
COMPOSITIO MATHEMATICA

FÉLIX DELGADO DE LA MATA
A factorization theorem for the polar of a
curve with two branches
Compositio Mathematica, tome 92, no 3 (1994), p. 327-375
<http://www.numdam.org/item?id=CM_1994__92_3_327_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1994__92_3_327_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


327

A factorization theorem for the polar of a curve
with two branches

FÉLIX DELGADO DE LA MATA
Universidad Valladolid, Depto. de Algebra, Fac. Ciencias, 47005 Valladolid, Spain

Received 12 July 1990; accepted in final form 14 June 1993

Compositio Mathematica 92: 327-375, 1994.
© 1994 Kluwer Academic Publishers. Printed in the Netherlands.

Introduction

Let f E C[[X, Y]] be a reduced formal series over the complex field C (i.e.
f = II i f where the fis are irreducible and fi *fj if i -# j), and let

h E C[[X, Y]] be a regular parameter (i.e. h defines a nonsingular plane
algebroid curve). The polar of f with respect to h, P( f, h), is the algebroid
curve defined by:

Examples by Pham show that the topological type of P( f , h) depends on the
analytic type of C, the curve defined by f = 0, and not only on its topological
type, even for h transversal to f However we may wonder what information
of P( f, h) depends on the topological type of C. Roughly speaking:

Assuming the topological type of C fixed,
What can we say about the topological type of P(f, h)

The best results about this question have been obtained by Lê, Michel and
Weber ([LMW], [LMW2]) for the case in which h is transversal to f, by using
topological methods: let n : X H e2 be the canonical resolution of the germ C,
E the exceptional divisor of n. Then, P, the strict transform of P( f, h), does not
meet the strict transform of C, and one can determine (not completely) the
components of E which meet P. As a consequence, they also compute the set
of polar quotients, that is, the set
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where ( f, cp) denotes the intersection multiplicity of f with 9 and m(g) is

the multiplicity of 9. Polar quotients were introduced by Teissier and
depend on the topological type of C only ([T]). Similar computations have
been made by Kuo and Lu in [KL] and by Steenbrink and Zucker in [SZ].
When f is irreducible, the first methods used to study the problem above

were of arithmetical nature. Merle in [M] proves that if h is transversal to

f, then J(f, h) can be factorized as r 1 r 9’ where g is the number of

Puiseux pairs of f and each ri is a product of branches with constant polar
quotient. The polar quotient corresponding to branches of ri and the
multiplicity of ri can be explicitly computed in terms of the minimal set of
generators of the semigroup of values of f (the factorization Theorem is
also proved using the arithmetical properties of this semigroup). The i-th
polar quotient, corresponding to a branch in ri, is equal to the coefficients
of contact, ( f, Ç)/m(Ç), for a curve 03A8 of genus i - 1, having maximal contact
with f, that is, tf¡ has the maximal possible intersection multiplicity with f
among the curves with i - 1 Puiseux pairs. From this, one finds the set of
free infinitely near singular points that a branch of Fi and the curve f have
in common and, as consequence, one obtains the results in [LMW2] in a
more precise form. Notice that the first i - 1 Puiseux pairs of a branch of
Fi are equal to the corresponding ones for f Ephraim in [E] extends
Merle’s result to any regular h, by using the ( f, h)-sequence instead of the
minimal set of generators. Finally, both results are generalized by Granja
([G]) to a larger class of curves which includes the polars as a particular
case. We want to remark that the only data used in the results above are
the intersection multiplicities of J( f, h) with f and h, and no other

properties of polars.
The arithmetical description of the semigroup of values of a curve with

several branches given in [D], (and in [B] for the case d = 2) induces us
to try to obtain similar results for the polar of a non irreducible f using
the arithmetic of the semigroup and taking as only data the intersection
multiplicities of J( f, h) with the branches fl, ... , fd of f and h, that is

In this paper we carry out this program for the case of two branches (d = 2)
and h not necessarily transversal to f Unfortunately this is not possible for
more than two branches (d &#x3E; 3) as the example (4.12) shows. So, for d &#x3E; 3
further properties of J( f, h) are necessary in order to give a "good"
factorization or in order to refine the results in [LMW2].
The main results proved here go in parallel with the ones proved by

Merle and Ephraim. There is also an interpretation in terms of the

resolution process for the singularity of f = 0, included in section 4. Taking
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into account that the topological type of a curve singularity is an equivalent
data to the semigroup of values (or to the resolution process), the

topological type of P( f, h) has some restrictions imposed by that one of C,
as well as some "similarities" with it.
More precisely, assume for the sake of simplicity that h is transversal to

the curve with two branches C defined by f = f 1 f2 = 0 (in the paper there
is no restriction for h). Denote by S - Z2 the semigroup of values of f and
for any qJ E C[[X, Y]] let I(f, q) = (( fI’ qJ )/m( qJ), ( f2, w)/m(w)). If q is an

irreducible component of J = J( f, h) we will say that 1 ( f; ç) is a polar
multi-quotient of f Then J has a factorization

with the following properties:
The numbers s and t are the number of Puiseux pairs of the branches

defined by fl and f2 respectively. Each factor is a product of branches of
J with constant polar multi-quotient. The polar multi-quotient correspond-
ing to one of the factors, r, its multiplicity and the value in S of I-’ that
is, the ordered pair of natural numbers ((r, f 1 ), (r, f2)) - can be explicitly
computed in terms of certain set of elements of S, called the set of values
of the maximal contact. This set plays a role similar to that of the minimal
set of generators in the case of an irreducible f (notice that the semigroup
of values of a curve with several branches is not finitely generated, but can
be "determined" by a finite number of elements, see [D]).
Given 9 c- F i a q + 1, the first coordinate of I(f, 9), (fl,cP)/m(ep) is the

i-th polar quotient of the branch f1 (the second one can be easily
determined in terms of the first one and ( fl, f2)), so we can determine in a
precise form the set of free infinitely near singular points in common for 9
and fl. Similar results are true for the irreducible components of h2,
i a q + 1. The irreducible components, ep, of the first q factors, Fi
(1  i x q), satisfy

and this rational number is equal to the i-th polar quotient of f, (or f2) so
we can make a similar interpretation in terms of the infinitely near singular
points. Finally, D corresponds, in general, to the irreducible factors of J
which have in common with f the set of common infinitely near singular
points of fi and f2. In other words, the branches ç of D become transversal
to f’ exactly in the same step of the resolution procedure in which f, and
f2 become transversal. There are some cases in which the existence of such
a D cannot be guaranteed because its components are, from the point of



330

view of arithmetic, undistinguishable from the components of rq or Fq’+ i,*
see Theorems (3.11), (3.12) and (4.9) for a precise statement taking into
account all the possible cases.
Now, let n : X --&#x3E; e2 be the minimal embedded resolution for the germ C,

C’ the total transform of C and E the exceptional divisor. We can translate
the results above in these terms, obtaining the components of E appearing
in the resolution procedure for P = P( f, h) (not completely, because only
the free infinitely near singular points are determined) or, in other words,
the irreducible components Ei of E such that Ei n P =1= 0, P being the strict
transform of P by n. Moreover, as a consequence, the polar multi-quotients
are in 1-1 correspondence with the "rupture divisors" of E (that means
irreducible components F of E such that #F n (C’ - F) &#x3E;, 3). In fact, the
set of polar multi-quotients can be realized as the set {I(f, n(çF))}’ where F
belongs to the set of "rupture divisors" and ÇF is the germ of a smooth
curve in X with normal crossings with E at a point of F.

Notice that the point of view of this paper is rather different to the one
of Casas in [Ca]. He proves that if f is a "general" element in the set of
curves with a prefixed topological type, then the equisingularity type of the
generic polar can be completely determined.

Briefly, the contents of the different sections are as follows:
In section 1 we fix the notation and prove some results involving the

coefficient of contact (in the sense of Hironaka) of two branches f and g
with respect to h, that is, the rational number ( f, g)l(g, h). The main

arithmetical properties needed in the following sections are stated.
In section 2 we prove a factorization theorem for curves g such that ( f; g)

(for f irreducible) belongs to an enlarged Apery basis of f with respect to
h (see (2.2) for the definition of such enlarged Apery basis). These results
are needed in order to prove a factorization theorem (at the beginning of
the third section) for the polar of a curve with d branches in a very special
case named here diagonal case (d branches with the same equisingularity
type and high intersection multiplicity between pairs of branches), and also
provides an important tool for the proof of the factorization in the two
branch case.

Section 3 is devoted to proving the main results, namely the factorization
of J( f, h), for a curve f with two branches, into packages with constant

polar multi-quotient.
Finally, the last part is devoted to the comparison with the results in

[LMW2] when h is transversal to f and to extend these geometrical
interpretations to arbitrary h. At the end of this part we include a

counterexample of the factorization theorems when one takes d = 3 instead
of d = 2.
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1. Preliminary facts

Throughout all this paper k will denote an algebraically closed field and
h E k[[X, Y]] an irreducible regular parameter, that is, h defines a nonsin-
gular plane algebroid curve over the ground field k.

(1.1) Let C be an irreducible algebroid plane curve defined by an irreduc-
ible formal series f E k[[X, Y]]. Denote by S(C), S( f ), or simply S if

confusion is not possible, the semigroup of values of C, that is, the set

( f, g) denoting the intersection multiplicity between f and g, and v the
normalized valuation corresponding to C, that is, the valuation associated
to the valuation ring t9, normalization of U in its field of fractions.

(1.2) The maximal contact values of C, flo, ... , 1 fi,, (see [Z], [C]) can be
defined as the minimal set of generators of S in the following way:

and for i &#x3E; 1,

It is well known (see [Z], [C]) that, if {f3o,.", f3g,} denotes the set of
characteristic exponents of C, then g = g’,
ei = gcd(f3 0’ ... , f3J = gcd(fJo, ... , Bi),

These equalities provide the equivalence between the two different sets of
exponents.



332

(1.2.1) REMARK. Recall that in characteristic 0 the set of characteristic
exponents can be easily defined in terms of a Puiseux expansion for f :
Assume that x is transversal to f, denote by n the multiplicity of f and let
y = li&#x3E; 0 aix’ln a Puiseux expansion for f Then {30 = n and, recursively, {3i
is the minimum integer k such that ak :0 0 and

gcd({3o, ... , {3i - l’ k)  gcd(p 0, ... , Pi ). The integer g is usually called the
"genus" of the curve singularity given by f and 3i is the highest possible
contact of f with an irreducible curve of genus i - 1. In particular el is the
highest possible contact of f with a smooth curve,

fil = max{Ct:g) IgEk[[X, YJJ regular}. When the characteristic of k is

positive, same properties hold, now in terms of Hamburger-Noether
expansions instead of Puiseux expansions (see Campillo [C]).

(1.3) Let m be the intersection multiplicity between f and h: m = v(h) =
( f, h) E S. Then (30  m  B1, and the m-sequence, vo, ..., v,, of S is defined
as follows (see [A], [E], [P]):

and for i &#x3E; 1

This procedure stops when we find sEN such that ds = 1. So,
vo, ... , vs} c S and do &#x3E; d, &#x3E;... &#x3E; ds = 1. Note that the flo-sequence (ob-
tained taking h transversal to f ) is exactly the set of values of the maximal
contact. The m-sequence can be seen as a system of generators for S with

respect to m (or h). Associated with the m-sequence vo, ... , Vs we define the
natural numbers

(1.4) Depending on the different possibilities for m, namely, m = kpo
(1 , k  [111/110]) or m = 31, the relationship between the m-sequence and
the minimal set of generators of S are as follows:

(a) If m = vo = 30 (w 1 &#x3E; vo), then s = g and vi _ 31 for i = 1, ... , g.
(b) If vo = m = kPo for some integer k &#x3E; 1 (=&#x3E;dl 1 - v 1 ) then s = g + 1,

v 1 = flo and vi = Pi - for i = 2, ... , g + 1. Note that, as consequence,
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The minimal set of generators of the semigroup of a plane curve,

( Bo, ... , P,,I, satisfies some well-known and important properties. The main
ones for our purposes are

These properties characterize the subsemigroups of N which are the

semigroup of values for some plane algebroid curve. The first one is related
to the property of complete intersection for a monomial curve, see Azevedo
[Az], Herzog [He] and Angermüller [An].
Similar properties can be easily proved, using computations above, for

m-sequences, namely:

(1.5) The contact pair, (f g), for two irreducible branches f and g, is

defined in [D, (3.3)] in terms of the Hamburger-Noether expansions of f
and g. This pair of integers, ( f  g) = (q, c), can be also characterized in the
following way:

Denote by 11’0,..., B 9 eô, ... , e’, 9 the numbers defined in (1.2) for the

curve g and let t be the minimum integer such that
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(Note that this integer always exists, setting JJg+ 1 = JJgf + 1 = oo if it is

necessary.) Denote by lt (resp. lt) the integer part of (Pt + 1 - NtJJt)/et (resp.
of ( fl§ + i - N§ fl§)le§). Then,
- If (1, g)  p(t), there exists an integer c, 0  c  min(i, 1§), such that

In this case q = t and ( f g) _ (t, c).
- If ( f, g) = p(t) and e; Pt + 1 #- et P; + 1 then (q, c) = (t, (0). (In [D] this

case appears as (t, min {Zt + 1, lt + 1})). Recall that, if ç =

e; Pt + 1  et P; + 1 then lt  It and if lt  lt then ç = e; Pt + 1  et P; + 1
([D]).

- Finally, if (1: g) = p(t) and e;pt+l = etp;+I, (q, c) = (t + 1, 0).

Note that, if we set ,

the possible intersection multiplicities between two branches with the same
singularity types as f and g (that is, the same maximal contact values or
the same characteristic exponents) are the elements in the set

where ç(q, c) = e’ - 1 pq + ceq eq = e. - , fl’ + ceq eq and j(oJ) = min{ e1fp+ 1,
ep 3p + 1 1. These elements correspond one to one to the set of possible
contact pairs:

Moreover, (taking the lexicographic order in (N u { 00 } )2),

(1.5.1) REMARK. Suppose k of characteristic 0 and x transversal to f and

g, the contact pair can be characterized in terms of Puiseux expansions for

f and g as follows: Denote by n (resp. n’) the multiplicity of f (resp. of g)
and let y = li&#x3E;-Oai xi In. y’ = Y- i &#x3E;_ 0 a’x’ln ’ i be Puiseux expansions for f and g
respectively.
Assume that (f 1 g) = (q, c) with c  00. Then there exists a n’-th root of

the unit, ev, such that ai = a’iwi’ for any i such that i/n  y, where
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y (fi, + ce,)In = (f3q + ce’)In’ and, moreover, y is the greatest exponent
with these conditions. If c = oo, the same property holds with

y = min{f3q+ lin, Bq+ i/n’); in this case f3q+ lin =1= f3q+ 1 In’. These properties
permit, in the characteristic 0 case, to define the contact pair and to prove
in an easy way the properties above for it (see [Z2]). As in the Remark
(1.2.1) the positive characteristic case can be stated in a similar way using
Hamburger-Noether expansions ([D]).

(1.6) Similar statements to those obtained in (1.5) can be given taking the
m-sequences for f and g with respect to a fixed regular parameter h instead
of the sets of values of the maximal contact. Denote by vo, ... , vt,
dû, ... , dt, ... the corresponding data for g with respect to h and let r be the
minimum integer such that

Then we can define the contact pair of f and g with respect to h, (f g)h,
and also prove the following:

(1.7) LEMMA-DEFINITION. With notations as above:

such that

In this case define (f g)h = (r, d).
(3) If ( f, g) = t(r) and dr Vr+ 1 =1= dr Vr+vr 1 then Ô’r + 2 #- br+ 2, and we define

(f 9)h = (r, c)o)-
(4) If (1, g) = t(r) and d’ rVr+ d rV’r+ 11 then Mr + i Mr + 1, Ô’r + 2 = br+2

and dovr + 1 = d’ovr+ 1 1 n this case, define (f 19) h = (r + 1, 0).
(5) The relationship between (f [ g) = (q, c) and (f  g)h is as follows:

If q &#x3E;, 1, then
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Proof The proof of (1) is a simple computation taking into account the
relationship between the m-sequence and the values of the maximal contact
given in (1.4) and (1.5). For the rest of statements, note first that in the case in
which h is transversal to f and g the result is trivial, because (f g)h = ( f  g).
So, assume that h is not transversal and denote (f 1 g) = (q, c). We shall
consider three different cases, depending on q and c.

In this case, as h is non-singular, (f  h) = (g h)  (f g). Thus, there are two
possibilities. The first one is ( f, h) = k11o, (g h) = keo with 1  k  lo = l’o. In
this case one finds (f g)h = (q + 1, c) and the result is a consequence of (1.5).
In the other case, one must have (f, h) = fi,, (g, h) = fi’ and then

( f 1 g)h = (q, c), so the result is trivial, since d 0 V1 _ 1 /3o = e’o 111 = eo fi -j = v 1 d’o.

Without loss of generality we can assume that ( f, g) = e’o1Jl’ so %  l’o. The
different possibilities for h are the following:

In this case, ( f, g) = cio 3 and depending on h we have the following
possibilities:

. This is the same case as above with f and
g interchanged.
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(1.8) REMARK. Let r be as in (1.6), the minimum integer such that

( f, g)  t(r). By the Lemma above we have

and, r is the minimum integer such that the inequality above holds.
Moreover, dr divides ( f, g) except, at most, in the case ( f, g) =

dr vr + 1  dr vr + 1, that is, except when:

As Consequence,

Finally, then, since

must be r &#x3E; n and so bn+l = Ô’n+1-

(1.9) Let f, g, p E k[[X, Y]] be irreducibles, keep the notations above for the
different invariants associated to f and g and denote by Bo", .... eo, ... , the
corresponding ones for the curve defined by p. It is well-known that at least
two of the numbers

are equal, the third one being greater or equal than the repeated one ([Pl]).
In other words,

This fact can be easily generalized changing the multiplicities of the curves for
the intersection multiplicities with h. More precisely:
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(1.10) PROPOSITION. Let f, g, p E k[[X, Y]] be irreducibles. Assume

Then,

Proof Consider the set

By (1.9) this set has at most two elements, so we have the following
possibilities:

By hypothesis (p, h)(f, g) &#x3E; ( f, pX g, h) and hence (p, h) &#x3E; ( f, p)(g, h)
( f, g)-’ - ( f, p)e 0 1. Using (1.9) for p, h and f, we find

so, ( f, p) = ( f, h)e’ and by (1.9) again (g, p)eô = (g, h)e’e", that is

As above, by hypothesis ( p, h) &#x3E; ( f, p)(g, h)(f, g) -1 1 &#x3E; ( f, p)e ô 1, and then

As consequence,

(g, h)e’Ó(e’o) - 1 and by ( 1.9)
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Assume ( f, g)e"  ( f, p)e’o; using (1.9) for f, p and h we obtain

But in this case,

which gives a contradiction. As consequence ( , f; g)e’b &#x3E; ( f, p)e’o and ( g p)ei =
(g, p)eo. This equality, together with ( f, h)e’o = (g, h)e o leads to the result.

(1.10) REMARK. Obviously, the proposition above is equivalent to say that
in the set

there are at most two different elements, being the repeated element the

minimum of the set.

2. Apery basis and curves with contact in it

Let f E k [ [X, Y] ] be an irreducible series, h E k [ [X, Y] ] irreducible and
non-singular and m = ( f, h). We keep the notations of section 1.

(2.1) DEFINITION. The Apery basis of S with respect to m is the ordered
set

The Apery basis has been treated by several authors ([Ap], [An], [A],
[P], ... ) and some of the facts that we will use below can be found in these
references.
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Let {vo,..., vs} be the m-sequence of S, then one can compute the Apery
basis in the following way: If k is an integer with 0  k , m - 1, k can be
written in a unique way as k = Li liibi with a; integers such that

0  ai  Mi (1  i  s). Then,

(2.2) DEFINITION. Let ç ds-l Vs = 11 be a natural number. The en-
larged Apery basis of S with respect to m and ç is the ordered set Am,ç =
{aillE N}, where, if 1 = pm + k with 0  k  m we define a,:= pç + ak.

(2.3) REMARK. We have enlarged the Apery basis in such a way that the
equivalence (2.1.1 ) is conserved. In fact, if l E N, l can be written in a unique
way as l = pm + LÎ lJ.i5i with 0  oci  Mi (1 - i  s) and

In the following, we shall prove some facts for the enlarged Apery basis
which are in general, known for the Apery basis. Unless otherwise specified,
ç will be a natural number with ç r = ds _ 1 vs, and the elements a,, (1 EN),
will be the elements of the enlarged Apery basis of S with respect to m
and ç.

(2.4) LEMMA. Let l1, ... , lt be natural numbers and 1 = Ltl li. Then,
Ltl ail  ai. Moreover, if li  m for all i = 1,..., t and 1 = pm + k with

k  m then Y-’ 1 a,, , pq + a k
Proof We will use induction on t. In the case t = 1 there is nothing to

prove. So, assume t &#x3E; 1, put l’ = Li-l li = qm + v with v  m and assume

that £b ai,  qç + au (resp.  qn + au if li  m for any i).
If lt = rm + u with u  m, then

Thus, the problem is reduced to the computation of a, + au when v, u  m.

Assume u == Y-’ uibi, v == Z’ Vi5i with Ui’ Vi  Mi, (1  i  s). Then we can
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write:

where yi  Mi and ei c- {O, 11 for i = 1,..., s. We may compute u + v and

au + av:

Note that k = L Yibi, as Y- yi ôi  m and l == E yi ôi (mod m).
On the other hand:

This computation provides:

(2.5) REMARK. This lemma above generalizes the well-known fact that

a" + au C au + v if u + v  m (see the references in (2.1)). Note that we have
also proved that:

. If ç &#x3E; 1], av + au = au+v=&#x3E;Bi = 0, 1  i  s; in particular u + v  m.

If ç = 1], av + au = au + v =&#x3E; Bi = 0, 1 i  s - 1.
These facts can be easily generalized to the case of an arbitrary number,

t, of summands:
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Let l 1, ... , lt E N and 1 = Ltlli’ Assume li = Y- 1 =: 1 Dc’ôj i + Pi M with oc i  Mj
for 1 j,s and 1  i  t and 1=1’=,Lx,,ô, with xr  Mr for 1  r  s.
Then one has:

and in this case must be, Xl) = i a§ = rij for 1  j  s and Xl) = 1 pi = p.

(B) If ç = 1],

and in this case must be, Xl)=i a§ = rJ.j for 1 K j K s - 1 and

Xl) = i ( p; + OEL) # p + OE.

(2.6) PROPOSITION. Let g e k[[X, Y]] be a formal series and suppose that
for each ç, irreducible component of g, we have

Then (g, f ) - a(g,h)’
Proof. Let g = II1 gi be the factorization of g in irreducible elements and

set li = (Pi’ h). By Lemma (2.4) it suffices to prove that (Pi’ h) - a,, for any
i = 1, ... , t, that is, we can assume g irreducible.
Denote by v’, ... , v’,, d’, ... , ds, ... the data defined in (1.3) for g with

respect to h and let r be the minimum integer such that
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also define

If r = s, then (g, h) = d o = d{f, h) = d’ s m = S m (in particular k = 0) and

by the hypothesis

Otherwise, r  s and we have

as we want to prove.

(2.7) REMARK. The Proposition above is known for the Apery basis.
Note that, if (ç, h)  m, automatically

From the proof of Proposition (2.6) and Remark (1.8) we can deduce the
conditions in which the equality (g, f ) = a(g,h) holds. Assume g irreducible
and write (g, h) = pm + k = pm + Li Yi ôi with oci  Mi (1  i  s).

(A) If (g, h) &#x3E; m and ç &#x3E; q, then:

(B) If (g, h) &#x3E; m and ç = q, then:
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Note that in this case ( f, g) = ds _ 1 vs and d’ , - 1 = PMS + Ys ôs =
pMs + k.

(C) If (g, h)  m, then:

(g, f ) - a(g,h) =&#x3E; 3r such that xi = 0 for all i =1= rand (.f; g) = xrvr

As consequence, among the numbers xl, ... , xs there exists at most one not

equal to zero, say Yi., and the condition Yiop * 0 implies that ç = 11 and
i o = s.

(2.8) THEOREM. Let f, g E k[[X, ¥JJ; f being irreducible, and suppose

for each irreducible component ç of g. Let l = (g, h) = pm + k =

pm + Li a;à; with xi  Mi, If (g, f ) = a(g,h) = pç + ak, then g can be fac-
torized as g = Al A2 ... AS B in such a way that:

(3) If ç &#x3E; il then (B, h) = pm and (B, f) = pç.
(4) If ai -=1= 0 (resp. if B =1= 1), then for any irreducible component, Aij

(resp. Bj), of Ai (resp. of B) we have

Proof Let g = II i çi be the factorization of g in irreducible elements.
Denote li = (CPi’ h) = Pim + Li a§à with a §  Mj for i = 1,..., t; j = 1,...,
s.. By the results above, we have (p i, , f’) = ail for any i = 1,..., t, and by
(2.7) this occurs if and only if:

(1) rtj = 0 for all j except, at most, for an index j(1).
(2) If p; # 0 then j(i ) = s and, either ç = 11 or a§ = 0 for every j.
(3) (cp i’ f) = Pi ç + a§;&#x3E;vj;&#x3E;. 

.
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If ç &#x3E; 1] define A() ={!,..., t} - Uî A(k) and if ç = N], A(s) =
( 1, ... , tl - Uî-1 A(k). Note that

Now, we define

For k  s (resp. k  s if ç &#x3E; il) we have

and by (2.5) the inequality in (*) is an equality if and only if Y-ic-A(k) y k iM k .
Now assume that ç = ~]. Then

and, since LiEA(k) (i  Mk, we have LiEA(k) C( = C(k for any k  s and

(L pJm + £ a( = pm + as às . As consequence, (A k, h) = £; akà = Ckbk and
also (Ak, f ) = 03A3i xk vk = (ik Vk for k  s. The last statement in the Theorem

for the components Aij of Ai is the Remark (2.7) above, part (C) if i  s

and part (B) if i = s.

Finally, write £ a( = p’m + xs with xs  MS . Then Xp1 + p’ = p, xs = lis
and

as we wanted to prove.
The case ç &#x3E; il can be proved in the same way using the Remark above

and similar computations.
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(2.9) REMARK. Theorem (2.8) is well-known in some particular cases:
Merle in [M] proves this Theorem for the case in which m = 30,
( f, g) = am _ 1 and (g, h) = m - 1 with the main goal of the determination of
the polar quotients of f. Ephraim in [E] proves the same result as Merle
for an arbitrary m = ( f, h). Finally, the same Theorem has been proved by
Granja ([G]) for the Apery basis with respect to m.

In the rest of this Section we shall give some applications of (2.8) to a
simple case of curves with several branches.

(2.10) APPLICATION: Diagonal curves with several branches. Let

f = II 1 f E k[[X, Y]] be such that fi is irreducible for any i EI:= {l,... , d}
and fi * fj if i =1= j. Denote by vi the normalized valuation corresponding to
the branch f and let «-) = k[[X, Y]]/( f ) the local ring of the plane curve
defined by f The semigroup of values of f is the subsemigroup, S, of Nd
given by

S:= {12(g):= (v 1 (g), ..., Vd(g» 1 g E (9, g non-zero divisorl.

We shall say that f is diagonal with respect to h if the following
conditions are satisfied:

(1) The m-sequence for f with respect to h is independent of i

(1 , 1 K d). In that case, denote it by m = vo, ... , vs . In particular
this fact implies that the fi ’s are equisingular.

(2) (fi, fj) = ç = ds _ 1 vS + c independently of i, j E l.

(2.11) From the definition, if f is diagonal then the elements Vi
(v i’ ... , viJ E Nd (i = 0, ... , s), belongs to the semigroup of values of f and
the same is true for 03C8 = (ç, ... , ç). Note that Vo,... , V,, 03C8 are placed in the
positive part of the diagonal of Nd. This set of elements permits the

complete computation of S (see [D], [Ga]) and these are the reasons for
the name diagonal.

Consider g E k [ [X, Y]] such that:

where p  d and ai  Mi for i = 1,..., s.
The following results give a decomposition Theorem for g similar to that

one in (2.8).
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(2.12) LEMMA. Let f be diagonal with respect to h, and g as in (2.11.1). If
ç is an irreducible component of g then

and as consequence (9, fi) = (cp, fj) V i, j E J.
Proof. First of all, if the inequality (*) is true, then, taking into account

that ç = (i’ï,fj) and ( 1.10) we find that (fj, 9)(fi, h) &#x3E; (fi, 0)(fj, h), or

equivalently (fj, ç) a (fi, 9). But the role of f and fj can be interchanged
and so (fi, cp) = (fj, cp) for any i, j E l.
We shall prove the first statement in the Lemma by induction on d. The

case d = 1 is trivial (see (2.7)), so assume d &#x3E; 1 and, also, that there exists
cp such that

Let r be the minimum integer such that vl«p)  dr(p)v r+ 1. Then if r  s,

Thus, there must be r = s. As consequence bs+ 1 = bs+ 1(q» and, since

we have ds(cp)  p.
For i = 2,..., d, we have (cp, Il)(h, h) &#x3E; ( f1, fi)(9, h) and then

Now, consider g’ = glg and p’ = p - d,(9). Then

and we can use the induction hypothesis, so all the irreducible components
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t/1 of g’ satisfy

By (1.10) there must be V1 (tf)  v; (03A8) and then

But, in this case,

and we reach a contradiction.

(2.13) THEOREM. Let f be diagonal with respect to h and let g be as in
(2.11.1). Change in Theorem (2.8) vi by V:, ç by IF and ( f - ) by _v( - ). Then
the resulting decomposition Theorem for g is true.

Proof. It is a consequence of (2.12) and (2.8).

3. Factorization of the polar of a curve with two branches

Let f = n1 f E k[[X, Y]] be such that f is irreducible for any i EI:=

{1, ... , d 1 and fi * fj if i * j, and let h E k[[X, Y]] defining a non-singular
algebroid curve. Denote by Vi the normalized valuation corresponding to
the branch f and by So..... v’, 0 ... , vsl, diô, ... , disi, ... the data defined
in (1.2) and (1.3) for f with respect to h ( 1  i  d). S stands for the
semigroup of values of f and Si for the one of f .

(3.1) POLAR CONTACTS. Assume for a moment that k is of character-
istic zero. The polar curve of f with respect to h is the algebroid curve
defined by:

and it is well-known (see [M], [E]) that
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where ci is the conductor of the semigroup of values Si of f . Moreover,

and then

By [D] (2.6) and (2.7) the conductor b of the semigroup S (that is, the
minimum element b E S such that b + Nd  S) is given by pri(b) = ci +
y_j # i (fi, fj) and the element i = ô - (1,..., 1) belongs to S. Using this notation
we find that

A straightforward computation shows that

(3.2) DIAGONAL CASE. Now assume f diagonal with respect to h; then the
elements Vi = (v!,..., vi) = (vi,..., vi) belong to S and the formulae above
provide:

As consequence, Theorem (2.13) gives a decomposition for the polar curve
J( f h) in the special case in which f is diagonal with respect to h.

(3.2.1) REMARK. In the general case (that is, f not necessarily diagonal), we
cannot use directly the results of Section 2 in order to give a decomposition of
J( f, h). In fact the elements (vl1 vf) do not belong, in general, to S and also
Mik  Mli if k # 1. So, the first step will be to give an arithmetical decomposition
of T + Va in "good" elements of S and then to use the arithmetical properties
of the semigroup S for such "good" elements in order to give a geometrical
decomposition. In this section first we describe the decomposition of i + V, in
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the case of two branches (see (3.3) and (3.4) below), but a similar description
can be made for the case of d &#x3E; 2 branches (see [D2]). After that, the rest of
the section is devoted to prove the decomposition Theorems for J( f, h) in the
case d = 2.

(3.3) CASE OF TWO BRANCHES. In the sequel we shall suppose d = 2,
that is, f = f, f2 c- k[[X, Y]] ]with fi and f2 irreducibles, fI =1 f2 and

h E k[[X, Y]] defining a non-singular algebroid curve. Set m1 - vô = ( fi, h),
m2 - vô = ( f2, h) and denote by j3ô, ... , Pg, Vo,..., vs , do,... (resp. /30,... , /3g"
vô, ... , vr , d°2, ...) the data defined in (1.2) and (1.3) for f, (resp. f2) and h.
Denote by S the semigroup of values of the algebroid curve given by f, and let
j = (fi, f2) be the intersection multiplicity between f1, and f2.
Denote by (f1, f2)h = (q, c) the contact pair of f1, and f2 relative to h and

assume, without loss of generality, that d q vq + 1  dq vq + 1. Thus by (1.7),

depending if c  oc or c = oo . We shall keep these assumptions in the sequel.

(3.3.1) Let i E N such that 0  1 K q, and ç E k[[X, Y]]. We have

Then the elements

belong to S. Note that V1,..., V, are in the line joining the origin with V, and
as consequence we can denote Mi:= Mi = M? (1  i  q) and 6i = 6l = 61

(3.3.2) If c  oc and we take i &#x3E; q, pick çe k[[X, Y]] in such a way that
V1(CP) = vi1 . By (1.8) we have

and then, using (1.10), Ç/(fl’ h) = (ç, f2)/(qJ, h), that is
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In the same way, if V2(CP) = vi2 then Vl(CP) = di land thus the following
éléments belongs to S:

(3.3.3) If ç = d2Vl+ 1 dl V2+ l@ the argument above remains valid to prove
that the following elements belong to S:

(3.3.4) Assume, as ab ove, ç = d9 v9 + 1  d9 V9 .+ 1 and consider 9 k[[X, Y]]
in such a way that dq+ l(qJ) = 1 and Vl(qJ) = d. «p)v 17 1 , 1 = dl 17 v. , 1 «p). Note
that:

and also (by ( 1.10)):

So, as a consequence, V2(CP) = d2vq+1(cp) = dlÇ andq+ 1

Note that the element h 1 . / 1 B 
can be seen as the elementNote that the élément q+ 1 ( v q 1 + 1, dl be seen as the elementdq

missing in (3.3.3), but Vq + 1 E S, so, the similarity is only formal.

(3.3.5) If c  oo, taking 9 c- k [[X, Y]] with dq(w) = 1 and «P 1 fl)h =
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(3.3.6) REMARK. With notations as above, the elements

where l = q if c  00 or l = q + 1 if c = 00, are exactly the values of the
maximal contact of f if h is transversal to f (see [D]) or, in another way,
the "minimal set of generators of S " in the sense of [D]. In the general case
we can take this set as the "v(h)-sequence" of S. The element N defined
above has also interesting properies in S and appears sometimes as an
additional element to the set of maximal contact values.

(3.4) DECOMPOSITION OF i + Vo

This is obvious using the previous constructions and (3. 1. 1). Note that, if
c = o0

and then in any case

but in this decomposition we must take into account that not all the

summands belong to S if c = 00.

(3.5) NOTATIONS. In the sequel we suppose that g is an element of

k [[X, Y]] such that:
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The results below give a decomposition for g similar to that one in (2.13).
Because of the length, we are going to present the results in three theorems,
following the different cases that may appear.

(3.6) FIRST DECOMPOSITION THEOREM. With conditions and nota-
tions as above, g can be factorized as

with the following conditions:

(1) The components Ai, for l + 1  i  s, are such that

(2) The components Bj for q + 1  j , t, are such that

(3) For any Aik (resp. Bik) irreducible component of Ai (resp. Bj),

Proof Let r &#x3E;, 1, p &#x3E;, q be the smallest integers for which there exists
A,,+ J, - - -, A,, Bp+ J, - - -, B, satisfying the requirements in the theorem. We
are going to prove that r = l and p = q. Removing from g the components
Ar+ 1’’’.’ Bt we obtain g* E k [[X, Y]] such that:

The strategy to prove the result will be the following: First, assume r &#x3E; 1

(part (A) of the proof). Lemma (3.7) below proves that there exist

irreducible components cp of g* such that
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Then we define Ar as the product of all these components. By construction
Ar satisfies the conditions in the theorem if (An h) = (Mr - 1)ô’ and

v(A,.) = (M§ - 1)V,’. These facts are proved in Lemma (3.8) below.
Thus we may assume r = 1. Note that if 1 = q (that is, if c  oc) the role

of the branches f, and f2 could be interchanged and (A) would also prove
p = q. So, we can restrict our attention to the case l = q + 1, ç = dq vq + 1
and assume p &#x3E; q (part (B) of the proof). As above, we will prove first
(Lemma (3.9)) that there exist irreducible components ç of g* such that

Defining Bp as the product of all these components, we shall prove that Bp
satisfies the statements in the theorem (Lemma (3.10)).

(A) ASSUME r &#x3E; 1.

(3.7) LEMMA. There exists ç, irreducible component of g*, such that

Proof Recall that d§- 1 divides vl for any 1 K r - 1 and in particular,

since r - 1 &#x3E; d:- 1 divides 1 if &#x3E; q. As a conséquence, d§- 1 divides
p

r-1 1 ç
Y (M§ - 1)vl + d2’ However, d:-1 does not divide M 1 - 1)v§ .
1 d
Taking into account that

the preceding comments prove that there exists ç, irreducible component
of g*, such that d:-1 1 does not divide v,«p). By (1.8), 9 must satisfy

Assume that there exists cp, irreducible component of g*, such that (*) is
a strict inequality. By (1.8), (cp, h) = d,(g)ô’, 1 &#x3E; àj+ 1.
Now we claim the following, that will be proved later:
With the conditions above, p = q.
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The inequality

implies that dr(cp) = 1. Using (1.10) we obtain V2(CP) = dr(cp) d  -  1 11 and asr r

a consequence

By (2.8), we must have g*=qJB1...Bq in such a way that

(Bi, h) = (M2 - 1)àf, v2(Bi) _ (M2 - 1)v2 (1 K 1 K q) and for each Bij
irreducible component of Bi:

Again by (1.10), u (B i) = (M 1 - 1 ) V (1  i  q) and then,

But, by hypothesis

SÓ, we have a contradiction and the lemma will be proved if we prove the
claim. This is a consequence of the following:

(3.7.1) LEMMA. In the conditions of (3.6.1), assume that there exists
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T E k [[X, Y]] such that T divides g* and

for each irreducible component ç of T. If (T, h) &#x3E; àj+ 1 then p = q.
Proof. Assume that p &#x3E; q, the same argument of (3.7) proves that there

exists 03C8, irreducible component of g*, such that

Note that t/J cannot be an irreducible component of T. If the inequality is
a strict inequality, then (yl, h) = d p(03C8) p + 1 and so

As a consequence, V2(t/J) = dp-l(03C8J)V and (03C8, h) = dp-l(t/J)J. Denote by Bp
the product of all the components t/J with the properties above. Then

By the construction of t/J it is evident that Y- dp - , 1(03C8&#x3E; M 2p - 1, so we have

As a consequence Ldp-l(t/J) = M2p - 1 and Bp also satisfies the statements
in the theorem. So we have p = q and (3.7.1 ) is proved.

(3.8) LEMMA. Let Ar be the product of the irreducible components of g*
such that vl(g)ô’ = (9, h)vl. Then, Ar satisfies the statements of Theorem
(3.6).

Proof Let ç be an irreducible component of A,. Since

ç
by (1.10) we have v2 (9) = d, - 1 «p) dl- 1 

.

.-i 1

Denote P = L dr - 1 (qJ), when 9 belongs to the set of irreducible compo-
nents of Ar’ Then v(A,,) = PV,,’, (Ar, h) = PÓ; and by the construction of 9
in (3.7), P &#x3E;, (Ml - 1). In order to finish the proof it suffices to show that
p = MI - 1.
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Assume P &#x3E;, ivI’ Then, by (3.7.1), must be p = q. The inequality:

implies that P  Ml, that is, P = M’, and as a consequence

Now, looking at g** = g*/Ar we have

Using (2.8) in the same way as in Lemma (3.7) we can prove that

And, on the other hand,

Note that (1) is an equality if and only if r = q + 1 &#x3E; l. But in this case

l = q and ç  d’v’+ 1, so in (2) we have a strict inequality. In any case we
have a contradiction. As a consequence P = Mr - 1 and Ar satisfies the
statements in the theorem. That is, we have proved that r = 1.

(B) ASSUME p &#x3E; q.

As we have explained in the sketch of the proof of (3.6) we can restrict our
attention to the case l = q + 1, ç d2Vl@ 1 and in this case, after the proof
of (A) above, one has:

(3.9) LEMMA. There exists ç, irreducible component of g*, such that:
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Proof. As in (3.7), there exists ç such that

Assume that in ( *) we have a strict inequality; then 5p+ 1(q» = +1 1 and by
(1.8) and (1.10), (9, h) = d,(g)ô’ , 1, vl«p) = dp(g) i2’ The inequality

(9, h)  (g*, h) become:

and then, if a is the natural number

there must be 0  oc  M,’ + 1 -
Denote g** = g*/p. Using the value ç = dqvq+ 1 we find that

Now, we can use (2.8) and then g * * = AloooAqAq+l in such a way that
vl(AJ = (Mi - l)vt, ‘d i  q and v 1 (A q + 1 ) = (a - 1 )v q + 1. In fact, for the

components A 1, ... , Aq one has !:,(AJ = (M i - 1), (Ai, h) = (M i - l)£5i
and then, for Ç = cpAq + 1 one has:

that is,
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Let yl be an irreducible component of Aq + 1; then, by (2.8)

So, by (1.10)

Adding on the factors t/1 of Aq + 1 we obtain

On the other hand, for 9:

Joining both inequalities above

provides a contradiction. Thus (3.9) is proved.
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(3.10) LEMMA. Let Bp be the product of the irreducible components ç of g*
such that

Then Bp satisfies the statements of Theorem (3.6).
Proof. In the same way as in Lemma (3.8), if (p is an irreducible

component of B p, since

Denote P = dp- l(qJ), when ç belongs to the set of irreducible compo-
nents of B p . Then v (B p) = P V 2, (B p, h) = Pà§ and, by the construction of
ç in (3.9), P &#x3E; (M p - 1 ). In order to finish the proof it suffices to show that

P=Mp-1.
Assume P &#x3E; M;. Since

then the natural number defined by

satisfies that 0  . -- Mq + 1. Taking into account the computations above,
we find for g** = g*/Bp the following:
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By (2.8), g** = A, ... Ail Aq + 1 in such a way that v (A i) = (M i - 1) Vi,
bi  q and as a consequence, for 0 = B p Aq + 1,

If yl is an irreducible component of Aq + 1, using (2.8) in the same way as

&#x3E; d and then u - A &#x3E; - 1  . On thein (3.9) we obtain V2(03C8)  d (03C8) dl and then vl(Aq 1 1) &#x3E;1 (J, - 1) dl on them (3.9) we obtam u2(i/r) q (03C8r) d q 1 
2( q + 1 ) ( ) 

d q 1

other hand, for Bp,

As a consequence,

and we get a contradiction. Thus Lemma (3.10) is proved and we have also
finished the proof of Theorem (3.6).

(3.11) SECOND DECOMPOSITION THEOREM.

With conditions and notations as in (3.5), let g’ be as in (3.6) and assume tnat
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with the following conditions:

(1) The components Ci, for 1  i  q, are such that

for any Cij, irreducible component of Ci.
(2) D is irreducible, (D, h) = q + 2 and

(As a consequence v(D) = N.)

Proof. According to (3.6) we have

Assume that there exists ç, irreducible component of g’, such that

V i (w)à 1 + 1 &#x3E; Vl + i (w, h). Then bq+2(qJ) = àl + 2 and since

we have dq+ 1(P) - 1. As a consequence, using (1.10),

However,

So, by (2.8), g’ = 9C, ...Cqwhere v(Ci) = (M i - 1)v. As a consequence,
vl(g) = M 1+lv’1+ 1 and we get a contradiction with the assumption
Vl(P) &#x3E; Mq 1 + 1 vq 1 + 1 ·
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We have just proved that, for any irreducible component, 9, of g’, one
has

Let f, E k [[X, Y]] be such that the m-sequence of 71 with respect to h is
given by -V = vjld,’, 1 (0  1 % q + 1) and satisfying vl(ll) = vq + 2. For f i
we have di = di Id’+ 1 and Mi = mi (1 £ 1 £ q + 1). For any 9 c- k [[X, Y]]
irreducible, by (1.10), one has the equivalence

and, if this condition is satisfied; «p, fl )d q + 1 = (9, fl ).
Moreover,

and

for any ç, irreducible component of g’.
Thus we can apply (2.8) and so g’ - Cl...CqD in such a way that for any

and for any Ci. irreducible component of Ci,
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In particular the irreducible components Cij of Ci (1  i  q) satisfy the
condition (*) and so

Thus, C1, ... , Cq are the components stated in the theorem.
For D, we have (D, h) - vo = Ôq’+ 2, (D, f i ) = M’+ lvl+ 1 and

for any Di irreducible component of D. It is obvious that v2(D) = dlS andq+l 1
it only remains to be proven that D is irreducible.

Let ç be an irreducible component of D. We have Vl(CP) = dq(cp)v+ 1. If
dq Op)v q + 1 - dq vq + 1 Op), then (cp, h) = dq+ 15+2 and so dq+ I(CP) = 1 and
D = cp as we wanted to prove. Assume that dq(qJ)V+ 1  d:vq+ (ç) for every
component ç of D.

By the hypothesis,

and then V2( qJ)  dq( qJ )v + 1 .
Looking at (1.7) and taking into account that lq &#x3E; lq we deduce that one

of the following possibilities must be true

(a) V2(qJ) = dq-l(qJ)V + rddq(qJ) with r &#x3E; 1:. But then,
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and we get a contradiction.

implies that

which is also a contradiction.

(3.12) THIRD DECOMPOSITION THEOREM.

With conditions and notations as in (3.5), let g’ be as in (3.6) and assume

with the following conditions:

(1) n = q Ç j &#x3E; d§- iv§ andn=q-1 Ç j = d§- iv§.
(2) The components Ci, for 1  i  n, are such that

for any Cij, irreducible component of Ci,
(3) If ç &#x3E; dq _ 1 vq then D is irreducible, (D, h) = ôq + 1 and

and for any Di, irreducible component of D, one has
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Proof Consider, for i = 1, 2, an algebroid curve given by f E k [[X, Y]]
such that vi ( fi ) = v9 + 1- Then, the m-sequence for f with respect to h is
Vj = vj /d§ = v§/d§ for j = 0,..., q. The intersection multiplicity between 11

and 12 is 1 = / and Il is equisingular to F2. Moreover, as in the proofdqdq
of (3.11), we obtain

and in this case

For g’,

Thus, we may apply Theorem (2.13) to give the decomposition of g’
and it is a straightforward computation (looking to (2.13) and (2.8)) to

verify the statements of the theorem for these components.

(3.13) REMARK. Note that in the conditions of (3.5), we have

Looking at the methods used in the proofs of (3.6), (3.11) and (3.12) and
at the statements in (2.8) and (2.13) we realize that we would have been
able to state and prove these theorems in a more general form, namely, we
can write in (3.5):
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where ai  Mi, ai  Ml, a2  M2 and e = 0, 1. The statements for the
corresponding Theorem (3.6), (3.11) and (3.12) are the adequate generaliz-
ations in the same way as (2.8).

4. Geometrical interprétation and the case of more than two branches

(4.1) Let C be the algebroid plane curve given by f = n1 f E k [[X, Y]].
We shall assume f reduced with d irreducible factors. Let n:X -

Spec(k [[X, Y]]) be the canonical minimal resolution of C, E = n-l(O) the
exceptional divisor of n, C the total transform of C and C n (C - {O})
the strict transform of C. Recall that C is a curve in X with only normal
crossings and C has d connected components C1, ... , Cd corresponding to
the d branches C 1, ... , Cd of C.

Associated with n we can construct the resolution graph (also called the
dual graph), A(f), as the dual figure of E. More precisely:

(i) Each irreducible component of E is represented by a point in A(f).
(ii) Two points in A(f) are joined if and only if their corresponding

components in E meet.

(iii) For each irreducible component Ci of C a little arrow is drawn

joined to the point corresponding to the only component of E
meeting Ci . .

Denote by E(P) the component of E corresponding to the point P of
A(f) and denote by w (P) the number of blow-ups needed to build the
divisor E(P). The weighted tree (A(f), w) is an equivalent data to the
singularity type of C (see [B-K], [Z]). Frequently, A( f ) is also presented
as an oriented graph starting in the only point Po with weight 1.

Some of the usual terminology for the resolution graph is as follows. Let
P E A( f ); v(P) denotes the valence of P, that is, the number of points or
arrows joined with P in A( f ). The ordinary points of A(f) are the points
P E A( f ) such that v(P) = 2 and the special (non ordinary) points are
divided in extremal points (if v(P) = 1) and rupture points (if v(P) &#x3E;, 3). An
arc is a geodesic in A( f ) joining two special points and with no more
special points. In particular, a dead arc in A( f ) is an arc such that one of

its extremes is an extremal point.

(4.2) Let 9 c- k [[X, Y]] be irreducible. We will say that 9 goes through
P’E A( f ) if the strict transform of ç by n meets the component E(P) of E.
Fix a non singular algebroid curve given by h E k [[X, Y]]. Then the multi-
coefficient of contact of f and ç with respect to h is the element of Qd:
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Note that if h is transversal to cp then q - m and «P, fi) is the
«p, h)

coefficient of contact (in the sense of Hironaka [H]) between f and 9, and

f ((cp, fi) is the coefficient of contact between f and 9 (following [LMW2]).
1 (9’ h)
Let P E A( f ). A curvette at P is a curve germ in X, 0p, smooth and

transversal to E at a regular point of the component E(P). For such a
P E A( f ) and 8p we can consider the irreducible curve given by n(O p) and
define the multi-coefficient of insertion of P with respect to h as:

q(P, h) = 1(1, n(0p), h).

Note that, as above, taking h transversal and adding the coordinates of
q(P, h) we obtain the coefficient of insertion q(P) defined in [LMW2].

(4.3) IRREDUCIBLE CASE

Assume that f is irreducible and let 110" .. , 11g, vo, ... , vs be the numbers
defined in (1.2) and (1.3) for f with respect to h. It is well-known that A( f )
has g + 1 dead arcs and g rupture points. Denote by Po,..., P9 the
extremal points of A( f ) ordered by w, that is, 1 = w(P 0)  w(P 1 )  ...

w(P g)’ Then, ( f, n(0 Pl» = 11i’ i.e., the values of the maximal contact can be
obtained by means of curvettes in the extremal points of A( f ).
Now consider the resolution graph of fh, A( f h). Following the different

possibilities for h with respect to f (see (1.4)) one can also check that s is
the number of dead arcs of A( f h) (and therefore the number of extremal
points) and v 1, ... , vs can be obtained by means of curvettes at the extremal
points of A( f h). Moreover, vo = ( f, h).
Note that if we take h transversal to f, the extremal point Po of A( f )

does not appear in A( f h) as an extremal point, because h goes through Po
and so v(P o) = 2 in A( f h). In the same way, if ( f, h) _ 31 then Pl is not an
extremal point in A( f h). In other case the number of extremal points in
A( f h) is g + 1 - s.

(4.4) THEOREM. Let L be a dead arc of A( f h). Then the coefficient of
insertion of P E L with respect to h, q(P, h), does not depend on the point P E L
and thus can be denoted by q(L). The set of the numbers q(L) where L is a
dead arc of A( f h) is exactly
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Moreover, let ç E k[[X, Y]] be irreducible. Then, ç goes through L if and
only if I(f, (p, h) = q(L).

The proof when h is transversal to f is well-known ([LMW2], [Z]). The
result can be proven for any h using the results in [LMW2] or by direct
computation using the Lemma (1.7) and the Noether formulae for the
intersection multiplicity in terms of the multiplicities at the infinitely near
points.

(4.5) Now assume that C has two branches, that is, f = fl f2. Take the
conditions and the notations of (3.2) and let 1 be as at the beginning of (3.4).
As consequence of the facts above and the constructions of (3.2), one can
easily prove that the elements

may be obtained by means of curvettes at the extremal points of A( f h).
That is, the set above is exactly the set (v(n(e p))), when P is an extremal
points of A( f h). Moreover, one can prove:

(4.6) THEOREM. Let L be a dead arc of A( f h). Then the multi-coeficient
of insertion of P E L with respect to h, q(P, h), does not depend of the point
P E L chosen and thus can be denoted by q(L). The set of pairs q(L) where L
is a dead arc is exactly the set

Moreover, let ç E k[[X, Y]] be irreducible. Then, ç goes through L if and

only if I(.f, (p, h) = q(L).
Denote by L 1, ... , Lq, L’ 1, L’, L2 1, L2 the dead arcs of A( f h)

in such a way that:

(4.7) Keeping the conditions and notations of (3.2), assume for a moment
that h is transversal to f and let R be the separation point of f, and f2.
That is, let ri be the geodesic in A( f h) joining the only point Po with
w(P o) = 1 with the arrow corresponding to f and let R be the point with
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the greatest weight in rI 1 n r 2’ Thus, R is a rupture point in A( f h) and R
does not belong to any dead arc except if

In any case, the element N defined in (3.2) can be obtained by means of a
curvette in R. Note that if f, and f2 are transversals, R is also a rupture
point in A( f h).
Now, take h not necessarily transversal to f. The situation in this case is

slightly different. Firstly, the separation point of f, and f2, R, can be an
ordinary point in A( f h). Moreover, this point can be different of the

rupture point of A( f h) not belonging to any dead arc, as the examples in
Remark (4.8) below show. However, similar results to those of the trans-
versal case can be stated:

First of all, the following conditions are equivalent:

(1) No rupture point exists in A( f h) out of a dead arc.
(2) The intersection multiplicity between f, and f, is dl- JV2
2 v1dq _ 1 vq .

(3) The separation point R of f, and f2 belongs to Lq .

If f satisfies these equivalent conditions, then the element N of S can be
obtained by means of a curvette in the separation point R of f1 and f2.
However, note that in this case q(Lq) = q(R) and so, from the point of view
of the m ulti -coefficient with respect to h, the irreducible curves going
through R are indistinguishable from the curves going through Lq.

If f does not satisfy the equivalent conditions above, there exists exactly
one point Q such that Q is a rupture point and Q does not belong to any
dead arc. In this case, N can be obtained by means of a curvette in Q,
N = 12(n(8 Q)).

(4.8) REMARK. Note that the point Q stated above is not, in general, the
separation point of f1, and f2. By example, take f, and f2 transversal and
let h be such that v 1 (h) - vô1 = 3 11 . Then the separation point of f1, and f2
is obviously the point Po of weight 1. However, the point Q is the rupture
point of A( f1) with minimal weight. Note that this point does not belong
to any dead arc in A( f h) because the two dead arcs in A( fl) going through
Q disappear, the first one by the resolution graph of f2 and the second one
by the arrow corresponding to h (see the first figure below).
Note that in this case: ç = 1fA1fÕ = dôv 1  dAvf. In fact, one can charac-

terize in these terms the cases in which Q is not the separation point.
An example in which the point Q stated above does not exist, is the
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following. Take f1 and f2 such that ç = ceol e2o and let h be such that

( fl, h) = c1Jà, ( f2, h) = c1JÕ. Then the situation in A( f h) is

and the point Q does not exist. Note that, in this case vô = c1JÕ, v) = c1JÕ
and so ç = vôv i = v i vô.
The results proved in Section 3 can be stated, taking into account the

comments above, as follows:

(4.9) DECOMPOSITION THEOREM. Let g e k[[X, Y]] in the conditions
of (3.5). Then g can be decomposed as

in such a way that:

(1) For j = 1 + 1,..., s, the irreducible components of Aj go through Li,
and

(2) For k = q + 1,..., t, the irreducible components of Bk go through Lk
and
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(3) n = q - 1 if and only if ç = d’- , 1 vq - dq _ 1 vq . (That is, if and only if
f satisfies the equivalent conditions of (4.7)). In other case n = q.

(4) For i = 1,..., n, the irreducible components of Ci go through Li and

(5) If n = q - 1 the irreducible components of D go through Lq and

(6) If n = q, D is irreducible and goes through Q as a smooth curve.

(4.10) REMARK. In particular, we obtain the Theorem (2.1) in [LMW2]
in a slightly more precise form. Note also that the multi-quotient polars,
that is, the set

{1( f, ç, h) 1 qJ is an irreducible component of J( f, h)l,

is exactly

(q(P, h) P is a rupture point of A(fh)}.

The number of packages of components in (4.9) is exactly the number of
rupture points. We must remark finally the convenience of handle A( f h)
(or equivalently, the curve fh) instead of A( f ) (or f ) for the different

statements about polars.

(4.11) REMARK. In the proofs of the results above we have only needed
the facts

and after that we have used the arithmetic of the semigroup of values of f.
So, for the case of two branches (and, of course, for the case of one branch),
topological or analytical properties of the polars are not needed. In other
words, a curve with the same intersection multiplicities than the polar with
fi, f2 and h, has a similar behavior (in the sense of (4.9)). However, for
d &#x3E; 3 branches this is not true as the following example shows.

(4.12) EXAMPLE. Consider fl, f2, f3 E C[[X, Y]] defined, in terms of its
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Hamburger-Noether expansions, by:

and take h transversal to f =flf2f3. The resolution weighted tree A( f h) is:

and by (2.1) in [LMW2], there are irreducible components of J( f, h) going
through the rupture points 6 and 9 and through the two dead arcs (in fact
these ones go through 4 and 7).
Note that f, is equisingular to f2. We have Pô = PÕ = 4, /3 i = Pî = 14,

P1 = jV2 = 31 and the conductors of the semigroups S( fl) and S( f2) are
ci = C2 = 42. For f3 we have PÕ = 2, jP, = 7 and c3 = 6. The intersection
multiplicities are:

As consequence: v(J(f, h» = T + Vo = (138, 138, 67) and (J( g h), h) =
m(J( .f h)) = m( .Î ) - 1 = 9.

Let g 1 be the irreducible curve given by:

Then, m(g 1 ) = (g, h) = 8 and u (g 1 ) = (124, 124, 60). So, for g = Yg,,

That is, g has the same intersection multiplicities with fi, f 2, f3 and h as J( f h).
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However, it is obvious that g cannot be decomposed in a similar way as J( f, h).
In fact g has only two branches, Y = 0 goes through the point 4 in A(fh) and
g goes through 8 in A( f h) smooth but tangent to the divisor with weight 8.

(4.13) REMARK. The obstruction in order to realize similar factorization

results for the case d &#x3E; 3 is neither the arithmetical decomposition of i (see
[D2]) nor the components corresponding to dead arcs of a single branch (some
particular results can be given for such components). The main problem is the
behavior on the dead arcs corresponding to more than one branch. To do the
factorization, the results at the end of section 2 and the beginning of section 3
should be improved. In the case of three branches fl, f2, f3, in general, one
must add two different intersection multiplicities for each branch, say for

example (/f1,f2) eg1 _ 1 Bg1 and ( fl, f3)  eg-l{3g; but then the element in the
semigroup given by

which provides the expression for the contact with the branch f,, does not
permit the decomposition of J( f, h) in a nice form as in Theorem (2.8) because
the second number ( fl, f3) introduces a hard distortion in the arithmetic we
need. One can find examples as the one above with a good selection of the
numbers ( fl, f2) and ( fl, f3).
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