COMPOSITIO MATHEMATICA

MARCO MANETTI

On some components of moduli space of surfaces of general type

Compositio Mathematica, tome 92, nº 3 (1994), p. 285-297 <http://www.numdam.org/item?id=CM 1994 92 3 285 0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On some components of moduli space of surfaces of general type

MARCO MANETTI

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Received 12 January 1993; accepted in revised form 14 June 1993

0. Introduction

Let S be a minimal surface of general type and let $\mathcal{M}(S)$ be the moduli space of surfaces of general type homeomorphic (by an orientation preserving homeomorphism) to S. $\mathcal{M}(S)$ is a quasi projective variety by the well known theorem of Gieseker [Gi].

Let $k_s \in H^2(S, \mathbb{Z})$ be the first Chern class of the canonical bundle of S and let r(S) its divisibility, i.e.

 $r(S) = \max\{r \in \mathbb{N} \mid k_S = rc \text{ for some } c \in H^2(S, \mathbb{Z})\}$

Obviously if $S' \in \mathcal{M}(S)$ is in the same connected component of S then there exists an orientation preserving diffeomorphism $f: S' \to S$ such that $f^*(k_S) = k_{S'}$ and r(S) = r(S').

Catanese [Ca3] first proved that in general $\mathcal{M}(S)$ is not connected giving homeomorphic surfaces of general type with different divisibility r. Similarly, using the fact that for surfaces with "big monodromy" r(S) is a differential invariant, Friedman, Morgan and Moishezon gave the first examples of surfaces of general type homeomorphic but not diffeomorphic [F-M-M]. Moreover it is possible that r(S) is a differential invariant of minimal surfaces of general type [F-M].

Define $\mathcal{M}_d(S) = \{S' \in \mathcal{M}(S) | r(S) = r(S')\}$, it is natural to ask whether $\mathcal{M}_d(S)$ is connected. In this paper we show that the answer is no, more precisely we prove (Theorem 11).

THEOREM A. For every k > 0 there exists a simply connected minimal surface of general type S such that $\mathcal{M}_d(S)$ has at least k connected components.

From our proof it follows moreover that the k connected components have different dimension. Here we study a particular class of surfaces introduced by Catanese [Ca1], [Ca2], [Ca3] and called "simple bihyperelliptic surfaces".

Denote $X = \mathbb{P}^1 \times \mathbb{P}^1$ and let $\mathcal{O}_X(a, b)$ be the line bundle on X whose sections are bihomogeneous polynomials of bidegree a, b. A minimal surface of general type is said to be simple bihyperelliptic of type (a, b)(n, m) if its canonical model is defined in $\mathcal{O}_X(a, b) \oplus \mathcal{O}_X(n, m)$ by the equation

$$z^{2} = f(x, y)$$
 $w^{2} = g(x, y)$ (0.1)

where f, g are bihomogeneous polynomials of respective bidegree (2a, 2b), (2n, 2m). If a, b, c, d > 0 then simple bihyperelliptic surfaces of type (a, b), (c, d) are simply connected ([Ca1] Th. 3.8).

In [Ca1] Th. 3.8, is proved that if S is a simple bihyperelliptic surface of type (a, b), (n, m) with $a, b, n, m \ge 4$ then the four numbers a, b, n, m are determined, up permutations induced by changing the role of x and y or f and g in (0.1), by the surface S.

In the same notation of [Ca2], if a > 2n, m > 2b let $\hat{N}_{(a,b),(n,m)}$ be the subset of moduli space of simple bihyperelliptic surfaces of type (a, b), (n, m). Here we prove, as conjectured in [Ca2], the following

THEOREM B. If $a \ge \max(2n + 1, b + 2)$, $m \ge \max(2b + 1, n + 2)$ then $\hat{N} = \hat{N}_{(a,b),(n,m)}$ is a connected component of moduli space.

Theorem B is an easy consequence of [Ca2] Cor. 4.4 and Lemma 9 that follows from the technical Prop. 7. Theorem A is then an easy consequence of Theorem B and Freedman's results on four-dimensional manifolds.

We remark that an interesting problem is to determine whether simple bihyperelliptic surfaces belonging to different components of \mathcal{M}_d have the same differential structure, a tentative to answer to this problem will be the subject of our next papers.

This work is intended to be a continuation of [Ca1], [Ca2], and [Ca3] where general properties of moduli space of surfaces of general type are investigated. We shall often use the results proved in these papers.

Notation

For a proper algebraic variety Y defined over \mathbb{C} we denote:

 $\theta_{Y} = (\Omega_{Y}^{1})^{\vee}$ the tangent sheaf.

 T_Y^i, \mathscr{T}_Y^i the global and local deformation functors (cf. [Fl]). We recall that if *Y* is reduced then $T^i = \operatorname{Ext}_{O_Y}^i(\Omega_Y^1, \mathcal{O}_Y)$ and $\mathscr{T}^i = \mathscr{Ext}_{O_Y}^i(\Omega_Y^1, \mathcal{O}_Y)$.

Def(Y) the base space of the semiuniversal deformation of Y.

For $y \in Y$, $M_{y,Y}^{\cdot}$ is the maximal ideal of the local ring $\mathcal{O}_{Y,y}$ and $T_{y,Y} = (M_{y,Y}^2/M_{y,Y}^2)^{\vee}$ is the Zariski tangent space at y.

1. Normal bidouble covers of surfaces and their natural deformations

Let X be a smooth algebraic surface and let $\pi: Y \to X$ be a Galois covering with group $G = (\mathbb{Z}/2\mathbb{Z})^2 = \{1, \sigma_1, \sigma_2, \sigma_3\}$. We assume that Y is a normal surface. Let R_i be the divisorial part of $Fix(\sigma_i) = \{p \in Y \mid \sigma_i(p) = p\}$ and $D_i = \pi(R_i)$. By purity of branch locus the Weil divisor $R = R_i \cup R_2 \cup R_3$ is the set of points where π is branched.

Since Y is normal the direct image sheaf $\pi_* \mathcal{O}_Y$ is locally free and we have a character decomposition

$$\pi_*\mathcal{O}_Y = \mathcal{O}_X \oplus \left(\bigoplus_i \mathcal{O}_X(-L_i) \right)$$

where L_1 , L_2 , L_3 are line bundle on X and $\mathcal{O}_X \oplus \mathcal{O}_X(-L_i)$ is the σ_i -invariant subsheaf of $\pi_*\mathcal{O}_Y$. We have (cf. [Ca1], §2)

$$D_k + L_k \equiv L_i + L_j$$
 $2L_i \equiv D_j + D_k$ $\{i, j, k\} = \{1, 2, 3\}$

where \equiv means rational equivalence. If V is the vector bundle $L_1 \oplus L_2 \oplus L_3$ with fibres coordinates w_1, w_2, w_3 , then we can realize Y in V as the zero locus of the ideal sheaf $I_Y \subset \mathcal{O}_V$ generated by the six equations

$$\begin{aligned} & w_i^2 - x_j x_k = 0 \\ & w_k x_k - w_i w_j = 0 \end{aligned} \quad \{i, j, k\} = \{1, 2, 3\} \end{aligned}$$
 (1.1)

where $x_i \in H^0(\mathcal{O}_X(D_i))$ is a section defining D_i .

All these facts are proved in [Ca1], Catanese suppose that Y is a smooth surface but his proof is also valid in our more general situation. It is however easy to see that Y is smooth if and only if the curves D_i are smooth and the divisor $D = D_1 \cup D_2 \cup D_3$ has only ordinary double points as singularities.

G acts on the fibres of V in the following way:

 $\sigma_i: w_i \to w_i \quad w_j \to -w_j \quad w_k \to -w_k$

and R_i is the subset of Y defined by $x_i = w_i = w_k = 0$.

PROPOSITION 1. In the notation above are equivalent:

- (a) $D_1 \cap D_2 \cap D_3 = \emptyset$.
- (b) R_i is a Cartier divisor for every i.
- (c) dim $T_{q,Y} \leq 4$ for every $q \in Y$
- (d) Y is locally complete intersection in V.

Proof (a) \Rightarrow (d). If $q \in Y$, $p = \pi(q)$ and $x_k(p) \neq 0$ then Y is locally defined by

$$w_k = \frac{w_i w_j}{x_k}$$

$$w_i^2 = x_j x_k$$
(1.2)

$$x_i = \frac{w_j^2}{x_k}$$

 $(a\Rightarrow b)$. The ideal of R_i is generated by (w_i, w_k, x_i) and if, for example $q \in R_i x_k(\pi(q)) \neq 0$ then from (1.2) it follows that the ideal or R_i is generated in Y by w_i .

(b) \Rightarrow (c). If $q \notin R$ then dim $T_{q,Y} = 2$. Suppose $q \in R_i$ and dim $T_{q,Y} = 5$, then w_j , w_k are linearly independent in $T_{q,Y}^{\vee}$ and the ideal (w_j, w_k, x_i) cannot be principal at q.

(c) \Rightarrow (a) If $q \in Y$ and $x_1(q) = x_2(q) = x_3(q) = 0$ then all the equation that define Y are in $M_{q,V}^2$, hence $T_{q,Y} = T_{q,V}$.

(d) \Rightarrow (a) Take a point $q \in Y$ such that $x_i(q) = 0$ (i = 1, 2, 3) and let us suppose $I_{Y,q} = (f_1, f_2, f_3)$, this will lead to a contradiction. Since the ideal of Y at q is contained in M^2 (here $M = M_{q,V}$), the vector subspace of M^2/M^3 generated by $I_{Y,q}$ has dimension at most equal to three, but it easy to see that the six equations (1.1) are linearly independent in M^2/M^3 .

Since in the applications we are principally interested to the case where Y has at most rational double points, from now on we always assume that $D_1 \cap D_2 \cap D_3 = \emptyset$.

Let $N_Y = (I_Y/I_Y^2)^{\vee}$ be the normal sheaf and let $p_i: \mathcal{O}_Y \to \mathcal{O}_{R_i}$ be the projection map.

THEOREM 2. If $D_1 \cap D_2 \cap D_3 = \emptyset$ then there exists a commutative diagram of \emptyset_{γ} -modules with exact rows and columns.

The proof of Theorem 2 will be a consequence of the following two lemmas. We first note that $\theta_Y = \text{Der}(\theta_Y, \theta_Y)$, $\pi^* \theta_X = \text{Der}(\pi^{-1} \theta_X, \theta_Y)$ and α is defined in the obvious way. Moreover α is an injective map because π is a finite morphism.

If u_1, u_2 are local coordinates on X we set

$$\varphi\left(\frac{\partial}{\partial w_i}\right) = 0, \ \varphi\left(\frac{\partial}{\partial u_i}\right) = \frac{\partial}{\partial u_i}$$

It is clear that $\pi^* V = \ker \varphi$. The upper row is a standard exact sequence [Ar].

LEMMA 3. There exists a commutative diagram

Proof. For every $a \in Der(\pi^{-1}\mathcal{O}_X, \mathcal{O}_Y)$ and $f \in \mathcal{O}_X(-D_i)$ we define $\beta_i(a)(f) = p_i(a(f))$ and then we extend by \mathcal{O}_Y -linearity. β is a well defined map and $\beta_i \circ \alpha = 0$ since $\pi^*D_i = 2R_i$.

Let $r \in \mathcal{O}_Y$ be a local equation of R_i , if $f \in \mathcal{O}_X(-D_i)$ then $f \in I_Y + (r^2)$ and we can write $f = a + br^2$ with $a \in I_Y$. For $v \in N_Y$ we then define $\psi_i(v)(f) = p_i(v(a))$.

If s is another local equation of R_i and $f = c + ds^2$ then $p_i(v(a - c)) = 0$. In fact we have s = hr + e with $e \in I_Y$ and

$$a - c = ds^2 - br^2 = r(dh^2r + 2dhe - br) + de^2$$
,

since I_{Y} is a prime ideal necessarily

$$dh^2r + 2dhe - br \in I_Y$$

and then

 $p_i(v(a-c))=0.$

In order to show that (1.4) commutes it suffices to note that, if for example $x_k \neq 0$, then w_j is a local equation of R_i and $\psi_i(v)(x_i) = p_i(v(x_i - w_j^2/x_k))$. Thus

$$\psi_i \left(\frac{\partial}{\partial w_h}\right)(x_i) = 0 \quad h = 1, 2, 3$$

$$\psi_i \left(\frac{\partial}{\partial u_h}\right)(x_i) = p_i \left(\frac{\partial x_i}{\partial u_h}\right) = \beta_i \left(\frac{\partial}{\partial u_h}\right)(x_i) \quad h = 1, 2$$

Define $\beta = \bigoplus_i \beta_i, \psi = \bigoplus_i \psi_i$.

LEMMA 4. ψ is a surjective map and ker $\psi = \eta$ (ker φ), in particular ker $\psi \subset$ ker μ and we can define γ as in (1.3).

Proof. By Lemma 3 $\eta(\ker \varphi) \subset \ker \psi$.

If $\psi(v) = 0$ and $x_k \neq 0$ then locally I_Y/I_Y^2 is a free \mathcal{O}_Y -module generated by

$$\left(x_i - \frac{w_j^2}{x_k}\right), \left(x_j - \frac{w_i^2}{x_k}\right), \left(w_k - \frac{w_i w_j}{x_k}\right)$$

Moreover

$$v\left(x_i - \frac{w_j^2}{x_k}\right) = w_j h_i, v\left(x_i - \frac{w_j^2}{x_k}\right) = w_i h_j$$

If we set

$$v' = v + \frac{h_i x_k}{2} \frac{\partial}{\partial w_j} + \frac{h_j x_k}{2} \frac{\partial}{\partial w_i}$$

then

$$v'\left(x_i - \frac{w_j^2}{x_k}\right) = 0, \ v'\left(x_i - \frac{w_j^2}{x_k}\right) = 0, \ v'\left(w_k - \frac{w_iw_j}{x_k}\right) = h_k$$

then

$$v' - h_k \frac{\partial}{\partial w_k} = 0 \qquad \qquad \square$$

Y is locally complete intersection in V, therefore there is an exact sequence

$$0 \to I_Y / I_Y^2 \to \Omega_V^1 \otimes \mathcal{O}_Y \to \Omega_Y^1 \to 0 \tag{1.5}$$

If we apply the functor \mathscr{H}_{OM} we get the upper row of (1.3), if we apply Hom we get the exact sequence

$$H^{0}(\mathcal{O}_{V} \otimes \mathcal{O}_{Y}) \xrightarrow{H^{0}(\eta)} H^{0}(N_{Y}) \xrightarrow{k} T_{Y}^{1}$$

If we apply the left exact functor H^0 to (1.3) we see that ker $H^0(\psi) \subset ImH^0(\eta) =$ ker k and there exist a map $\varepsilon: H^0(\bigoplus_i \mathcal{O}_{R_i}(\pi^*D_i)) \to T_Y^1$ such that $\varepsilon \circ H^0(\psi) = k$. COROLLARY 5. If $H^1(\pi^*\theta_X) = 0$ then ε is surjective.

Proof. If $\mathscr{F} = \ker \gamma$ then there exists a commutative diagram with exact rows and columns

where the right column is the first part of the cotangent spectral sequence. The conclusion follows by chasing through the diagram. \Box

We note that $\pi_* \mathcal{O}_{R_i} = \mathcal{O}_{D_i} \oplus \mathcal{O}_{D_i}(-L_i)$ and

$$H^{0}\left(\bigoplus_{i} \mathcal{O}_{R_{i}}(\pi^{*}D_{i})\right) = \bigoplus_{i} (H^{0}(\mathcal{O}_{D_{i}}(D_{i})) \oplus H^{0}(\mathcal{O}_{D_{i}}(D_{i}-L_{i})))$$

moreover $H^1(\pi^*\theta_X) = H^1(\theta_X) \oplus (\oplus_i H^1(\theta_X(-L_i))).$

More generally we can include the map ε into an exact sequence of cohomology groups, this can be done as follows. We first prove that $\Omega_{Y/X}^1 = \bigoplus_i \mathcal{O}_{R_i}(-R_i)$, then we consider the exact sequence

$$0 \to \pi^* \Omega^1_X \to \Omega^1_Y \to \bigoplus_i \mathcal{O}_{R_i}(-R_i) \to 0$$
(1.7)

(recall that $\pi^*\Omega_X^1$ is locally free and $(\pi^*\Omega_X^1)^{\vee} = \pi^*\theta_X$). Applying the functor $\operatorname{Hom}_{\mathcal{O}_Y}(-, \mathcal{O}_Y)$ we get a long exact sequence

$$0 \to H^{0}(\theta_{Y}) \to H^{0}(\pi^{*}\theta_{X}) \to \bigoplus_{i} \operatorname{Ext}^{1}_{\mathcal{O}_{Y}}(\mathcal{O}_{R_{i}}(-R_{i}), \mathcal{O}_{Y}) \to T_{Y}^{1} \to H^{1}(\pi^{*}\theta_{X}) \to \cdots$$

$$(1.8)$$

Since R_i is a Cartier divisor its local equation is a regular element of \mathcal{O}_Y , using local commutative algebra ([Ma2] §18, Lemma 2) we have for every $i \ge -1$

$$\mathscr{E}xt^{i+1}_{\mathscr{C}_{Y}}(\mathscr{O}_{R_{i}}(-R_{i}), \mathscr{O}_{Y}) = \mathscr{E}xt^{i}_{\mathscr{C}_{R_{i}}}(\mathscr{O}_{R_{i}}(-R_{i}), \mathscr{O}_{R_{i}}(R_{i})) \begin{cases} 0 & \text{if } i \neq 0 \\ \mathscr{O}_{R_{i}}(\pi^{*}D_{i}) & \text{if } i = 0 \end{cases}$$

and (1.8) becomes

$$0 \to H^{0}(\theta_{Y}) \to H^{0}(\pi^{*}\theta_{X}) \to \bigoplus_{i} H^{0}(\mathcal{O}_{R_{i}}(\pi^{*}D_{i})) \xrightarrow{\varepsilon} T_{Y}^{1} \xrightarrow{\sigma} H^{1}(\pi^{*}\theta_{X})$$
$$\to \bigoplus_{i} H^{1}(\mathcal{O}_{R_{i}}(\pi^{*}D_{i})) \to \cdots$$
(1.9)

Let $Def_V(Y)$ be the space of embedded deformations of Y in V. It is well known that the natural map $\hat{k}: Def_V(Y) \to Def(Y)$ is holomorphic and its differential is $k: H^0(N_Y) \to T_Y^{1}$.

In a neighbourhood of 0 is defined an analytic map

$$\xi: H = \bigoplus_{i} \left(H^{0}(\mathcal{O}_{X}(D_{i})) \oplus H^{0}(\mathcal{O}_{X}(D_{i} - L_{i})) \right) \to Def_{V}(Y)$$

where $\xi(y_i, \gamma_i)$ is the surface in V defined by:

$$w_i^2 = (x_j + y_j + \gamma_j w_j)(x_k + y_k + \gamma_k w_k)$$

$$w_j w_k = w_i(x_i + y_i + \gamma_i w_i)$$
(1.10)

DEFINITION. We shall call the deformation of Y defined in (1.10) a natural deformation.

LEMMA 6. Let $d\xi : \bigoplus_i (H^0(\mathcal{O}_X(D_i)) \oplus H^0(\mathcal{O}_X(D_i - L_i))) \to H^0(N_Y)$ be the differential of ξ . Then $H^0(\psi) \circ d\xi = \rho$ where

$$\rho:\bigoplus_{i} (H^{0}(\mathcal{O}_{X}(D_{i})) \oplus H^{0}(\mathcal{O}_{X}(D_{i}-L_{i}))) \to \bigoplus_{i} (H^{0}(\mathcal{O}_{D_{i}}(D_{i})) \oplus H^{0}(\mathcal{O}_{D_{i}}(D_{i}-L_{i})))$$

is the restriction map.

The proof is a straightforward verification and it is left to the reader.

If $H^1(\mathcal{O}_Y) = 0$ then $H^1(\mathcal{O}_X) = H^1(\mathcal{O}_X(-L_i)) = 0$ and ρ is surjective, the kernel of ε has dimension $h^0(\pi^*\theta_X) - h^0(\pi^*\theta_Y)$ and since the parameter space H of natural deformations is smooth we have finally

PROPOSITION 7. If
$$H^1(\mathcal{O}_Y) = H^1(\pi^*\mathcal{O}_X) = 0$$
 then $k \circ d\xi = \varepsilon \circ H^0(\psi) \circ d\xi =$

 $\varepsilon \circ \rho$ is surjective, the map $\hat{k} \circ \xi$ is smooth and Def(Y) is smooth of dimension

$$\sum_{i} (h^{0}(\mathcal{O}_{X}(D_{i})) + h^{0}(\mathcal{O}_{X}(D_{i} - L_{i})) - 1) - h^{0}(\pi^{*}\theta_{X}) + h^{0}(\theta_{Y})$$

We remark that if the minimal resolution of Y is of general type then the group of automorphisms of Y is finite [Ma1] and $H^0(\theta_Y) = 0$.

REMARK. If $H^1(\pi^*\theta_X) \neq 0$ (this is true in particular if $H^1(\theta_X) \neq 0$) then in general ε is not surjective; in this case it may be useful to know $\text{Im } \varepsilon = \ker \sigma$. Ziv Ran [Ran] is responsible for an exact sequence where σ appears

 $\cdots \to T^1_\pi \to T^1_X \oplus T^1_Y \xrightarrow{\sigma'} \operatorname{Ext}^1_\pi(\Omega^1_X, \mathcal{O}_Y) \to T^2_\pi \to \cdots$

where T_{π}^{1} is the space of first order deformation of the map π and $\operatorname{Ext}_{\pi}^{n}(\Omega_{X}^{1}, \mathcal{O}_{Y})$ is defined as the limit of the spectral sequence $E_{\Sigma}^{p,n-p} = \operatorname{Ext}_{\mathcal{O}_{Y}}^{p}(L^{n-p}\pi^{*}\Omega_{X}^{1}, \mathcal{O}_{Y})$. It is clear that in our case $\operatorname{Ext}_{\pi}^{n}(\Omega_{X}^{1}, \mathcal{O}_{Y}) = H^{n}(\pi^{*}\partial_{X})$ and $\sigma(x) = \sigma'(0, x)$.

2. Deformations of simple bihyperelliptic surfaces and the space $\hat{N}_{(a,b),(n,m)}$

From now on let S be a simple bihyperelliptic surface of type (a, b)(n, m) with $a, b, n, m \ge 3$ and let $\delta: S \to Y$ be the pluricanonical map onto its canonical model Y. Let (0.1) be the equation of Y.

It is well known that Y is a normal surface with at most rational double points as singularities and δ is its minimal resolution.

On Y we have the following exact sequence (cfr. (1.6)):

$$0 \to H^1(\mathcal{O}_Y) \to T_Y^1 \to H^0(\mathcal{F}_Y^1) \xrightarrow{ob} H^2(\mathcal{O}_Y)$$

where ob is the obstruction to globalize a first order deformation of the singular points of Y. As a consequence of Proposition 7 we have the following.

COROLLARY 8. In the notation above Def(Y) is smooth. Def(S) is smooth if and only if ob = 0.

Proof. Let $\pi: Y \to X = \mathbb{P}^1 \times \mathbb{P}^1$ be the projection, then

$$\pi_* \mathcal{O}_Y = \mathcal{O}_X \oplus \mathcal{O}_X(-a, -b) \oplus \mathcal{O}_X(-n, -m) \oplus \mathcal{O}_X(-a - n, -b - m)$$

$$\theta_X = \mathcal{O}_X(2, 0) \oplus \mathcal{O}_X(0, 2) \quad \pi_* \pi^* \theta_X = \theta_X \otimes \pi_* \mathcal{O}_Y$$

Since a, b, n, $m \ge 3$ we have $h^1(\mathcal{O}_Y) = h^1(\pi^* \theta_X) = 0$ and by Proposition 7 Def(Y) is smooth.

Denote by L_Y (resp.: D_Y) the functor of local (resp.: global) deformations of Y, since Y has a finite number of singular points which are R.D.P.'s L_Y is smooth with finite dimensional tangent space $H^0(\mathcal{F}_Y^1)$. Since Def(Y) is smooth, the natural map $\Phi: D_Y \to L_Y$ is smooth if and only if its differential $T_Y^1 \to H^0(\mathcal{F}_Y^1)$ is surjective. By a general result ([B-W] Th. 2.14, [Pi]) the smoothness of Def(S) is equivalent to the smoothness of Φ .

Note that since we have a surjective map $H \to T_Y^1$, the kernel of *ob* is exactly the subspace of $H^0(\mathcal{F}_Y^1)$ generated by the natural deformations of Y. We shall exhibit later an example where $ob \neq 0$.

LEMMA 9. The subset $\hat{N} = \hat{N}_{(a,b),(n,m)}$ is open in \mathcal{M} for a > 2n, m > 2b.

Proof. We have to prove that simple bihyperelliptic surfaces of type (a, b)(n, m) are stable under small deformations. Let $F: \mathcal{S} \to \Delta$ be a flat family over the complex disk with $S_0 = F^{-1}(0)$ simple bihyperelliptic of type (a, b)(n, m).

Let $F': \mathcal{Y} \to \Delta$ be the corresponding family of canonical models, then Y_0 is a normal bidouble cover of $X = \mathbb{P}^1 \times \mathbb{P}^1$ with, in the notation of Section 1, $L_1 = \mathcal{O}_X(n, m), L_2 = \mathcal{O}_X(a, b), L_3 = \mathcal{O}_X(a + n, b + m), x_1 = f, x_2 = g, x_3 = 1.$

Then, for a, b, n, $m \ge 3$, the surface Y_0 satisfies the hypothesis of Proposition 7 and we can assume, possibly shrinking Δ , that F' is a natural deformation of Y_0 .

The natural deformations of Y_0 are defined in $\mathcal{O}_X(a, b) \oplus \mathcal{O}_X(n, m)$ by

$$z^{2} = f'(x, y) + w\varphi(x, y)$$

 $w^{2} = g'(x, y) + z\psi(x, y)$

where $f' \in H^0(\mathcal{O}_X(2a, 2b))$, $g' \in H^0(\mathcal{O}_X(2n, 2m))$, $\varphi \in H^0(\mathcal{O}_X(2a - n, 2b - m))$, $\psi \in H^0(\mathcal{O}_X(2n - a, 2m - b))$. If a > 2n, m > 2b then $\varphi = \psi = 0$ and the lemma is proved.

Proof of Theorem B

From [Ca2] Cor. 4.4 we know that for $a \ge \max(2n + 1, b + 2)$, $m \ge \max(2b + 1, n + 2)$ \hat{N} is a closed irreducible component of \mathcal{M} , then we use Lemma 9.

EXAMPLE 1. Suppose a > 2n, m > 2b and let (0.1) be the equations of Y. Denote $D_1 = div(f)$, $D_2 = div(g)$ and suppose moreover that

$$Sing(D_i) \cap D_i = \emptyset, \{i, j\} = \{1, 2\}$$

and let $p \in D_1$ be a singular point.

Then $\pi^{-1}(p)$ contains exactly two singular points q_1 , q_2 of Y and there exists an involution $\sigma \in G$ such that $\sigma(q_1) = q_2$. σ extends to every natural deformation, in particular every global deformation of Y gives by restriction isomorphic local deformations of (Y, q_1) and (Y, q_2) and Φ cannot be smooth.

More generally one can prove that if ob = 0 then D_1 and D_2 are both smooth.

It is interesting to note that in general for a > 2n, m > 2b the space $\hat{N}_{(a,b),(n,m)}$ is not closed in \mathcal{M} , in fact its closure may contain some minimal resolution of bidouble covers of Segre-Hirzebruch surfaces \mathbb{F}_{2k} ([Ca2] Thm. 4.3). If we consider the irreducible component $\widehat{N}_{(a,b),(n,m)}$ then in general this is not a connected component of \mathcal{M} . (In most cases if $\pi: S \to \mathbb{F}_{2k}$ (k > 0) is a smooth bidouble cover belonging to the closure of \hat{N} the space of natural deformations of S has dimension greater than the dimension of \hat{N} .)

From the results of Freedman about the topology of four-manifolds it follows that two simple bihyperelliptic surfaces S_1 and S_2 are homeomorphic (by an orientation preserving homeomorphism) if and only if $K_{S_1}^2 = K_{S_2}^2$, $\chi(\mathcal{O}_{S_1}) = \chi(\mathcal{O}_{S_2})$ and $r(S_1) \equiv r(S_2) \mod(2)$ ([Ca1] Prop. 4.4).

For a simple bihyperelliptic surface of type (a, b)(n, m) we have ([Ca1], [Ca3]):

$$K^{2} = 8(a + n - 2)(b + m - 2) \quad \chi(\mathcal{O}_{S}) = \frac{1}{8}K^{2} + ab + nm$$

r(S) = g.c.d. (a + n - 2, b + m - 2) (2.1)

and if a > 2n, m > 2b then

dim
$$\hat{N} = 4\chi - \frac{1}{2}K^2 + 2(a + b + n + m) - 6$$

EXAMPLE 2. Let S_1 , S_2 be two simple bihyperelliptic surfaces of respective type (13, 4), (6, 13) and (14, 5), (5, 12). Then these surfaces are homeomorphic, $r(S_1) = r(S_2) = 1$ and they belong to different connected components of \mathcal{M} .

In order to prove Theorem A we try to find, for given k > 0, k simple bihyperelliptic surfaces which are homeomorphic, with the same divisibility r and belonging to different connected components. We use the following lemma (proved in the appendix of [Ca1]).

LEMMA 10 (Bombieri). Let $1 > c > 3^{-1/3}$ be a fixed real number, M a positive integer and let $u_i v_i = M$ be k distinct factorizations of M such that $c\sqrt{M} < u_i < v_i < c^{-1}\sqrt{M}$.

Then there exist positive integers R, S, N and k distinct pairs of integer (z_i, w_i) such that:

$$w_i z_i - 2(u_i + v_i) = N, \quad z_i + 4 < 2Rv_i < 3z_i - 2, \quad w_i + 4 < 2Su_i < 3w_i - 2$$

THEOREM 11. For every k > 0 there exist simply connected surfaces of general type S_1, \ldots, S_k orientedly homeomorphic, with $r(S_i) = r(S_j)$ and any two of them are not deformation equivalent to each other.

Proof. We have to find large positive integers K^2 , $\chi(\mathcal{O}_S)$, r(S) such that (2.1) with the inequalities $a \ge \max(2n+1, b+2)$, $m \ge \max(2b+1, n+2)$ has at least k distinct solutions. Fix $1 > c > \max\{2^{-1/2}, 3^{-1/3}\}$ and let u_i , $v_i = M$ be k distinct factorizations with g.c.d. $(u_i, v_i) = 1$ such that $c\sqrt{M} < u_i < v_i < c^{-1}\sqrt{M}$. (We can take for example an integer h such that

$$\binom{2h}{h} > 2k \quad \text{and} \quad M = p_1 p_2 \cdots p_{2h}$$

where $p_1 < p_2 < \cdots < p_{2h}$ are prime numbers such that $p_1^h > cp_{2h}^h$.

Let R, S, N, w_i , z_i be as in Lemma 10 and let S_i be a simple bihyperelliptic surface of type $(a_i, b_i)(n_i, m_i)$ where $a_i = 2RSu_i + Rw_i + 1$, $b_i = 2RSv_i - Sz_i + 1$, $n_i = 2RSu_i - Rw_i + 1$, $m_i = 2RSv_i + Sz_i + 1$.

A computation shows that for every i = 1, ..., k, $K_{S_i}^2 = 128R^2S^2M$, $\chi(\mathcal{O}_{S_i}) = 24R^2S^2M - 2RSN + 2$, $r(S_i) = 4RS$ and $a_i \ge \max\{2n_i + 1, b + 2\}$, $m_i \ge \max\{2b_i + 1, n_i + 2\}$.

These surfaces belong to the same \mathcal{M}_d but they are in distinctly connected components by Theorem B.

Acknowledgement

I would like to thank F. Catanese for having introduced me to this subject and for many useful suggestions and scientific indications. I am grateful to the referees for many improvements in the presentation of the paper.

References

- [Ar] M. Artin: Deformations of singularities. Tata institute of fundamental research, Bombay (1976).
- [B-W] D. Burns and J. Wahl: Local contribution to global deformations of surfaces. Invent. Math. 26 (1974) 67–88.
- [Ca1] F. Catanese: On the moduli spaces of surfaces of general type. J. Diff. Geom. 19 (1984) 483-515.
- [Ca2] F. Catanese: Automorphisms of rational double points and moduli spaces of surfaces of general type. Compositio Math. 61 (1987) 81-102.
- [Ca3] F. Catanese: Connected components of moduli spaces. J. Diff. Geom. 24 (1986) 395-399.
- [Gi] D. Gieseker: Global moduli for surfaces of general type. Invent. Math. 43 (1977) 233–282.
- [F1] H. Flenner: Über Deformationen Holomorpher Abbildungen. Habilitationsschrift, Osnabruck, 1978.

- [Fre] M. Freedman: The topology of four-dimensional manifolds. J. Diff. Geom. 17 (1982) 357-454.
- [F-M-M] R. Friedman, B. Moishezon and J. W. Morgan: On the C^{∞} invariance of the canonical classes of certain algebraic surfaces. *Bull. Amer. Math. Soc.* (N.S.) 17 (1987) 283–286.
- [F-M] R. Friedman and J. W. Morgan: Algebraic surfaces and four-manifolds: some conjectures and speculations. Bull. Amer. Math. Soc. (N.S.) 18 (1988) 1–19.
- [Ma1] H. Matsumura: On algebraic groups of birational transformations. Rend. Accad. Lincei Ser. 8 34 (1963) 151–155.
- [Ma2] H. Matsumura: Commutative Ring Theory. Cambridge University Press (1986).
- [Mo] B. G. Moishezon: Analogs of Lefschetz theorems for linear systems with isolated singularities. J. Diff. Geom. 31 (1990) 47-72.
- [Pi] H. Pinkham: Some local obstructions to deforming global surfaces. Nova acta Leopoldina NF 52 Nr. 240 (1981) 173–178.
- [Ran] Z. Ran: Deformations of maps. In: Algebraic Curves and Projective Geometry Proc. Trento 1988, Springer L.N.M. 1389 (1989) 246-253.