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Introduction

Let E be a totally real field of degree d over Q, E = LE = {(11’ ... , (1 d} the
set of real embeddings of E, G = RE/QGL(2, E). Let n be an irreducible
automorphic representation of G, attached to a holomorphic Hilbert

modular cusp form F. We assume the central character ç1t of n to be motivic
in the sense that ç1t equals an integral power of the idele norm multiplied
by a character of finite order. In the article [H3], to which we refer

henceforth as Part I, we have shown how to attach invariants v’(n) e C " to
n, for every subset 7 c E. These invariants are well-defined up to scalars in

0(n, I), where Q(7c) is the field of definition of the non-archimedean

component n f of 7r and 0(n, I) is a certain subfield of the composite of Q(7c)
and the Galois closure of E over Q. When I = 0 we can take v0(n) = 1,
whereas v1:(n) is the normalized Petersson inner product of F with itself, if
F is taken to be an arithmetic new form in n. The definition of vI(n) in

general is recalled briefly in (1.2.5).
The main result of Part 1 is the expression of values of Rankin-Selberg

convolutions L(s, n Q n’), up to scalars in 0(n, I) - 0(n’, l’), in terms of the
invariants vl(n) and v,I(n), when s = m is a critical value of L(s, n (8) n’), in
the sense of Deligne (and Shimura). Here n’ is another irreducible cuspidal
automorphic representation, again attached to a holomorphic Hilbert
modular form. The exact formula is recalled in (4.1.2); here we simply
mention that the existence of critical values of L(s, n (D n’) implies the
existence of a unique partition X = 1 III’, associated to the pair {n, n’l, and
the critical values are expressible as elementary multiples of v,(n) - v,’(n’).
On the other hand, some years earlier Shimura had found another expres-

sion for these critical values, valid in most cases. Suppose D and D’ are
quaternion algebras over E. Let Z(D) and l(D’) denote the subsets of E at
which D and D’ are unramified. In the situation of the preceding paragraph,
we suppose l(D) = I, Z(D’) = l’, and we assume that the local constituent 71,

* Partially supported by NSF Grant No. DMS-8901101 and by the NAS exchange program with
the USSR.
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of (resp. n§ of n’) belongs to the discrete series of GL(2, Ev) at any place v of
E at which D (resp. D’) ramifies. Then the Jacquet-Langlands correspondence
[JL] asserts the existence of automorphic representations nD and n’ ,D’ of D x
and D" x, respectively, such that n) éé nv (resp. n;;D’  cv) for every place v at
which Dv (resp. D;; X) GL(2, Ev). In this setting, Shimura has associated
invariants q(n), qD’(n’) E C x /0 x to n and n’, respectively. (Shimura denotes
them Q(x, D), where x is the family of Hecke eigenvalues attached to places at
which rc is unramified; our notation is taken from [H5]). Roughly speaking,
qD(n) is the normalized Petersson inner product with itself of an arithmetic
holomorphic form in nD; a more precise definition can be found in [H5], where
it is shown how to define q D(n) up to Q(n, E(D)) ". Shimura’s formula [S3; cf.
Theorem 4.1.4 below] expresses the critical value L(m, n Q n’), up to algebraic
factors, as an elementary multiple of qD(n) . qD(7r,).

Let À, y e C, and let L be a subfield of C. We write ’" L tl if either À. J1, = 0
or if À/J1,ELx. Assume there is a critical value L(m, n @ n’) which does not
vanish. With our normalization, we then obtain the relation:

It is natural to conjecture that in fact

Indeed, the invariants v’(n) were introduced as generalizations of Shimura’s
invariants q’(n) when no pair (D, nD) as above exists, in response to a

conjecture of Shimura [S3, Conjecture 5.10].
Suppose n and n’are associated to algebraic Hecke characters of a quadratic

CM extension Jf of E. In other words, suppose co and co’ are Hecke characters
of K A K x, and let n = n(co, K), n’ = n(m’, X) be the corresponding automo-
rphic representations of G [JL, Prop. 12.1], normalized as in Part 1, §4. We
denote by p the non-trivial element of Gal(,Y’/E). Then p acts on :ftÀ/:ftx,
and we let mP(x) = co(xP), as in Part I. Then (cf. (4.3.7), below) we can write

as a product of Hecke L-functions on GL(1),. In this case, we have a third
expression for the critical values of L(s, n Q9 n’), due to Shimura and Blasius
[B]. For our purposes, it is convenient to use the formulation of [H5, §1]. For
any Hecke character 11 of K x we let i) = w/wp. Then one can define invariants
I), p,-(jj’, I) ([H5, §1]; cf. §4, below) such that the critical values

L(m, n Q n’) are elementary multiples of pK(jj, I) - pK(w’, l’). The invariants
pK(w, I) can be expressed as periods of motives of CM type; i.e., in the tensor
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category generated by abelian varieties with complex multiplication over

number fields. Again, this leads to the conjecture that

Up to 0 x, the CM period pK(w, 1) depends only on the infinity-type of w, and
then pK(w, 1) coincides with the invariants defined by Shimura in [Sl]. Thus
(0.3) is also a translation of part of Shimura’s Conjecture 5.10 in [S3].
Of course, when there is a quaternion algebra D over E such that the

Jacquet-Langlands transfer nD exists (briefly: nD exists), with n = n(w, je), (0.2)
and (0.3) together imply that qD(n(w, X» -,0 p_,(io, I). This was in fact proved
by Shimura in [S3]. However, pK(jj, I) can be defined whenever the weights
(in the sense of holomorphic Hilbert modular forms, cf. §1) of n(m, K) at places
in 7 are 2; the definition of qD(n(w, K)) requires that the weights at places
in 1 - 7 be 2. Thus (0.2) and (0.3) are logically independent of one another,
even for binary theta functions.
The main theorem of the present paper is

THEOREM 1. Let n be an irreducible automorphic representation of G, attached
to a holomorphic Hilbert modular cusp form, with motivic central character. Let
I c E, and suppose the weights of n at places in 1 are 2.

(a) Let D be a quaternion algebra over E such that nD exists. Then

VI(7r) -,u q’(7r).
(b) Suppose n = n(w, K) for some algebraic Hecke character w of a CM

quadratic extension K of E. Then i,,(l,x). vl(n(w, K)) -ù p,(àJ, ), where
_ 

the invariants ri(l, n) are defined as in Part 1, 3.5.

In (b) the term i,,(l,x) is a fourth root of unity, and its presence in the formula
may seem superfluous. It should rather be taken as an indication of what is to
be expected when Q is replaced by Q in the relations above. Indeed, most of
the steps in the proof give results in Gal(Q/Q)-equivariant form, and the power
of i is an artifact of the normalization of the Petersson inner product, which
does not appear in the definition of p.,«7o, I).
Theorem 1 has applications to special values of triple product L-functions;

a typical one is indicated in Corollary 6.5.
The main theorem of [H5] is a factorization of the quaternionic invariants

q’(n), under the hypothesis that the local component nv of is special or
supercuspidal at some finite prime v. This theorem, together with the results of
Part 1 and Theorem 1 of the present paper, complete the proof of Shimura’s
Conjecture 5.10 [S3] in almost all cases.
The proof of Theorem 1 has three main steps. We present these steps in

logical order, which is slightly different from the order followed in the text.
First, using the relation (0.1) and slight generalizations thereof, one reduces
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Theorem 1 to the special case of binary theta functions; essentially, to (b). In
order to obtain results for forms of low weight, one has to demonstrate that
sufficiently many critical L-values do not vanish. The main result of [H4]
provides the necessary non-vanishing; alternatively, we could have quoted a
theorem of Rohrlich.

The second step is provided by a somewhat mysterious theorem of Shimura
[S2, Theorem 3.7]. Let denote the cardinality of I. One can interpret
Shimura’s theorem as the special case of Theorem 1 in which [I[ = 1, provided
it can be shown that certain cohomological cup products do not vanish. Here
the non-vanishing is provided by the functional analytic methods of [H2, §7].
The first step allows us to restrict our attention to binary theta functions;

the second step demonstrates the theorem when [I[ = 1. The final step is an
induction on III. The induction step, in the case of binary theta functions, is
provided by Theorem 4.7 of Part I, which in turn is based on my joint work
with Kudla on the central critical values of triple product Lfunctions [HK].
The induction step shows that, in certain cases, a partition 1 = llll12 defines
a factorization:

Since the invariants PI(w,I) are already known to have analogous factoriz-
ations, this suffices for the induction step.

It deserves to be stressed that the key ingredients in the first and third steps
are period relations, which derive from the possibility of expressing special
values of certain L-functions in several different ways, and from results which

guarantee that these special values do not vanish. As a byproduct of the
construction used in the third step, we include in Section 6 a theorem on the

non-vanishing of certain triple product L-functions.
The text indicates what needs to be done to make each step Gal(q)jQ)-

equivariant. Briefly: a Gal(QjQ)-equivariant version of the first step should
appear in a forthcoming joint paper with Garrett. The methods of [HK]
should, in principle, provide Gal(0/0)-equivariance in the second step. Finally,
Theorem 4.7 of Part I, on which (0.4) is based, is already Gal(0/0)-
equivariant. However, this only suffices to prove a Gal(Q/Q)-equivariant
version of Theorem 1 when the period invariants are replaced by their squares.
The presence of uncontrollable square roots in (0.4) seems to be an inevitable
consequence of the appeal to triple product L-functions.

At various points in Part I, reference is made to the future contents of Part
II. However, in the interim 1 found a proof of Shimura’s conjecture on the
factorization of the quaternionic invariants, using methods largely unrelated to
those of Part 1 [H5]. Most of the material on quaternionic modular forms,
originally intended for Part II, was incorporated into [H5], with the result that
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the anticipatory references in Part 1 are no longer correct. 1 apologize for any
confusion this may cause.
Most of the results of this paper were announced in [Hl]. Some refinements,

mainly related to forms of low weight, were worked out when 1 was visiting
the Steklov Mathematical Institute in Moscow during the academic year
1989-90, in the context of an exchange program sponsored by the National
Academy of Sciences and the Academy of Sciences of the USSR. 1 thank the
Steklov Institute for their hospitality.

Notation and conventions. We retain the notation of Part 1, some of which is
recalled in Section 1.1.

1. Review of notation

1.1. We recall the conventions of Part I, to which we refer for details. Let
Y be the group GL(2, R), 1) its complexified Lie algebra, K = 0(2), Z the
center of Y, which we identify with [R x, embedded diagonally in Y Let
Y + c Y denote the subgroup of elements of Y with positive determinant,
K+ = K n Y + . For 3E R/2nZ, we denote by r(3) the matrix

let X + (resp. X_) be the matrix

in 1). A holomorphic (resp. anti-holomorphic) vector in a (p, K +)-module
V is a vector annihilated by X - (resp. X +) ; an irreducible (n), K +)-module
is in the discrete series (or limit of discrete series) if it is generated by a
holomorphic or antiholomorphic vector. For k, r E Z, k &#x3E; 0, let n(k, r)+
denote the discrete series (or limit of discrete series) (n, K +)-module
containing a holomorphic vector vk satisfying vk(zgr(3)) = zr ekiS. vk (g), g E 1’:
3E R/2nZ, z E Z. Let n(k, r) denote the (1), K)-module induced from n(k, r) +.
Then

where n(k, r) - is generated by an antiholomorphic vector v _ k satisfying
v_k(zgr(9)) = zre-ki3’V-k(g), g, 9, z as above.
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Define E, E = LE’ and G as in the introduction. We identify G(R) --
GL(2, lR)d via X, G(R) + its identity component, and let Koo = 0(2)1 c G(R),
K = G(R)’ n K,,,,. Thus ZG(IR) . K/ is the stabilizer in G(IR) + of the point
(i, ... , i) under the usual action of G(R) + on the d-fold product .5’ of upper
half-planes. If 3E R12nZ,j = 1, 2,..., d, we let rj(3) e K., be the element r(3)
in the j th factor of K.’ -= SO(2)d. Let

as in Part I, where p + (resp. p -) maps naturally to the holomorphic (resp.
antiholomorphic) tangent space to .5’ at (i, ..., i). Each p/ (resp. Pj-) is

generated by its respective copy of X + (resp. X -).
We have G(A) éé II’G" (restricted direct product), where v runs through

the places of E and Gv  GL(2, E,). If v is non-archimedean, let (!) v be the
maximal order in Fv, and let K, = GL(2, (!)v) c G,; let K f = IIvKv, as v
runs over non-archimedean places. If v is an archimedean place, we let
9v = Lie(G v), Kv = O(2) c Gv, Kv - SO(2). The Haar measure dg = rl dg,
is normalized as in Part I, 1.6.

Let k = (k 1, ... , kd) be a d-tuple of positive integers, Ikl = L1=  kj’ Let
r E Z be an integer such that

A (motivic) Hilbert modular form of weight (k, r) for E is an automorphic
form f on G(Q)BG(A) such that

Here N EIO: REIO Gm,E  Gm,O is the norm map, viewed as a homomorphism
of algebraic tori over Q, and R(’) is the right regular action on functions
of the enveloping algebra of Denote by A(k, r) = A/(k, r, E) the space
of Hilbert modular forms of weight (k, r) for E; let sio(k , r) be the space of
cusp forms.

Let be the Hilbert modular Shimura variety associated to G.
Over the complex numbers, there is an isomorphism
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where U runs through the set of open compact subgroups of G (Af ). Then
if (k, r) satisfies (1.1.1), there is a G(Af)-homogeneous line bundle over

A(C) which admits a canonical isomorphism

with the addition of the usual condition at the cusps when E = Q. The
definition is given in Part I, Section 1.2, where we also define for

negative kj; there are natural isomorphisms

where the (d + l)-tuples are added as vectors. When it is necessary to

specify the field E, we = 

The Shimura variety A E(C) has a canonical model over Q, which we
denote JI or If let with 

definition index in k, let art = Section 1.2, where we a and let E(k) r-- 0 be
the fixed field of r(k) (N.B.: the definition of ka in Part 1 contains a

misprint). Then the G(Af)-equivariant line bundle is rational over

E(k) ; moreover, for 

The space of E(k)-rational sections of O(k,) is deter-

mined, via (1.1.5), by the Fourier coefficients of their lifts to see

Part I, Prop. 1.3.3, for details.
For any subset let k(I) be the d-tuple 1, ..., where

1.2. Let H1t) be an irreducible cuspidal automorphic representation of
G(A) which is generated by a Hilbert modular form F of weight (k, r). We
say that such is of type (k, r). Then n factors as a (restricted) tensor
product of representations of (or (Lie(Gv)’ K,)-modules if v is

archimedean). If v corresponds to the real embedding ai then r).
Denote by (ni’ be an (resp. (n 00’ H1t,oo)) the restriction of (n, H1t) to 
(resp. to (gc, Then ni can be realized over a finite extension 0(n) of

which is either totally real or a CM field, and which contains E(k). Let
archi c edea denote the subspace of holomorphic vectors; then the G(Af)-
action on Hi°’ is isomorphic to Moreover, Hi°’ /(k, r), hence
is isomorphic to a G(Af)-submodule d over a finite r(Jt, sion Q Now

Q wh ich is has a natural E(k)-rational structure, defined by the sections
rational over E(k). Thus space cC(k,r»1t has a natural 0(n) - E(k)-rational
structure. We let denote the 0(7c)-rational elements, and
let denote the corresponding structure define of Hir .
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Thus Hi°’ = Then for all I, the G(Af)-action on is isomorphic to

let Let n(k, r)5 = n(kj, r) - if l, r)5 = if Hhol 1 (there is
a misprint in Part I). Then we may decompose = 

where

H is the lowest K-type subspace of Hx(I) 0 Hx,.
There is a natural embedding

of G(Af)-modules, where H’(GOdI),r») is the "interior cohomology" studied in
Part I, 1.4. Recall that H’(GOdI),r») has a natural G(Af)-equivariant E(k(I))-
rational structure, and the image HIII(G(k(I),r)yr of HI via (1.2.2) is a

Q(n, 1): = E(k(I)) . Q(7r)-rational subspace of HIII(GOdI),r») (ibid., Prop. 1.4.3).
The corresponding subspace of Q(n, I)-rational vectors in HI is denoted
HI(G(n, 1)). On the other hand, the Whittaker model determines a second
Q(n,I)-rational subspace ’HI(U(n, I)) c HI, which is also G(Af)-
equivariant. Indeed, there is a map

These two rational structures are related by the formula

where vl(n) e C " is well-defined up to multiplication by 0(n, 1) " . (For all
this, cf. Part I, Lemma 1.4.5).

1.3. REMARK. Everything we have defined up to this point makes sense
when E is replaced by a product rlq= 1 Ei of totally real number fields. The
only difference is that r is replaced by an a-tuple r = (r1, ... , ra), and that k
can be decomposed as (kjI i = 1,..., a, Uj, E Y-Ei), such that
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2. Existence of certain cusp forms

2.1. Now let E’ = ni= 1 E, be a product of totally real extensions of E, and
let LB: E  E’ denote the diagonal map. Let G’ = RE,IQ GL(2) E’, and let

j : G --&#x3E; G’ be the natural embedding; this defines a morphism of Shimura
varieties

Let d’ - dimc E’, ô = d’/d = dimE E’. Let l’ {0"1, ..., a’,l d denote the set
of homomorphisms from E’ to Q; then restriction defines a map of sets
,u : E’ - E. For u c- 1, let 1’(a) = 1l-1(0’); then each Y-’(u) has cardinality ô.
Let M* X X’ be any section of ,u, i.e. a choice, for each 0’, of an element

1l*(0’) c- Let J1 c 11 J2 = £ - J1; let 1 (Z = 1l*(J (Z)’ a = 1, 2. For each
O’EJ1, let 1’(ulI 1) = Y-’(a) - M*(u). Let (k, r) be a (d’, a)-tuple as in 1.3,
satisfying (1.3.1). We consider automorphic forms of type (k, r) on G’,
antiholomorphic at places in Il and holomorphic at other real places, and
their restrictions to G. The element of k corresponding to a’c- E’ is denoted
k( a’).

2.2. LEMMA. Let n’ c slo(G’) be a cuspidal automorphic representation of
G’ corresponding to a holomorphic automorphic form of type (k, r). Define
À(a) E 7L by the following formulas:

Assume À(J) a 3 for all a EL. Let rll = - Ll= 1 ri’ and let Â be the d-tuple
with Â i = À(a j)’ Then there exist f E HI’ and a holomorphic cusp form F on
G of type (À , r4) such that

REMARK. Here and in what follows, it is implicit in the notation that the
central character of F is the inverse of the restriction to ZG (A) of the central
character of n’, so that the integral (2.2.2) is well-defined.

Proof. We want to apply Theorem 7.4 of [H2]. Let g’ = Lie(G’(R»c, and
define K’, ’ r-- G’(R) ’ as in Section 1. Define H n,(I 1) as in (1.2.2); it is

the archimedean component of the (g’, K’+)-module generated by f ; let

Yt’n,(I1) denote the corresponding Hilbert space representation of G’(R)’.



210

The function f belongs to the lowest K£+ -type subspace kg,(I i) c Jen,(I1).
Let RG(.Yt’n,(I1)) dénote the restriction of .H n,(I 1) to G(R)+ . Let

and let Je be the corresponding Hilbert space representation of G(R)+ . Our
hypothesis (2.2.1) is that A’ belongs to the integrable discrete series of
G(R) + (more precisely, its restriction to G(R) + ,der is integrable and square
integrable). Then it has to be verified (cf. 7.2-7.4 of [H2]) that

RG(Jex,(I1)) contains H = Je*, the contragredient of A’, as a discrete
direct summand; (2.2.3)

The orthogonal projection of RG(Jex,(I 1)) onto H is injective on ,(I 1)’
(2.2.4)

For any pair (k, r) of integers of the same parity, k &#x3E; 0, let Je(k, r) t be
the Hilbert space representation of Y’ = GL(2, R) + associated to n(k, r) t .
Now (2.2.3-4) can be checked separately at each place (J E L. Thus let
(k1, ... , ka) be a t5-tuple of positive integers, (r 1, ... , r.) a t5-tuple of integers;
let

Let

as a Hilbert space representation of Y+; let W c R)+ be the lowest SO(2)a-type
subspace. Similarly, let R$+ = Qa=1 1 Jt(ki, ri) + Iy+. It suffices to show that

Jt(2(l, rll) - is a discrete direct summand of Ry+, a = 1, 2. (2.2.5)

The orthogonal projection of R§+ onto Jt(2(l, rll) - is injective on W (2.2.6)

Evidently, the assertions with regard to R§+ are the local conditions corre-
sponding to places in J", a = 1,2. 
Now it is well-known (cf. [M]) that ©/= #(k;, r;)+ [y+, where Y + is

embedded diagonally in (Y +)t5 - 1, is a direct sum of holomorphic representa-
tions of Y+ (even of Harish-Chandra modules). Moreover, the decomposition
of the tensor product is given in [R] for b - 1 = 2, and it follows easily by
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induction on b - 1 that the module H(K, p)+ occurs with multiplicity one,
where K = Ea- 2 ki, p = Y-t= 2 r,. Furthermore, the orthogonal projection of the
holomorphic (minimal SO(2)’-’-type) subspace Jt;. c @=2 Jt(ki, ri) + onto

H(K, p) + is injective, and maps to the lowest SO(2)-type subspace of H(K, p) + .
Indeed, under the diagonal action of SO(2) c SO(2)’-’, Wh is of SO(2)-type
(K, p), and this SO(2)-type occurs with multiplicity one in both @=2 H(ki, ri) +
and H(K, p)+ .
We are thus reduced to the case ô = 2; we have to show that H(Â,I, r4) (resp.

H(Â,2, rl» is a discrete direct summand of Jt(k1, rl)- 0 H(K, p)+ (resp.
H(k1, rl)+ (8) H(K, p)+), and that the analogue of (2.2.6) holds. But the

assertion regarding H(À 1, r4) has already been treated in [H2, § 8.5], and the
assertion regarding H(À 2, ru) is just a special case of the preceding paragraph.
2.3. EXAMPLE. In this example E is arbitrary, E’ = E x E; we identify E’ =
E x y(2)@ where Y-(’) = 1 is the set of embeddings of the ath copy of E in
E x E. a = l, 2. We assume we are given a partition E = Yi UY ’lf3 as a
disjoint union of places, and define J.1*: E -+ E’ so that c-- Y-(’), a = 1, 2;
P*(,f3) is irrelevant. In the lemma, we let J = Ifl 1-Ilf2, J2 = f3. Let n, 1 and
n2 be irreducible automorphic representations of G associated to holomorphic
cusp forms of weights (k, r) and (L, r’), respectively. Let r" r - r’, and define
Â by the formula

For n’ in the lemma we take the irreducible automorphic representation
n 1 @ n2 of G’. Then the lemma asserts the following: there exist éléments 
1:. E Hii, a = 1, 2, and a holomorphic cusp form F on G of type (À , r"), such that

provided Àj  3 for all j.
We may assume F belongs to an irreducible automorphic representation.

Now (2.3.1) is just the special case of (4.2.2) of Part 1 when A’ is the trivial
differential operator (the 1 (J. of Part 1 are replaced by  (J. here). Thus

2.3.2. COROLLARY. There always exists a cusp form F" satisfying the

hypothesis of Theorem 4.7 of Part l, provided À a 3 for all j. In particular, the
period relations asserted in that theorem are valid for such À.

We recall these period relations in Section 5, below. An additional applica-
tion of the lemma to the central critical value of triple product Lfunctions is
given in Section 6.
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2.4. EXAMPLE. Here in Lemma 2.2 we take E = Q, and for E’ we take an

arbitrary totally real field, which we denote E. We write Q instead of E, EE
instead of X’; we also change notation and let d = [E:Q]. Thus Ec is a

singleton, and we let J 1 = 10 J2 = 0; Il = al 1 E l:E is an arbitrary embedding.
Let n be an irreducible automorphic representation of G = GL(2)E, associated
to a holomorphic cusp form of weight (k, r). Let

In this case, Lemma 2.2 asserts that

2.4.1. COROLLARY. With the above notation, suppose m 3. Then there exists

f E iCTl} and a holomorphic cusp form F of weight (m, - dr) for GL(2) , such that

3. Applications of a theorem of Shimura

3.1. The integral 1 ( f, F) defined by (2.4.2) can be interpreted as a pairing in
coherent cohomology. Recall (1.2.3) that f defines an element of

Hl(A E, 8ae({lTl}),r», which we continue to denote f. Similarly, (1.1.5) identifies
F with an element of flo(,#Q, 8,-dr»)’ Let j : A Q -+ A E be the natural
morphism (2.1.1) of Shimura varieties. Then it follows from the construc-
tion (Part I, (1.2.6)) of the automorphic line bundles 8.,.&#x3E; that

Thus there is a natural restriction map:

which, composed with the cup product pairing induced by the isomorphism

defines a pairing

All of these maps, including (3.1.1), are rational over the field of definition


