
morphism of discrete groups.

(1) If û : ’ ~  is surjective and G is finitely generated, then the functor

is fully faithful.
(2) If û: ’ ~ G is an isomorphism, then the functor

is an equivalence of categories.

Theorem 6.3 asserts that for the group homomorphism q : G ~ G, the func-
tor

is an equivalence of categories. In particular, for any finitely generated A-module
M with a G-action, q* induces a natural isomorphism

If G = ’!rI (X, yo) is the fundamental group of a connected scheme X over C
of finite type, given its Hausdorff topology, then G is the algebraic fundamental
group 03C0alg1(X, xo) of X with base point xo.
COROLLARY 6.4. Let X be a smooth projective complex algebraic variety, let
Y be a subvariety of X such that for some choice of base point yo of Y the
homomorphism

is surjective, let Z be a scheme of finite type over C, all the connected components
of which are complete normal varieties, and let 0 be a surjective morphism from
Z to Y. Then the conclusions of Theorem 6.1 and Corollary 6.2 still hold.
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Proof. If we denote 03C01 (X, yo) by G and ’!rI (Y, yo) by H, then the assumption
that

is surjective implies that the homomorphism

is surjective. If V is an n-dimensional complex vector space with a G-action, then
this action factors through G by Theorem 6.3, so that V also has G-, H-, and
H -actions. For any integer k the following diagram is commutative:

The vertical arrows in this diagram are isomorphisms by Theorem 6.3.
In the proof of Theorem 6.1 and Corollary 6.2, the only point at which we use

the assumption that the homomorphism i* from H to G is surjective is when we
show, in the proof of Theorem 4.1, that the homomorphism

is injective for a finite dimensional complex G-representation W. But by the above
diagram this follows from the surjectivity of the homomorphism Z*,, from H to G.
Therefore, under the assumptions of Corollary 6.4, we still have the conclusions
of Theorem 6.1 and Corollary 6.2. D

COROLLARY 6.5. With the same assumptions as in Corollary 6.4, all the finite
dimensional complex representations of 7r (X, yo)/N are unitary.

Proof. As in the proof of Corollary 6.2, we may assume that all the connected
components of Z are smooth and projective. By Corollary 6.4, all finite dimensional
complex representations of 03C01(X, y0)/N are semi-simple. By Theorem 6.1, any
semi-simple finite dimensional complex representation ff of 7r, (X, yo)/N comes
from a complex variation of Hodge structure V on X. If we can show that the
representation of 03C01(X, yo) coming from V (B V is unitary, then the representation
u corresponding to V is clearly unitary, so we may assume that 0, comes from a
real variation of Hodge structure V on X. Since V ~ EB1Vi, where 55 is a real
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variation of Hodge structure of weight l , we may assume that V is of weight m for
some integer m.

Denote by , , and X the covering spaces of Z, Y, and X, respectively,
corresponding to the images of the ordinary fundamental groups of the connected
components of Z, of Y, and of X, respectively, in the corresponding algebraic
fundamental groups. Then the maps ~ : Z ~ Y and i : Y ~ X induce maps
 : Z ~ Y and i : 9 - X, and 0 is surjective. The real variation of Hodge
structure V gives a period map

for an appropriate classifying space for polarized real Hodge structures D (see
Section 5) such that the composite

is constant. This follows from Theorem 6.3, which requires that all finite dimen-
sional representations of the fundamental group of a variety must factor through its
image in the algebraic fundamental group of that variety. Since 0 is surjective,

is also constant. This means that the subbundles i*Vr,s of i*V are flat for all pairs
of integers (r, s) such that r + s = m. Therefore the positive definite Hermitian
form ( , ) such that

for any v and w in V’,’ is also flat, and so the representation of 03C01(Y, yo) corre-
sponding to i*Vc is unitary. This representation is the pullback by the surjective
homomorphism

of 03C3, and it follows that o, is also unitary. This completes the proof of the corollary. ~

The conclusion of Corollary 6.5 in fact implies the conclusion of Corollary
6.4. Any finitely generated group G such that all the finite dimensional complex
representations of G are semi-simple must have only finitely many isomorphism
classes of complex representations in any given dimension. See proposition 2.9 in
[10].

7. An example

In the situation of the Corollaries 6.2 and 6.5 of Theorem 6.1, the group 7 1 (X, y0) /N
has the following.properties.
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(1) It is finitely presented.
(2) All of its finite dimensional complex representations are unitary.

Given these properties, it is reasonable to hope that 7r,(X, yo)/N, or at least
03C0alg1(X, yo)/N is finite, but it is not a consequence of these properties alone. We
give in this section an example of a group G which has properties (1) and (2), but
for which Û is infinite.

Let Il be a global field of characteristic p for some prime p; i.e., K is a finite
extension of a rational function field Fp (T) over the field Fp with p elements. Let
S be a finite set of primes of 1(. We denote by K(S) the subring of elements x
of li such that |x|v  1 for every v not in S. Then the following results give us a
group with properties (1), (2) and (3), above.

THEOREM 7.1. (S. Splitthoff, [17]). If S contains at least two primes and n  3,
then SLn(K(S)) is finitely presented.

THEOREM 7.2. (A special case of Theorem 3.8(c) in Chapter 8 of [11]). Any finite
dimensional representation of SLn(K(S)) in characteristic zero has finite image
if n  3 and S is non-empty.

For G = SL,,, (K (S» with n  3, Theorem 7.1 shows that G is finitely present-
ed, while Theorem 7.2 shows that all finite dimensional complex representations
of G have finite image, and thus are unitary. But it is easy to see that G is infinite.
For example, for a given prime ideal  in K (S), we have a filtration

of G by the congruence subgroups

Since K(S)/r is finite for any r  0, GT is a finite index subgroup of G for any
r, so that

7

But clearly

so that the natural homomorphism from the infinite group G into G is injective.
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