@article{CM_1995__97_1-2_135_0, author = {Kraft, James S. and Schoof, Ren\'e}, title = {Computing {Iwasawa} modules of real quadratic number fields}, journal = {Compositio Mathematica}, pages = {135--155}, publisher = {Kluwer Academic Publishers}, volume = {97}, number = {1-2}, year = {1995}, mrnumber = {1355121}, zbl = {0840.11043}, language = {en}, url = {http://www.numdam.org/item/CM_1995__97_1-2_135_0/} }
TY - JOUR AU - Kraft, James S. AU - Schoof, René TI - Computing Iwasawa modules of real quadratic number fields JO - Compositio Mathematica PY - 1995 SP - 135 EP - 155 VL - 97 IS - 1-2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1995__97_1-2_135_0/ LA - en ID - CM_1995__97_1-2_135_0 ER -
Kraft, James S.; Schoof, René. Computing Iwasawa modules of real quadratic number fields. Compositio Mathematica, Volume 97 (1995) no. 1-2, pp. 135-155. http://www.numdam.org/item/CM_1995__97_1-2_135_0/
[1]] Computations of Iwasawa invariants and K 2, Compositio Math., 29 (1971), 89-111. | Numdam | MR | Zbl
:[2] Algebraic Number Theory, Academic Press, London 1967. | MR | Zbl
and :[3] Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bulletin des Sciences Math. 101 (1977), 97-129. | MR | Zbl
and :[4] On the Iwasawa invariants of totally real number fields, American J. of Math. 98 (1976), 263-284. | MR | Zbl
:[5] A note on K2 and the theory of Zp-extensions, American J. of Math. 100 (1978), 1235-1245. | MR | Zbl
:[6] Iwasawa invariants of CM fields, Journal of Number Theory 32 (1989), 65-77. | MR | Zbl
:[7] Class fields of abelian extensions of Q, Invent. Math. 76 (1984), 179-330. | MR | Zbl
and :[8] Class numbers of Q(cos(2π/p)), in preparation.
:[9] The structure of minus class groups of abelian number fields, 185-204, in C. Goldstein, Séminaire de Théorie de Nombres, Paris 1988-1990, Progress in Math. 91, Birkhäuser 1990. | MR | Zbl
:[10] On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | MR | Zbl
:[11] Computation of Z3-invariants of real quadratic fields, Math. Comp., to appear. | MR | Zbl
:[12] Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, Berlin, Heidelberg, New York 1982. | MR | Zbl
: