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Abstract. We study the existence of Whittaker models for Harish-Chandra modules. In a real rank
two setting, we prove Matumoto’s conjecture, establishing the equivalence of a nilpotent orbit
condition, the existence of a Whittaker model and an asymptotic condition; the equivalence of
these three conditions fails in higher rank.

1. Introduction

One of the most important theorems in the representation theory of a
semisimple Lie group is the Subrepresentation theorem. Every irreducible
admissible representation can be realized as an invariant subspace of some
principal series representation. Using the theory of matrix coefficient

asymptotics, one can give an elegant account that such embeddings must
exist, but a complete determination of all embeddings is still mysterious
and unknown. For certain problems, knowing all possible embeddings is
not important. For example, in order to classify the irreducible admissible
representations (i.e. Langlands classification), the embeddings one must
understand are easily determined; in part, this is due to the fact that these
embeddings are "maximal" among the set of all such embeddings. However,
when studying embeddings into more general types of induced modules
(e.g. the existence of Whittaker models), the non-maximal embeddings into
principal series representations are of crucial importance. In this article, we
locate embeddings of an opposite character from the maximal embeddings
of Langlands classification; what one might refer to as "minimal embed-
dings". These are the most difficult embeddings to understand and, in
general, there is no known procedure to compute them.
Our motivation is a conjecture of H. Matumoto [26] and his subsequent

work [27], [28]. Simply put, the conjecture links three a priori different
notions: the singularity theory of irreducible Harish-Chandra modules (as
encoded in the associated variety of the annihilator), the theory of matrix
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coefficient asymptotics (as encoded by the Jacquet module), and the

existence of embeddings into particular induced representations (referred to
as Whittaker models). From one perspective, the conjecture implies the
existence of very special "minimal embeddings" of representations into
principal series representations; these minimal embeddings, when combined
with prior work of Matumoto and Goodman-Wallach, yield Whittaker
models. So, our ability to exhibit the right kind of minimal embeddings into
principal series amounts to an existence theorem for Whittaker models; this
is perhaps the most important consequence of this paper. However, in
another light, one can view our results as an attempt to revisit and

reinterpret the authors joint program with L. Casian in [8]-[10]. Whereas,
the former program focused on the g-structure of Jacquet modules, the
ideas in this paper advance the philosophy of describing "nice submodules"
of Jacquet modules via a connection with the theory of nilpotent orbits.
From this vantage point, adopting the Hecke module framework of

[8]-[10], we are studying a delicate relationship between double cell Weyl
group representations in the Harish-Chandra module setting and right cell
Weyl group representations in a highest weight module setting. In the real
rank two Hermitian symmetric case, we will prove Matumoto’s conjecture
is true. A detailed analysis in Sp6R shows the conjecture fails, in general,
for higher real rank. In addition, we will indicate the conjecture is "almost"
true for the general real rank two case.
As usual, more precision requires much more notation and terminology.

We fix G to be a connected semisimple real matrix group and Pm =

MmAmNm c G a minimal parabolic subgroup compatible with an Iwasawa
decomposition G = KAmNm. We denote real Lie algebras by the notation
90, Io, etc., their complexifications without the subscript "o". Fix an Iwasawa
Borel subalgebra b c Pm’ which induces a Bruhat ordering on the full Weyl
group W; we choose the ordering so that e (resp. wo) is the unique minimal
(resp. maximal) element. We will be working primarily in one of two types
of categories of representations; each setting requires some notation, all of
which is standard and reviewed in Section 2. Specifically, we work within
the category of Harish-Chandra modules AC,, with the same infinitesimal
character as a fixed finite dimensional representation F of G. The irreduc-
ible and standard modules in this category are parametrized by a finite
partially ordered set D; if 03B4~D, then 03C0(03B4) and 03C0(03B4) denote the irreducible
and standard modules, respectively. In addition, if p is a parabolic sub-
algebra of g, then we recall the category O’(g, p) of highest weight modules.
In this case, the set of minimal length right coset representatives WP is a
parameter set for the irreducible modules Lp(w) and the generalized Verma
modules Np(w); our conventions are setup so that Np(e) = Lp(e); see Section
2 for more details.
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It is important to recall the assignment V  Ov, which associates to each
irreducible U(g)-module V a nilpotent orbit (9v in g* (or g). This requires
that we begin with the annihilator Iv of V in U(g); any such ideal is called
a primitive ideal, by definition. The associated graded object gr 1 v is a

graded ideal in grU(g) éé S(g). As such, it has an associated variety
r(gr Iy) of common zeros in g*. Since Iy is graded (resp. Gad-stable), this
variety is a cone in g* (resp. is Gad-stable). The ideal 1 y meets the center
3(g) in an ideal of codimension one and since the associated graded algebra
of 3(g) identifies with the space S(g)Gad of Gad-invariant polynomials in S(g),
it follows that gr Iv meets gr 3(g) in its augmentation ideal, consisting of all
Gad-invariant polynomials with zero constant term. Making appropriate
identifications, this implies that V (gr IV) sits inside the nilcone

From these remarks, using the finiteness theorem for nilpotent orbits

[17, §3], we have that V(gr IV) is a finite union of nilpotent orbits. But,
even more is true [6]:

for some nilpotent orbit (Dy. These remarks describe the desired assignment

We sometimes refer to (9y as the nilpotent orbit associated to V. Define the

Gelfand-Kirillov dimension of V to be Dim V = 2 dimc(9y; every coadjoint
orbit carries a symplectic structure, which ensures its dimension is even
[17, §1.4].
For our needs, one type of nilpotent orbit is of particular interest. The

Richardson Orbit Op associated to the parabolic subalgebra p = m Q a Et) n
is the unique nilpotent orbit in g which is dense in Ad(Gad) . n; this orbit is
denoted Op. For more details, see [ 17, § 7].

Given a Harish-Chandra module V in HLo, define J( V ) = ()*b-locally finite,
where - (resp. *) refers to the admissible (resp. full) dual of v: This assign-
ment defines a faithful exact covariant functor. We refer to J(V) as the
Jacquet module of v: The module J(V) lies in the category (9’(g, Pm), for all
VE.YeCo.
To make sense of one of our introductory remarks, it is important to

recall
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for all k e N. Information about submodules of J(03C0(03B4)) will be encoded by
highest weight vectors contributing to HO(nm, J(n(b»); combined with

Frobenius reciprocity [20] we obtain embeddings of 03C0(03B4) into principal
series representations.
We seek to link the existence of "nice submodules" of J(n(l5» with a

condition on the nilpotent orbit O03C0(03B4). To carefully define these "nice

submodules", define

which is referred to as the socular set for (9’(g, p). This set is parametrized
by those Lp(w) with the proprty that Dim Lp(w) = dim n. For example, if
p = b, then WPsoc = {e}. Roughly speaking, as p gets "bigger", the size of the
socular set increases and the category O’(g, p) gets "smaller". The import-
ance of this set is clearly spelled out in Irving’s work [21]. We now come
to a central definition.

DEFINITION 1.2. Let 03C0(03B4) be an irreducible Harish-Chandra module for
G and p a standard parabolic subalgebra of g. We say that 03C0(03B4) has

property p if there exists an irreducible highest weight module L satisfying
two conditions:

(a) L lies in the socle of J(03C0(03B4)) ;
(b) L = Lp(w) for some we WPsoc.

Any such L satisfying (a) and (b) is called a p- factor for J(n(b».

Given p, an obvious problem is to classify the irreducible Harish-Chandra
modules having property p. It is fairly easy to give a necessary condition;
see Section 2 for a proof.

LEMMA 1.3. If 03C0(03B4) has property p, then O03C0(03B4) = Op.

Any hope of establishing the converse of (1.3) requires a more careful
hypothesis on p. (As will become clear in the sequel, without additional
hypothesis the converse of (1.3) fails.) A Whittaker datum 03A8 is a triple
(P, 03C8, n), where P = MAN is the Langlands decomposition of a parabolic
subgroup of G and 03C8 is a character (one-dimensional representation) of n.
We say that the Whittaker datum 03A8 is admissible if the Richardson orbit

associated to p coincides with the orbit determined by t/1; i.e. Op = Gad. t/1.
It is not true that all parabolic subalgebras admit admissible Whittaker
datum. However, in Section 2 we establish the following well-known result;
it ensures the main results of this paper are not vacuous.
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LEMMA 1.4. Let p be an even Jacobson-Morozov parabolic subalgebra of
g arising as the complexification of a real parabolic subalgebra of go. Then
p admits admissible Whittaker datum.

If A(G) is the space of real analytic functions on G, then under the left
action we have the induced representation A(G ; ’Y), which is just the space
of real analytic sections of the line bundle over G/N determined by the
one-dimensional representation e-l. Given an arbitrary U(g)-module E if
there exists an injective U(g)-homomorphism i : V~A(G; IF), then we will
say V has a IF-global Whittaker model.

Using our terminology, the next result was established by Matumoto,
generalizing earlier work of Goodman-Wallach.

THEOREM 1.5 (Goodman-Wallach [19], Matumoto [26]). Fix W an
admissible Whittaker datum for G and ir(b) an irreducible Harish-Chandra
module. If 03C0(03B4) has property p, then n(b) has a IF-global Whittaker model.

This leads us to our main problem of interest. Give a necessary and
sufficient condition for the existence of a IF-global Whittaker model for
03C0(03B4); or equivalently, necessary and sufHcient conditions for Property p.

MATUMOTO’S CONJECTURE 1.6. Let p be an even Jacobson-Morozov
parabolic subalgebra defined over R and (9, the corresponding Richardson
orbit. Fix 03A8 an admissible Whittaker datum for G and assume that 03C0(03B4) is an

irreducible Harish-Chandra module with dim 03C0(03B4) = dim n. The following are
equivalent:

(a) (Singularity condition) O03C0(03B4) = Op;
(b) (Whittaker condition) 03C0(03B4) has a IF-global Whittaker model;
(c) (Asymptotic condition) 03C0(03B4) has property p.

Matumoto has made significant progress on this conjecture. First, in
[25] he showed that (b) implies (a) and (1.5) is (c) implies (b). In case
P = P., Casselman’s Subrepresentation theorem shows that the Singular-
ity condition implies the Asymptotic condition (and hence, the Whittaker
condition). In addition, when G is a complex group, Matumoto [27]
additionally established (a) implies (c), whence proving the conjecture. The
implication "(a) ~ (c)" is sometimes referred to as "the working hypoth-
esis". We can now state the first main result of this paper.

THEOREM 1.7. If G is of Hermitian symmetric type and of real rank two,
then Matumoto’s conjecture is true.

In Section 9 we will give a detailed account of the validity of the working
hypothesis in the case of Sp6R and offer counterexamples to (1.6).
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PROPOSITION 1.8. In the case of Sp6R, the fundamental block of the finite
dimensional representation F is a union of 16 double cells. Matumoto’s

conjecture is true on all but two of these double cells. On these two double
cells the conjecture fails (i.e. the working hypothesis (a) implies (c) in (1.6)
fails).

In this sense, without further restricting the groups in question or represen-
tations of interest, (1.7) is the best general statement one can make. (We
should point out that H. Matumoto has informed the author of counter-
examples in Sp61R using very different techniques.)
One might naturally ask to what extent one can remove the Hermitian

symmetric hypothesis in (1.7). To comment on this, let us first recall the list
of simple real rank two matrix groups, up to covering, amounts to 4 infinite
families and 7 sporadic cases:

In Section 10, we address the non-Hermitian cases. We will see, in the
case of Sl3R, Sl31H1 and E6(-26), the only even Jacobson-Morozov para-
bolic defined over R is the minimal parabolic p. and in this setting (1.6)
follows from Matumoto’s work in [26]. The case of G2(2) is non-trivial, but
still we are able to prove (1.6). This leaves the infinite family Sp(2, s). We
have verified (1.6) in the case of s = 2, but a general proof would require
tools in the spirit of [5], which are currently unavailable. The ideas and
techniques of proof we use for (1.7) will build upon the material in the
Memoir [5], which was cast entirely in the Hermitian symmetric setting.
Nevertheless, if (1.6) holds for the cases s  3, we would then be able to
remove the "Hermitian symmetric" assumption in (1.7).
Here is a brief outline of the content of each section of the paper. In

Section 2, we introduce the necessary notation and terminology, most of
which is standard. Section 3 will establish a useful reduction lemma; in

effect, we are reduced to verifying (1.7) for one irreducible representation
from each relevant double cell. This result is really a manifestation of the
fact that the Jacquet functor "intertwines" double cell and right cell Weyl
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group representations. Section 4 outlines the basic strategy used in our
proof of (1.7). The proof of the main result (1.7) is carried out in Sections
5 to 8 and Sp6R is studied in Section 9. Non-Hermitian real rank two
groups are discussed in Section 10.

2. Notation

In this section, we elaborate on some of the terminology used in the
Introduction. The material is organized by topic for easier reference.

Module categories

Let é0 denote the flag variety of all Borel subalgebras in g. Recall, the
complexification of K, denoted K, acts on B with finitely many orbits, as
does the complexification P of any parabolic subgroup of G.

In the setting of .YeCo, we introduce a parameter set Ç) which will consist
of pairs 03B4 = (V03B4o,L03B4o), where V03B4o is a K-orbit in B and L03B4o, is a K-

homogeneous line bundle on the orbit with flat connection. Equivalently,
D can be described in terms of triples of Langlands data, as discussed in
[33]. Continuing with the notation of [33], we have the basis of irreducible
representations {03C0(03B4)|03B4~D} and the basis of standard modules {03C0(03B4)|03B4 ~D}
for the Grothendieck group K(HCo) = Z[-9]. We remark that each

standard module is a generalized principal series representation; i.e., an
induced representation of the form IP(03C3 Q v), where P = MAN is a

standard cuspidal parabolic subgroup of G, u is a relative discrete series
representation of M and v is a one dimensional (non-unitary) character of
A.

If p is a parabolic subalgebra of g, we define the category O’(g, p) of all
finitely generated U(g)-modules which are locally p-finite with the same
infinitesimal character as F. This is a slight variant of the relative classical
BGG categories O(g, p), consisting of finitely generated U(g)-modules
which are locally p-finite, m Q a-semisimple and having the same general-
ized infinitesimal character as F; by a theorem of Soergel [30], these two
categories are equivalent. As usual, let Wp be the parabolic subgroup
determined by the Levi factor of p, with wp the longest element (using the
Bruhat order previously introduced on W). Let x - p be the highest weight
of the fixed finite dimensional representation F of G, where p is the

half-sum of the positive roots determined by b. Let WP denote the set of
minimal length right coset representatives of WPBW. For each w E Wp,
define
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where EP(wPwwo) is the irreducible finite-dimensional representation of
m Q a of highest weight wpwwo(x) - p. The irreducible modules in O’(g, p)
are exhausted by taking the unique irreducible quotients Lp(w) of Np(w),
for w E Wp. Our conventions are arranged so that Np(e) = Lp(e). In the

obvious sense, the integral Grothendieck group of O’(g, p) can be identified
with Z[WP].
We will often work simultaneously within two or more different relative

categories O’(g, p). However, in all cases, we can at least work within the
category O’(g, b), which contains all of the relative categories as sub-
categories. Thus, we institute the notational conventions

for all w~W. In particular, this convention implies Lp(w) = LwPw, etc.

Denote by Iw the annihilator of Lw in U(g).
For technical reasons (see (2.3) below), it is important to have on hand
slight variants of the sets Wp and WPsoc. Define

More generally, suppose b c q c p are parabolic subalgebras of g with
corresponding parameter sets W, WQ and W’, respectively. We can relate
the longest elements wp and wQ of Wp and WQ in the following useful way:

for some wp,, E WQ. Define

then

Cells

Recall from [1] the definition of order relations  R,  L and  LR on W,
which lead to equivalence relations ~ R, ~ L and ~ LR and equivalence
classes of right cells rcR, left cells wL and double cells CCLR in W We have
partitions
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So, we can use the notation Rw (resp. Wk, LRw) to denote the unique right
cell (resp. left cell, double cell) in W containing w. In turn, these cells give
rise to representations of W
Whereas the set W’ works nicely when parametrizing generalized Verma

modules in O’(g, p), it does not work so nicely when studying the right cell
decomposition of W ; this is where we need to use 1j/P instead of W’. The
useful observation is the following.

LEMMA 2.3. The parameter set 1j/P will decompose into a union of right
cells in W, sympathetic to (2.2).

Along the same lines, we can define double cells G in D as in [34]; this
definition can be viewed as paralleling the definition of right cells in W, in
that they each can be realized via a relation defined in terms of the Ua
construction. A precise definition is central to the paper. Suppose s is a
simple reflection in W corresponding to the simple root a and assume that
s is not in the tau invariant of 03B4~D; see [34] for elaboration. We can
consider the s-wall crossing 0,,(fr(b» (via a composition of translation
functors). The module 8s(n(c5» will have 03C0(03B4) as a submodule and quotient
and 03B8s(03C0(03B4))/03C0(03B4) will have a semisimple module Us(03C0(03B4)) as a submodule;
this is the Kazhdan-Lusztig conjecture for G, which is a theorem in the
context of our paper (see [24], [33]). Thus, the module 0,(ii(ô» will have
a Loewy filtration of the form

We define a relation  G on -9 as follows: b --+ s Y if n(y) occurs as a

summand of U 7r The reflexive/transitive closure of this relation

defines  G. Finally, we say that 03B4 ~ G 03B3 if 03B4 G 03B3 and 03B3  G03B4. By definition,
the double cells WG in D are the equivalence classes under the relation.
Similar remarks apply to define the relations  R and ~ R on W, leading to
the right cells R in W.

Proof of (1.3). If 03C0(03B4) has property p, then L,,(w) = Lwpw is a submodule
of J(03C0(03B4)), for some w~WPsoc. First, we use the fact that any irreducible
submodule of J(n(b» determines the same primitive ideal as 03C0(03B4); in particular,
n(b) and Lp(w) have the same annihilator in U(g). Next, the socular set WPsoc
contains the minimal element e and WPsoc is a right cell in W (by (2.2)) with
minimal element wp. Now, if fCR is any right cell in WP, then under the map
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(l.la), the nilpotent orbits (9Ly will coincide for all y~R. In particular, this
shows that

But, an easy calculation shows that OLp(e) = (9N,,(e) = Op. D

Weight filtrations

It is useful to recall the program in [8]-[10] to describe a weight filtration
for the Jacquet module J(03C0(03B4)). This is a g-filtration with semisimple
subquotients. A weight filtration for the Jacquet module J(03C0(03B4)) arises as

follows. Recalling the integral Grothendieck groups Z[g] and Z[WP], we
extend scalars, obtaining

respectively. We refer to these extended Grothendieck groups as Hecke
modules; this is justified since one can show that these objects are modules
under an appropriately defined action of the Hecke algebra Ye = JI B
attached to the Weyl group; see [8], [9]. Once appropriate dictionaries are
in place (via D-modules, perverse sheaves and passage to positive charac-
teristic) we may interpret weight filtrations of modules in YCC,, or O’(g, p)
as elements of these Hecke modules. Under this dictionary, a typical
standard irreducible Harish-Chandra module -n(ô) (resp. irreducible highest
weight module Lp(w)) corresponds to a self-dual element Cà (resp. CWPW) of
NG (resp. NP). The Jacquet functor J gives rise to a Hecke module map
J : NG~NN = H such that J(03B4) determines a weight filtration of J(n(£5»; see
[9]. We may write

where a(w, i) are integers. Define

A composition factor Lz of J(à(à)) is said to lie in the bottom weight layer if
a(z, r(b» :0 0. In particular, bottom weight layer factors are among the irreduc-
ible composition factors in the socle of J(n-(ô».
The theory of weight filtrations allows us to attach an invariant to each 03C0(03B4).

We define the asymptotic length of J, denoted llasy(b), to be the number of levels
in the above weight filtration for J(03C0(03B4)).
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LEMMA 2.4. /lasy is constant along double cells.
Proof. Suppose that 03B4 ~G 03B3, then we need to prove that /lasy(b) = llasy(y)- We

know that there exist chains

Let LY1’..., Lyk be the bottom weight layer factors of J(n-(Ô»; there may be
multiplicities here. Since every irreducible submodule of J(îî(ô» determines

the same primitive ideal as 03C0(03B4), we see that s1~03C4(Lyk), for 1  i  k. Let

LW1, ... , LWm index all of the second from bottom weight layer factors of J(03C0(03B4))
with s1 ~ 03C4(Lwj). Let LZ,, ... , LZt index all of the third from bottom weight layer
factors of J(n(b» with s 1 ~ 03C4(Lza), etc. Consider the following schematic layer
filtration with semsimple subquotients.

By exactness of J, the algorithm of [8], the wall crossing 3-step filtration and
tau invariant considerations, the bottom level (resp. top level) of this picture is
exactly the bottom level (resp. top level) of J(03C0(03B4)). In addition, by the
algorithm in [8], given any irreducible summand 03C0(03B6) of Us1(03C0(03B4)), the bottom
weight layers factors of J(03C0(03B6)) will be among the second or higher level factors
in this picture. By the self duality of this filtration, the top weight layer factors
of J(n(’» will be among the second from the top or lower level factors in the

picture. We conclude that llasy(03B4)  llasy( b 2). Iterating this argument and using
(2.5), we have

Jacobson-Morozov parabolic subalgebras

Let {H, X, Y} be a standard triple in g, consisting of neutral element H,
nilpositive element X and nilnegative element Y Decompose g according
to adH as


