Units from 3- and 4-torsion on jacobians of curves of genus 2
Compositio Mathematica, Volume 94 (1994) no. 3, pp. 311-320.
@article{CM_1994__94_3_311_0,
     author = {Grant, David},
     title = {Units from 3- and 4-torsion on jacobians of curves of genus 2},
     journal = {Compositio Mathematica},
     pages = {311--320},
     publisher = {Kluwer Academic Publishers},
     volume = {94},
     number = {3},
     year = {1994},
     zbl = {0828.11033},
     mrnumber = {1310862},
     language = {en},
     url = {http://www.numdam.org/item/CM_1994__94_3_311_0/}
}
TY  - JOUR
AU  - Grant, David
TI  - Units from 3- and 4-torsion on jacobians of curves of genus 2
JO  - Compositio Mathematica
PY  - 1994
DA  - 1994///
SP  - 311
EP  - 320
VL  - 94
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1994__94_3_311_0/
UR  - https://zbmath.org/?q=an%3A0828.11033
UR  - https://www.ams.org/mathscinet-getitem?mr=1310862
LA  - en
ID  - CM_1994__94_3_311_0
ER  - 
%0 Journal Article
%A Grant, David
%T Units from 3- and 4-torsion on jacobians of curves of genus 2
%J Compositio Mathematica
%D 1994
%P 311-320
%V 94
%N 3
%I Kluwer Academic Publishers
%G en
%F CM_1994__94_3_311_0
Grant, David. Units from 3- and 4-torsion on jacobians of curves of genus 2. Compositio Mathematica, Volume 94 (1994) no. 3, pp. 311-320. http://www.numdam.org/item/CM_1994__94_3_311_0/

[B-K] W.L. Baily and M.L. Karel, appendix to: W.L. Baily, Reciprocity laws for special values of Hilbert modular functions, in Algebra and Topology (1986) 62-139, Korea Inst. Tech., Taejon, 1987. | MR

[Bo] J. Boxall: Valeurs spéciales de fonctions abéliennes, Groupe d'Etude sur les Problémes Diophantiens 1990-91, Publications Mathématiques de l'Université Pierre et Marie Curie No. 103.

[BaBo] E. Bavencoffe and J. Boxall: Valeurs des fonctions thêta associées a la courbe y2 = x5 - 1, Séminaire de Théories des Nombres de Caen 1991/2.

[BoBa] J. Boxall and E. Bavencoffe: Quelques propriétés arithmétiques des points de 3-division de la jacobienne de y2 = x5 - 1, Séminaire de Théories des Nombres, Bordeaux 4 (1992) 113-128. | Numdam | MR | Zbl

[CW] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977) 223-251. | MR | Zbl

[deS] E. De Shalit: Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Mathematics 3, Academic Press, Orlando, 1987. | MR | Zbl

[F] A. Fröhlich: Formal Groups, Lecture Notes in Math. 74, Springer-Verlag, Berlin, 1968. | MR | Zbl

[G1] D. Grant: Formal groups in genus two, J. reine. angew. Math. 411 (1990) 96-121. | MR | Zbl

[G2] D. Grant: On a generalization of a formula of Eisenstein, Proc. London Math. Soc. 3 (1991) 121-132. | MR | Zbl

[G3] D. Grant: Some product formulas for genus 2 theta functions, preprint.

[I] J.-I. Igusa: Arithmetic variety of moduli for genus two, Ann. Math. 72(3) (1960) 612-649. | MR | Zbl

[K] V.A. Kolyvagin: Euler systems, in The Grothendieck Festschrift II, Prog. Math. 87 (1990) 435-483. | MR | Zbl

[M] D. Mumford:Tata Lectures on Theta Ii. Prog. Math. 43 (Birkhäuser, Boston) 1984. | MR | Zbl

[Ro] G. Robert: Unités elliptiques, Bull. Soc. Math. France. Mémoire 36 (1973). | Numdam | MR | Zbl

[Ru1] K. Rubin: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987) 527-560. | MR | Zbl

[Ru2] K. Rubin: The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991) 25-68. | MR | Zbl

[S] H. Stark: L-functions at s = 1. IV. First derivatives at s = 0, Adv. Math. 35(3) (1980) 197-235. | MR | Zbl