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0. Introduction

Let S be a minimal surface of general type and let JIt(S) be the moduli space
of surfaces of general type homeomorphic (by an orientation preserving
homeomorphism) to S. JIt(S) is a quasi projective variety by the well known
theorem of Gieseker [Gi].

Let ks E H2(S, Z) be the first Chern class of the canonical bundle of S and let
r(S) its divisibility, i.e.

r(S) = max(r e N ks = rc for some c E H2(S, Z)l

Obviously if S’c--,,#(S) is in the same connected component of S then there
exists an orientation preserving diffeomorphism f : S’ - S such that f *(ks) _
ks, and r(S) = r(S’).

Catanese [Ca3] first proved that in general JIt (S) is not connected giving
homeomorphic surfaces of general type with different divisibility r. Similarly,
using the fact that for surfaces with "big monodromy" r(S) is a differential

invariant, Friedman, Morgan and Moishezon gave the first examples of

surfaces of general type homeomorphic but not diffeomorphic [F-M-M].
Moreover it is possible that r(S) is a differential invariant of minimal surfaces
of general type [F-M].

Define Jltd(S) = {S’E aV(S) 1 r(S) = r(S’)I, it is natural to ask whether Jltd(S)
is connected. In this paper we show that the answer is no, more precisely we
prove (Theorem 11).

THEOREM A. For every k &#x3E; 0 there exists a simply connected minimal surface
of general type S such that uHd(S) has at least k connected components.

From our proof it follows moreover that the k connected components have
different dimension. Here we study a particular class of surfaces introduced by
Catanese [Cal], [Ca2], [Ca3] and called "simple bihyperelliptic surfaces".
Denote X = P’ X pl 1 and let (9x(a, b) be the line bundle on X whose

sections are bihomogeneous polynomials of bidegree a, b. A minimal surface of
general type is said to be simple bihyperelliptic of type (a, bxn, m) if its

canonical model is defined in (9x(a, b) (f) (9x(n, m) by the equation
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where f, g are bihomogeneous polynomials of respective bidegree (2a, 2b),
(2n, 2m). If a, b, c, d &#x3E; 0 then simple bihyperelliptic surfaces of type (a, b),
(c, d) are simply connected ([Cal] Th. 3.8).

In [Cal] Th. 3.8, is proved that if S is a simple bihyperelliptic surface of type
(a, b), (n, m) with a, b, n, m &#x3E; 4 then the four numbers a, b, n, m are determined,
up permutations induced by changing the role of x and y or f and g in (0.1),
by the surface S.

In the same notation of [Ca2], if a &#x3E; 2n, m &#x3E; 2b let N(a,b),(n,m) be the subset
of moduli space of simple bihyperelliptic surfaces of type (a, b), (n, m). Here we
prove, as conjectured in [Ca2], the following

THEOREM B. If a &#x3E; max(2n + 1, b + 2), m &#x3E; max(2b + 1, n + 2) then

N = N(a,b),(n,m) is a connected component of moduli space.
Theorem B is an easy consequence of [Ca2] Cor. 4.4 and Lemma 9 that

follows from the technical Prop. 7. Theorem A is then an easy consequence of
Theorem B and Freedman’s results on four-dimensional manifolds.

We remark that an interesting problem is to determine whether simple
bihyperelliptic surfaces belonging to différent components of Ad have the same
differential structure, a tentative to answer to this problem will be the subject
of our next papers.

This work is intended to be a continuation of [Cal], [Ca2], and [Ca3]
where general properties of moduli space of surfaces of general type are

investigated. We shall often use the results proved in these papers.

Notation

For a proper algebraic variety Y defined over C we denote:

Oy = (Q}) v the tangent sheaf.
Ty’, 9-’ y the global and local deformation functors (cf. [FI]). We recall that if

Y is reduced then r = Exthy(Q}, (Dy) and 9-’ = lCxtby(Q}, «,’y).
Def( Y) the base space of the semiuniversal deformation of Y.
For y E Y, My,Y is the maximal ideal of the local ring Cry,y and Ty,y =

(My,Y/M00FF,Y) "is the Zariski tangent space at y.

1. Normal bidouble covers of surfaces and their natural deformations

Let X be a smooth algebraic surface and let x : Y - X be a Galois covering
with group G = (7L/27L)2 = {l, al’ a 2’ a 3}’ We assume that Y is a normal

surface.
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Let Ri be the divisorial part of Fix«(Ji) = (p e Y 1 ai(p) = pi and Di = n(R;).
By purity of branch locus the Weil divisor R = Ri u R2 u R3 is the set of

points where n is branched.
Since Y is normal the direct image sheaf n*Cy is locally free and we have a

character decomposition

where L,, L2, L3 are line bundle on X and Ccx $ (!) x( - Li) is the acinvariant
subsheaf of 1C*(!)y. We have (cf. [Cal], § 2)

where = means rational equivalence. If V is the vector bundle LI Et) L2 Et) L3
with fibres coordinates wj, w2, W3, then we can realize Y in V as the zero locus

of the ideal sheaf 1 Y c Gv generated by the six equations

where xi E HO«(!J x(D i» is a section defining Di.
All these facts are proved in [Cal], Catanese suppose that Y is a smooth

surface but his proof is also valid in our more general situation. It is however
easy to see that Y is smooth if and only if the curves D, are smooth and the
divisor D = D U D2 u D3 has only ordinary double points as singularities.
G acts on the fibres of V in the following way:

and Ri is the subset of Y defined by xi = Wj = W k = 0.

PROPOSITION 1. In the notation above are equivalent:

(a) D 1 n D2 n D3 = QS.
(b) Ri is a Cartier divisor for every i.

(c) dim T9,Y  4 for every q E Y
(d) Y is locally complete intersection in V.

Proof (a) =&#x3E; (d). If q E Y, p = n(q) and x,(p) :0 0 then Y is locally defined by
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(a=&#x3E;b). The ideal of Ri is generated by (w j’ Wk, Xi) and if, for example
q E Rixk(n (q») =1 0 then from (1.2) it follows that the ideal or Ri is generated in

y by Wj.
(b)=&#x3E;(c). If q  R then dim Tq,Y = 2. Suppose qERi and dim Tq,Y = 5, then Wj,

Wk are linearly independent in Tqy and the ideal (w j’ Wk’ Xi) cannot be principal
at q.

(c)=&#x3E;(a) If q E Y and xi(q) = X2(q) = X3(q) = 0 then all the équation that
define Y are in M9,v, hence Tq,Y = T9,V.

(d)==&#x3E;(a) Take a point q E Y such that xi(q) = 0 (i = 1, 2, 3) and let us

suppose 1 Y,q = ( fi, f2, f3), this will lead to a contradiction. Since the ideal of
Y at q is contained in M2 (here M = M q,y), the vector subspace of M2/M3
generated by I Y,9 has dimension at most equal to three, but it easy to see that
the six equations (1.1) are linearly independent in M2/M3. D

Since in the applications we are principally interested to the case where Y
has at most rational double points, from now on we always assume that
Dl n D2 n D3 = 0.

Let NY = (1 yi I¥) v be the normal sheaf and let Pi: Wy - (Y R. be the projection
map.

THEOREM 2. If D n D2 n D3 = 0 then there exists a commutative diagram
of O y-modules with exact rows and columns.

The proof of Theorem 2 will be a consequence of the following two lemmas.
We first note that Oy = Der({O,Y OY), n*0x = Der(n-’(9x, Wy) and a is defined
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in the obvious way. Moreover « is an injective map because vr is a finite

morphism.
If u 1, U2 are local coordinates on X we set

It is clear that n*V = ker 9. The upper row is a standard exact sequence [Ar].

LEMMA 3. There exists a commutative diagram

Proof. For every aEDer(n-l(!)x, Oy) and fE(!)x( -Di) we define Pi(aXf) =
pi(a ( f )) and then we extend by (9y-linearity. fi is a well defined map and

Pi 0 rx = 0 since n* Di = 2Ri.
Let r E (!)y be a local equation of Rl, if f E (!) x( - Di) then f Ely + (r2) and we

can write f = a + br2 with aEly. For v E NY we then define t/li(v)(f) = Pi(v(a».
If s is another local equation of Ri and f = c + ds’ then Pi(v(a - c)) = 0.

In fact we have s = hr + e with eE IY and

since 1 Y is a prime ideal necessarily

and then

In order to show that (1.4) commutes it suffices to note that, if for example
Xk e 0, then wj is a local equation of Ri and t/li(V)(X i} = Pi(V(Xi - wJ lx,». Thus
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Define {03B2 = ae i (Ji’ .p = ae i.p i.
LEMMA 4. 03A8 is a surjective map and ker 03C8 = ~(ker lp), in particular
ker ~ c ker J.1 and we can define y as in (1.3).
Proof By Lemma 3 q(ker ç) c ker .p.
If 03A8(v) = 0 and Xk =1 0 then locally Iy/I$ is a free {Dy-module generated by

Moreover

If we set

then

then

y is locally complete intersection in V, therefore there is an exact sequence

If we apply the functor eowi we get the upper row of (1.3), if we apply Hom
we get the exact sequence

If we apply the left exact functor H° to (1.3) we see that ker H°(§) c ImHO(1J) =
ker k and there exist a map c: H’« i (9Ri (n*D j» --+ T such that GO HO(t/!) = k.
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COROLLARY 5. If H1(n*Ox) = 0 then e is surjective.
Proof. If !F = ker y then there exists a commutative diagram with exact rows

and columns

where the right column is the first part of the cotangent spectral sequence. The
conclusion follows by chasing through the diagram. D

We note that n * C"Ri = (!) Di Et&#x3E; (!) Di ( - L i) and

moreover H’(n*Ox) = H1(Ox) O (0153iH1(Ox( -Li»).
More generally we can include the map e into an exact sequence of

cohomology groups, this can be done as follows. We first prove that çl’y/x =
OE)t (9Ri(- Ri), then we consider the exact sequence

(recall that n*Q} is locally free and (n*Q})V = n*Ox). Applying the functor
Hommy( -, (Oy) we get a long exact sequence
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Since Ri is a Cartier divisor its local equation is a regular element of f2y, using
local commutative algebra ([Ma2] §18, Lemma 2) we have for every 1 a - 1

and (1.8) becomes

Let Defv(Y) be the space of embedded deformations of Y in E It is well known
that the natural map k: Defv( Y) -+ Def( Y) is holomorphic and its differential
is k : H°(Ny) - Ty, -

In a neighbourhood of 0 is defined an analytic map

where ç(y i’ yi) is the surface in V defined by:

DEFINITION. We shall call the deformation of Y defined in (1.10) a natural
deformation.

LEMMA 6. Let dç: @ ; (H°(6 x(D ;)) (D HO(0x(Di - L;))) - HO(N y) be the differ-
ential of ç. Then H°(§) o dç = p where

is the restriction map.

The proof is a straightforward verification and it is left to the reader.
If Hl({9y) = 0 then Hl({9X) = Hl({9X( -Li» = 0 and p is surjective, the

kernel of e has dimension h°(n*0x) - hO(n*Oy) and since the parameter space
H of natural deformations is smooth we have finally
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e - p is surjective, the map k 0 ç is smooth and Def( Y) is smooth of dimension

We remark that if the minimal resolution of Y is of general type then the group
of automorphisms of Y is finite [Mal] and H°(OY) = 0.

REMARK. If Hl(n*Ox) # 0 (this is true in particular if H1(Ox) =1 0) then in
general ë is not surjective; in this case it may be useful to know Imc = ker U.
Ziv Ran [Ran] is responsible for an exact sequence where 6 appears

where Tnl is the space of first order deformation of the map n and Ext"(n’ , (Dy)
is defined as the limit of the spectral sequence E,"-P = Exty(Ln-Pn*Qk, (Dy).
It is clear that in our case Ext"(Çl’, (Dy) = H"(n*Ox) and J(x) = 6’(0, x).

2. Déformations of simple bihyperelliptic surfaces and the space N(a,b),(n,m)

From now on let S be a simple bihyperelliptic surface of type (a, b)(n, m) with
a, b, n, m &#x3E; 3 and let ô: S ---&#x3E; Y be the pluricanonical map onto its canonical
model Y Let (0.1) be the equation of Y

It is well known that Y is a normal surface with at most rational double

points as singularities and b is its minimal resolution.
On Y we have the following exact sequence (cfr. (1.6)):

where ob is the obstruction to globalize a first order deformation of the

singular points of Y. As a consequence of Proposition 7 we have the following.

COROLLARY 8. In the notation above Def(Y) is smooth. Def(S) is smooth if
and only if ob = 0.

Proof. Let n: Y - X = P1 
1 
x P1 1 be the projection, then

Since a, b, n, m &#x3E; 3 we have h1({oy) = h1(n*8x) = 0 and by Proposition 7
Def ( Y) is smooth.
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Denote by Ly (resp.: Dy) the functor of local (resp.: global) deformations of
Y, since Y has a finite number of singular points which are R.D.P.’s Ly is

smooth with finite dimensional tangent space HO(.r}). Since Def ( Y) is smooth,
the natural map (D: Dy -+ Ly is smooth if and only if its differential

Ty’ -+ H’(9-’) is surjective. By a general result ([B-W] Th. 2.14, [Pi]) the
smoothness of Def(S) is equivalent to the smoothness of 03A6&#x3E;.. ~

Note that since we have a surjective map H --+ Ty1, the kernel of ob is exactly
the subspace of H°(1§) generated by the natural deformations of Y We shall
exhibit later an example where ob # 0.

LEMMA 9. The subset Ñ = Ñ(a,b),(n,m) is open in aV for a &#x3E; 2n, m &#x3E; 2b.

Proof. We have to prove that simple bihyperelliptic surfaces of type
(a, b)(n, m) are stable under small deformations. Let F: --+ à be a flat family
over the complex disk with So = F-1(0) simple bihyperelliptic of type
(a, b)(n, m).

Let F’ : fV ---&#x3E; A be the corresponding family of canonical models, then Yo is a
normal bidouble cover of X = P’ 1 x P’ 1 with, in the notation of Section 1,
Li = (9x(n, m), L2 = (9x(a, b), L3 = (9x(a + n, b + m), xl = f, X2 = g, X3 = 1.

Then, for a, b, n, m &#x3E;, 3, the surface Yo satisfies the hypothesis of Proposition
7 and we can assume, possibly shrinking A, that F’ is a natural deformation
of Yo.
The natural deformations of Yo are defined in (9x(a, b) E9 0x(n, m) by

where f’ E HO«(!) x(2a, 2b)), g’ E H°(19 x(2n, 2m)), ç E H’«9x(2a - n, 2b - m)),
t/1 E HO( (!) x(2n - a, 2m - b)). If a &#x3E; 2n, m &#x3E; 2b then 9 = t/1 = 0 and the lemma
is proved. D

Proof of Theorem B

From [Ca2] Cor. 4.4 we know that for a &#x3E; max(2n + 1, b + 2), m &#x3E;

max(2b + 1, n + 2) N is a closed irreducible component of .A, then we use
Lemma 9. D

EXAMPLE 1. Suppose a &#x3E; 2n, m &#x3E; 2b and let (0.1) be the equations of Y
Denote Di = div( f), D2 = div(g) and suppose moreover that

and let p E D be a singular point.
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Then n-’(p) contains exactly two singular points q 1, q2 of Y and there exists
an involution a E G such that u(q 1) = q2’ u extends to every natural deforma-
tion, in particular every global deformation of Y gives by restriction isomor-
phic local deformations of (Y, q1) and (Y, q2) and (D cannot be smooth.
More generally one can prove that if ob = 0 then D1 1 and D2 are both

smooth.

It is interesting to note that in general for a &#x3E; 2n, m &#x3E; 2b the space N(a,b),(n,m)
is not closed in M, in fact its closure may contain some minimal resolution of
bidouble covers of Segre-Hirzebruch surfaces IF 2k ([Ca2] Thm. 4.3). If we

consider the irreducible component N(a,b),(n,m) then in general this is not a

connected component of JIt. (In most cases if n : S --&#x3E; IF 2k (k &#x3E; 0) is a smooth

bidouble cover belonging to the closure of N the space of natural deformations
of S has dimension greater than the dimension of N.)
From the results of Freedman about the topology of four-manifolds it

follows that two simple bihyperelliptic surfaces SI 1 and S2 are homeomorphic
(by an orientation preserving homeomorphism) if and only if K 2 = Ks2,
X«Os,) = X({OsJ and r(S 1) = r(S2) mod(2) ([Cal] Prop. 4.4).
For a simple bihyperelliptic surface of type (a, bXn, m) we have ([Cal],

[Ca3]):

and if a &#x3E; 2n, m &#x3E; 2b then

EXAMPLE 2. Let S 1, S2 be two simple bihyperelliptic surfaces of respective
type (13,4), (6, 13) and (14, 5), (5, 12). Then these surfaces are homeomorphic,
r(S 1) = r(S2) = 1 and they belong to different connected components of M.

In order to prove Theorem A we try to find, for given k &#x3E; 0, k simple
bihyperelliptic surfaces which are homeomorphic, with the same divisibility r
and belonging to different connected components. We use the following lemma

(proved in the appendix of [Cal]).

LEMMA 10 (Bombieri). Let 1 &#x3E; c &#x3E; 3- 1/3 be a fixed real number, M a positive
integer and let u;v; = M be k distinct factorizations of M such that

cfi  Ui  Vi  c-lfi.
Then there exist positive integers R, S, N and k distinct pairs of integer (zi, Wi)

such that:
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THEOREM 11. For every k &#x3E; 0 there exist simply connected surfaces of general
type S 1’’’., Sk orientedly homeomorphic, with r(Si) = r(S) and any two of them
are not deformation equivalent to each other.

Proof We have to find large positive integers K2, X«(Ds), r(S) such that
(2.1) with the inequalities a &#x3E; max(2n + 1, b + 2), m &#x3E;, max(2b + 1, n + 2)
has at least k distinct solutions. Fix 1 &#x3E; c &#x3E; max{2- 1/2,3 - 1/3} and let ui,
Vi = M be k distinct factorizations with g.c.d. (Ui’ Vi) = 1 such that

cJM  ui  vi  C-1 JM. (We can take for example an integer h such that

where pl  p,  ...  P2h are prime numbers such that ph &#x3E; Cph 2h)-
Let R, S, N, wi, zi be as in Lemma 10 and let Si be a simple bihyperelliptic

surface of type (a i, bixn i, mi) where ai = 2RSui + Rwi + 1, bi = 2RSvi - SZi + 1,
ni = 2RSui - Rwi + 1, mi = 2RSVi + Szi + 1.
A computation shows that for every i = 1, ... , k, Ks; = 128R2S2M, X({OsiJ =

24R2S2M - 2RSN + 2, r(Si) = 4RS and ai &#x3E; max{2ni + 1, b + 2}, mi &#x3E;
max{2bi + 1, ni + 2}.

These surfaces belong to the same Md but they are in distinctly connected
components by Theorem B. D
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