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Introduction

Let d be the discriminant of a quadratic field with the character d Put
à = I dl. Set q(5) =!, q(8) - 2, and il(d) = 1, otherwise. If d &#x3E; 0 put

B2.(d) = il(d)k2(d)- It is known that k2(d) is equal to the order of the K2-group_.

of the ring of integers of a quadratic field with the discriminant d (see p. 499
in [10] and Theorems 4.2, 4.3, pp. 31 and 33 in [9]). Write ç( - 3) = 3,
ç( -4) = 2, and ç(d) = 1, otherwise. If d  0, set -B,@(d) = ç(d)h(d). As usual,2 

.

h(d) denotes the class number. According to the above remarks the numbers
k2(d) and h(d) are natural. Moreover it is known (see, e.g. [5]) that the first of
them is divisible by 4. In this paper Bk,x’ resp. Bk,x(x) denotes as usual the kth
Bernoulli number, resp. polynomial belonging to the Dirichlet character / (see
[9]).

In this paper we are going to deal with the equation

in integers x a 1, y, z &#x3E; 1, where b # 0 and k &#x3E; 1 are fixed integers.
K. Dilcher [2] proved that:

’the equation (1.1) has only finitely many integral solutions x &#x3E; 1, y, z &#x3E; 1

(with effective upper bounds for them)’, (D)

if one of the following conditions holds:

(i) k is sufficiently large (without determination of a lower bound),
(ii) d = - p, and p = 3 (mod 8) is a prime number, for k &#x3E; 3, k # 0 (mod 4),

*This research was done at Leiden University and supported by the Netherlands Organiz-
ation for Scientific Research (N.W.O.) grant 611-307-019/018.
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(iii) there exists an odd prime nu mber q such that - d = _ 1, q a 5 log ôq
and k = q or q + 1, for k # 4,

We are going to extend this list by proving the following :

THEOREM 1. Let d  -4 be the discriminant of an imaginary quadratic field,
d

and let k be an integer with k &#x3E; 3, k # 4, Then (D) is true if  # 1 andand let k be an integer with k&#x3E; 3,K 4. then (D) is true if d-2 and

8 § h(d).

REMARK. The conditions of Theorem 1 are satisfied in the following cases.

(i), (iii) and (vii) follow from Dirichlet’s class number formulas for imaginary
quadratic fields. Références in the other cases may be found in [5] (in cases (x)

and (xiv) see also Corrigendum to [5]). Here p and q are odd primes and t - !
dénotes the Legendre symbol.

(i) l5 = p = 3 (mod 8),

(ii) (H. Hasse) à = pq = 3 (mod 8) and p - - l,( 
q

(iii) à = 4p, p == - 3 (mod 8),
(iv) (P. Barrucand and H. Cohn) b = 4p, p = 1 (mod 8),

p = U2 - 2W2, U &#x3E; 0, u == 3 (mod 4), 0w=0(mod 4),
(vHvi) (E. Brown and A. Pizer) b = 4pq, p = q = 3 (mod 8), or

b = 4pq, p == q + 4 = 1 (mod 8) and p - -1,q

(vii) l5 = 8,
(vüi}--(ix) (H. Hasse) l5 = 8p, p = 1 (mod 8), -2p = U2 - 2w2,

w &#x3E; 0, W =1= 1, 3 (mod 8), or
l5 = 8p, p = -1 (mod 8), - 2p = U2 - 2w2,
W &#x3E; 0, W =1= ± 1 (mod 8),

(xHxiv) (A. Pizer) b = 8pq, p = q = 5 (mod 8), or
l5 = 8pq, p == - q == 3 (mod 8), or

b = 8pq, p == 1 (mod 8), q = ±3 (mod 8) and p - -1, or- q
b = 8pq, p - q - 2 = - 3 (mod 8) and p - -1, orq
b = 8pq, p == q + 4 == 3 (mod 8) and p - -1.q

Hence the theorem holds true in all thèse cases. Case (i) is Dilcher’s case (ii).
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The case d - 2 1 is more complicated. In this case by generalized Kummer2
congruences (see, e.g., (1.2) of [7], or the exercise 7.5, p. 141 in [9]), the

generalized Bernoulli numbers Bk.() can be divisible by any powers of 2. Our
methods, i.e., congruences modulo powers of 2 used together with results of
[7], give in this case only results with restrictions on k.

THEOREM 2. Let d be the discriminant of an imaginary quadratic field, and let
k be an integer with k &#x3E; 3, k # 4. Then (D) is true in the following cases:

(i) if - 1 8,r h(d), 64,r ki -4d) with k =1= 2 (mod 16),12
(ii) if d - 1, 8 Il h(d) with the additional condition 8 h(8d),( ) .Î 2 

, II ( ) I ( )

(iii) if 4 H, 8 !! h(d) with the additional condition 8 | h(2d).

By using the methods of this paper one can generalize Theorems 1 and 2.

However, the assumptions on d and restrictions on k will be more complicated,
especially in the case 8 d.
With Theorem 2 one can extend the above list. We shall do it only for
d 

= l.(d) = 1.2

REMARK (cf. [5]). The conditions of Theorem 2 in case d - 2 = 1 are satisfiedd-2
in the following cases. Here p and q are odd primes.

Hence the theorem holds true in all these cases with k Q 2 (mod 16).

In order to prove the theorems we use results of [6], [7] and methods of [8]
using congruences modulo higher powers of 2, or Eisenstein polynomials with
respect to p = 2.

2. Generalized Bernoulli numbers and polynomials

For any Dirichlet character X, set Sk,,(X) = Eû- i x(a)ak. Write X(- 1) =
(-l)P, where p E {O, 1}. It is well known (see, e.g., [9]) that:

Bk,x = Bk,x(O), (2.1)
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Bo,x = 0, if X #- 1, and BO,1 = 1,

if X =A 1 then we have: Bk,x = 0 =&#x3E; k =1= p (mod 2),

3. Auxiliary formulas

Let d be the discriminant of a quadratic field, and let - denote the
Kronecker symbol. Denote by p the number 0, resp. 1, if d is positive, resp.

d B
négative. Then d - -1 p. For any s &#x3E; 1 put

For any k, set

By (2.1)-(2.5) we can rewrite equation (1.1) in the form

Moreover (3.1) implies the formulas:

Hence we get
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4. LEMMAS

The proofs of Theorems 1 and 2 fall naturally into a sequence of lemmas.
In the five lemmas below, let d be the discriminant of an imaginary
quadratic field and let k be an odd natural number.

LEMMA 1 (see Cor. 4 to Theorem 1 [7]). I .Î d - 2 = -1 and k a 3 then we
have:

(i) °rd2 bk (d) # i ,
(ii) ord2 bk(d) = 1 =&#x3E; 2.{ h(d) =&#x3E; b = p == 3 (mod 8), where p is a prime

number,
(iii) ord2 bk(d) - v, v = 2 or 3 =&#x3E; 2,,-1 Il h(d),
(iv) ord2 bk(d) = 4 =&#x3E; (8 Il h(d) and [k == 1 (mod 4) of (k == 3 (mod 4) and

8 h(8d»]} or (161 h(d) and k == 3 (mod 4) and 411 h(8d)),
(v) ord2 bk(d)  5, otherwise. D

LEMMA 2 (see Cor. 2 to Thm. 2 [6] and Cor. 1, 2 to Thm. 1 [7]). If

d J == 1 (so 16 ( k2( - 4d) then) and k &#x3E; 3, then we have:

(ii) ord2 bk(d) &#x3E; 4,
(iii) ord2 bk(d) - 4 =&#x3E; 16 Il k2( - 4d) and k == 3 (mod 4),
(iv)) ord2 bk(d) &#x3E; 5, otherwise. D

LEMMA 3 (see Cor. 1 to Thms. 2, 4 [7]). If 4 Il d then we have:

(i) ord2 bk(d) = - 1, if d = -4, and ord2 bk(d)  1, if d  -4,
(ii) ord 2 bk (d) - v, v = 1, 2, 3 =&#x3E; 2" Il h(d),
(iii) ord2 bk(d) &#x3E; 4, otherwise. D

LEMMA 4 (see Cor. 2 to Thms. 3, 4 [7]). If 8 d and k à 3 then we have:

(i) ord2 bk(d) &#x3E; 0,
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LEMMA 5. If 4 d, d =1 - 4 and 8.r h(d) then for k &#x3E; 3 the congruence

holds. Moreover if 4 Il d and 8 Il h(d) then it holds for k &#x3E; 3 provided 8 h(2d).
Proof. First, let 4 Il d. By the congruence of Theorem 4 [7] the lemma for

8 % h(d) follows immediately. Therefore let us assume that 8 Il h(d). Write
d = -4d*, where d* is the discriminant of a real quadratic field. Then
Theorem 2 [7] states that the numbers bk(d) are 2-integral. Moreover the
following congruence holds:

where ai are integers of the form (Xi = pik + qi’ and the numbers pi and q,
_ 1 2 d*

are given by formulas with k k ’ 2 . On the other hand, byare given y formulas with ( k ’ k ’ 2 0n the other hand, y
Corollary 2 to Theorem 1 [6] the divisibility 8 Il h()d) implies 16 ! k2(d*) and
41 h(2d). Furthermore by the above mentioned formulas for (Xi we get
ai = 0, resp. 1 (mod 2), a2 --_ -1, resp. 1 (mod 4), if k = 1, resp. 3 (mod 4),
and a3 == 0 (mod 8). Therefore, if k == 1 (mod 4) then the lemma fol-

lows immediately. In the case k = 3 (mod 4) we find that bk(d) ==
k2(d*)1](d*) + h(d) (mod 32). Consequently, assuming bk(d) = h(d) (mod 32)
gives 32 k2(d*). And so by Corollary 2(iii) to Theorem 1 [6], this together
with 8 Il h(d) imply 4 Il h(2d). Contradiction with the hypothesis 8 h(2d).

Next, let 81 d. Then by Theorem 4 [7], Lemma 5 for 4,r h(d) follows

immediately. Thus let us assume that 4 h(d). Write d = + 8d*, where d* is
the discriminant of a quadratic field. In the case d*  0, Theorem 3 [7]
states that

where the integral numbers /3i’ i = 1, 2, 3 are given in [7]. In this case by
Corollary 2 to Theorem 2 [6], the divisibility 4 h(d) implies 1611 k2( -4d*),

d* d*
if 
2 =1, and 2Ih(d*), 81k2( -4d*), 

if 2 -1. Hence in the first case we
get the lemma immediately, because /32 == -1 (mod 4) and /33 == 0 (mod 16).
d*

If d * - -1 then Pl == 0, resp. 1 (mod 2), and P3 == 0, resp. 4 (mod 8), if
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k == 1, resp. 3 (mod 4). Furthermore P2 = 20131 (mod 4). These give the
lemma in case k = 1 (mod 4). In case k = 3 (mod 4) we obtain the
congruence

Hence assuming b k(d) = h(d) (mod 16) gives the congruence

Thus, if 8 Il k2( - 4d*) then by Corollary 2(iii) to Theorem 2 [6] we get
2 Il h(d*) and 8 [ h(d). Contradiction. Likewise, if 16 | k2( - 4d*) then 4| h(d*)
and we get 8 h(d) again.
Now let d* &#x3E; 0. In this case, 4|| h(d) implies 8| k2(d*), 4| h( - 4d*). On

the other hand Theorem 3 [7] states that

where 7i =0, resp. 1 (mod 2), 73=0, resp. 2 (mod 4), if k= 1, resp. 3 (mod 4),
and y2 = -1 (mod 4). Consequently if k = 1 (mod 4), then the lemma
follows at once. If k = 3 (mod 4) then we get the congruence

Thus, if bk(d) = h(d) (mod 16) then we get the congruence

An analysis similar to that in the previous case gives the lemma. Indeed, if
8 Il k2(d*) then by Corollary 2(ii) to Theorem 1 [6] we get 4 Il h(-4d*),
whence 8 h(d). Similarly, if 16| k2(d*), then by the same corollary we
obtain 81 h( - 4d*). Hence we get 81 h (d), again. This contradiction proves
the lemma completely. Il

LEMMA 6 (see [1], [3], [4],and [8]). Let 0 # b E 7L and let P(x) c- 0 [x] be
a polynomial with at least three zeros of odd multiplicity and for any odd
prime p, with at least two zeros of multiplicities relatively prime to p. Then
the equation

P(x) = by’

has only finitely many integral solutions x &#x3E;, 1, y, z &#x3E; 1 and these solutions

can be effectively determined. D
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To simplify writing, we let A 2 stand for the ring of polynomials over Q
with 2-integral coefficients. Further, in several places of the proof of Lemma
9, we are going to use some facts which are easy to check. It is convenient
to enunciate them in the following two lemmas:

LEMMA 7. Let il, L2EA2 and p be a prime number. Then the implication

holds.

Proof. Without loss of generality we may assume that i 1 and i2 are
monic. We have

Hence in the case p &#x3E; 3 we get T1(x) _ i2(x) (mod 2) at once, because the
leading coefficient of the second factor of the left-hand side of the above
congruence is equal to p =1= 0 (mod 2). If p = 2 then

and the implication is obvious. D

LEMMA 8. Denote by A(m, p) the sum of the digits of m written in the base
p. Let k=ko+2kt+...+2rkr and j=jo+2jt+...+2rjr’ where

kv, jv E {O, 11 for v = 0, 1,..., r. Then we have :

if k is odd and j is even.
Proof. (i) This follows at once by using the well-known fact that for

m &#x3E; 1 and prime p we have
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(ii) This follows easily from (i).

(iii) A trivial verification shows that

Hence (iii) of the lemma follows immediately. D

LEMMA 9. Let k be a natural number, k &#x3E; 3, k #- 4. Write k = K (mod 2),
KE {O, 1}. If

is a polynomial over Q with 2-integral coefficients a2i satisfying one of the
following conditions:

then the polynomial x2 -"fk(x) satisfies the hypothesis of Lemma 6.

REMARK. Actually in the cases (i) with k # 0 (mod 4), or (ii) for odd k,
the polynomial fk(x) is an Eisenstein polynomial (with respect to p = 2).

Proof. (i) First, let us assume that k Q 0 (mod 4). Then by definition, the
leading coefficient of the polynomial fk(x) is odd, all its other coefficients
are even and its constant term is not divisible by 4. Thus this polynomial
is of Eisenstein type with respect to p = 2, and so irreducible over Q. Hence
it satisfies the hypothesis of Lemma 6. The proof for k = 0 (mod 4) not
being a power of 2 will work for any k such that k and k - 1 are not powers
of 2 (with the assumption fk(O) =1 0 for odd k). In order not to have to
check later one case, viz. if k - 1 is a power of 2, we assume that k Q 1
(mod 4). Since the degrees of h(X) and of squares of polynomials are even,
to prove the lemma it suffices to exclude the cases

for any prime p &#x3E;, 2, t E A 2 and 2-integral q E Q, and for even k the case

where w, uEA2 and deg w = 2.
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Let us first observe that by 2,r ao, 2 | a2i, ’ &#x3E;1 1 we get the congruence

From (4.1), it follows that p| (k - 2 + K). Moreover, (4.1) and (4.3)
together with Lemma 7, give

where tl E A2. Hence we get the congruence

with odd q.
On the other hand, if k and k - 1 are not powers of 2, then by

Lemma 8(ii) there exist at least two such that

Furthermore by (used for even k), and by

(mod 2) for odd k (see Lemma 8(iii)), it follows

that there exist at least two such i, unless, 

kv E {O, 1} for v = 0, 1,..., r. Then by Lemma 8(i), we have

and also

in both the considered cases. Therefore both

and

are even. Here we have k Q 1 (mod 4), so k - 1 is not a power of 2. Thus the

above holds true for k Q 1 (mod 4) not being a power of 2.
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If p = 2 then we get a contradiction with (4.5) immediately. So let p &#x3E; 3. In
this case in the left-hand side of the congruence (4.5) we have

This inequality contradicts the above again, because for at least one of the
numbers t=2i or t=k-2i-x we have k-t-2+xk-2+x).
Indeed, if k - 2i - 2 + x &#x3E; 3(k - 2 + K), i.e., 2i  3(k + K - 1) then we have

because k &#x3E; 5K - 3.

It remains to consider the case k = 2’, ;, &#x3E;, 3. Then putting y = 4 k, by
definition of h(x) and Lemma 8(i), (ii) we find that

where r is odd.

This congruence together with (4.5), in the case p &#x3E; 3 imply t 1 (x) -
0 (mod 2). Consequently by (4.1) we get

where t2 E A2. This contradicts (4.6) because of the term 8x’"-2 and the

inequality

Now let us take p = 2. Then (4.1) together with (4.4), give the equality

Let us assume t 1 (x) = X’1 + ... + x’," (mod 2), where 11 &#x3E; ... &#x3E; lm &#x3E; 0 are
integers. Then by 2u - 1 &#x3E; 2c - 2 we get 2p - 2 = 21s,, i.e., IS1 = p - 1 for

some 1  s 1  m. On account of this the polynomial 4qt I(X)X2Jl-l contains the
term + 4x’4 -2 . Hence by (4.6) there must exist 1  s2  m such that

3y - 2 = 21,.,,, i.e., IS2 = 2 - 1. In the same manner we can construct by
induction a monotonically increasing sequence of natural numbers
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where

This sequence is finite, i.e., there exists n  min(), - 1, m) such that

2,u - 1 + lsn # 21i for all 1  i  m. Thus the polynomial fk(x) must contain the
term + 4xs, where 3p - 2  s  4,u - 2. This contradicts (4.6).
To finish the proof of (i) of the lemma it remains to exclude (4.2) in the case

of even k. Put in (4.2) w(x) = ax2 + bx + c, where a, b, c are 2-integral rational
numbers. Then by définition of fk(x), b = 0 and a must be odd. Moreover by
(4.3) the polynomial u(x) must be divisible modulo 2 by x (k - 4)/2 i.e.,

where u 1, u2 E A 2 and all coefficients of the polynomial u 1 are odd. Hence in
view of (4.2) we find that

Consequently by (4.3) and deg(u1(x) mod 4) = deg(u1(x) mod 2) we deduce
that deg(u1(x) mod 4) = 0. Therefore u i(x) - d (mod 4), where d is odd.

According to the above the congruence (4.8) now becomes

This is impossible because by Lemma 8(ii) there must exist at least two terms
of h(x) with coefficients congruent to 2 modulo 4, unless k is a power of 2.
Then, let k = 2;’, ), &#x3E; 3.

First of all let us note that without loss of generality we may assume that
UI(x) = 1 in (4.7). Indeed since a is odd and c is even, (4.2) together with (4.7)
give deg u)(x) = 0, i.e., u 1(x) = d. By (4.2) and (4.3), d must be odd. Next by
(4.2) and (4.6), c must be divisible by 4. Consequently (4.2) implies the

congruence

Write U2(X) = X’1 + ... + X’m (mod 2), where 11 &#x3E;... &#x3E; lm. Since 2p &#x3E;

2p - 2, by (4.6) there exists 1  s,  m such that 21s, = 2M - 4, i.e., IS1 = J1 - 2.
Therefore the polynomial 4X2"U2(X) must contain the term +4X34-2. In virtue
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of that and (4.6) there must exist 1 1 S 2 1 M satisfying 3p - 4 = 21s2, ,, i.e.,
IS2 = 2y 2. In the same manner, by induction, we can construct a finite

se uence of natural numbers l 
2n - 1 1 

- 2 where n  03BB - 1. This se-sequence of natural numbers lsn = 2 2n-1 1 2, where n - 1. This se-q " 2n _ 1 
lu

q]uence is monotonically increasing. Furthermore, by arguments used earlier in
the case of (4.1), there must exist 1 1 Sn 1 M such that 2y + ’ln 0 21j for all
1 K i  m, and 3p - 2  2y + ls"  4,u - 2. Then the polynomial h(x) con-
tains the term :t 4X2Jl + ’Sn which is incompatible with (4.6). This completes
the proof of (i). Q

(ii) (a) The case of even k.

Therefore

Similarly as in the proof of part (i) of the lemma, we are going to exclude
the cases (4.1) and (4.2). W riting k = 2’k’, 2 % k’ we have

Thus in order to exclude (4.1) for k e 2’ and p &#x3E; 3 it suffices to notice that
the monic polynomial xk’ - 1 is relatively prime to its derivative modulo 2.
Consequently it has only simple zeros. Before we exclude the cases (4.1) (for
p = 2) and (4.2) for k =A 2’, we prove the lemma in the case k = 2À., À  3
which is much easier. Then putting p =!k by definition we obtain the
congruence

(cf. the congruence (4.6)), where r is odd. We apply the same arguments as
in the proof of part (i) of the lemma in the same case. First (4.1) together
with Lemma 7 (with x = 0), and next the congruence (4.5). This congruence
gives a contradiction. If p = 2 then it is incompatible with the above
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congruence because of the term :t 2x2Jl- 2 and if p &#x3E; 3 then because of the
inequality

In the same manner we exclude (4.2). First, we get the equality (4.7), and
next the congruence (4.8). By the above congruence a is odd and c = 2
(mod 4) which contradicts this congruence at once because

k - 4 = 4p - 4 &#x3E; 2M - 2, if k &#x3E; 4.

Now we return to the case k * 2’. Let us first note that to exclude (4.1)
or (4.2) for the polynomial fk(x) it suffices to do it for the polynomial gk(x).
Then, let gk (X) qt2(x), where geQ) is 2-integral and t E A2. Since by (4.9)
we have gk (0) 1 (mod 2), q must be odd. Write k = 2’k’, 2 k’ again.
Then (4.10) together with Lemma 7, imply

Therefore we obtain

where t E A2.
Consequently setting t 1 (X) = X’t + ... + X’m (mod 2), where 1, &#x3E; ... &#x3E; 1,,, &#x3E; 0

we conclude that

Denote by 6 for 0  j  k the coefficient of xi in the polynomial gk(x). By
(4.9) we have

Hence we get
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and

Thus by definition we find that

i.e.,

because k &#x3E; 3. Applying this to (4.11) gives 1. = 0 and the congruence

Moreover from (4.12) it follows that for 0  j  k

since by induction we have

Therefore we conclude that

and hence

if j  k - 3, and bk-2 = 0 (mod 4), bk-t 1 = k (mod 4), because ao is odd
and k is even.



264

Since k is not a power of 2, by Lemma 8(ii) there exists even 0  j  k

such that 2// k Thus bj 2 (mod 4), and hence by (4.1 5) bjlkl2 = 2J

(mod 4), i.e.,  2 J+ k k l 2 . If 2 I k and 2/ k then by Lemma 8(ii)( ) ( + k/2 
2 2

we have 2’ 1 j. Moreover 2a-1 k and so 2’-’ Il j + -, too. Thus byI J- 2 II J 2 

Lemma 8(ii) we get 2 ( + k . Contradiction.B./ + //
Finally let

where w(x) = ax2 + bx + c, w, U E A2 and a # 0. Let us first notice that by
(4.9) (i.e., by gk(o) - 1 (mod 2)), c must be odd. Next, by 2 % bk = ao we
have 2 % a. Moreover let us observe that b must be even. Otherwise the

polynomial xk - 1, and in consequence the polynomial xk -1 + ... + x + 1
would be divisible modulo 2 by the polynomial x2 + x + 1. Then 3 ( k and
we get

This congruence is impossible if k - 2 &#x3E; 1, i.e., k &#x3E;, 3 because of the terms
with the odd exponents. Further, if b is even, then by (4.9) we get the
congruence

Hence by Lemma 7 we obtain

Consequently we get

Therefore we find that
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where pt is the number of solutions (i,j) of the equation i + j = k - t with

Moreover it is not diflicult to see that p, =k - t . Thus (4.17) together- 2 
with (4.13) and (4.14), give the congruence

where

On the other hand, since

we observe that

Consequently, we have the congruence

On the other hand (4.16) implies b2 --- k (mod 4). This contradicts (4.18)
and (4.19) which give b2 = k - 2 (mod 4).
The case of even k of (ii) is proved. D

(b) The case of odd k.
We shall prove that the polynomial gk(x) defined by
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is an Eisenstein polynomial (and so irreducible over Q) with respect to
p = 2.
By definition we have

Thus denoting by bj (for 0  j  k - 1) the coefficient of x’ in the

polynomial gk(x) we get

Moreover by definition we find that

and so for k &#x3E; 3 we get

By virtue of that and (4.21), the proof will be completed as soon as we can
show that b; for 1  j  k - 2 are even. Indeed by (4.20) and the congru-

ence

that

1 (mod 2) (see Lemma 8(iii)), it may be concluded

Therefore putting j == 0 (mod 2), 0e {0, 1} we get

if j  k - 2, as required.
Part (ii) of the lemma is proved completely. D

(iii), (iv) Our task is to exclude the cases (4.1) and (4.2) again. We first
turn to the case (4.1). Then we have the congruence (4.3), and by Lemma



267

7 we get the equality (4.4). Let us consider the power tP(x) of the right-hand

side of (4.1). Denoting m = mino,;;,;;(k-2-K)/2 ord2 (i)’ by definition of
fk (x) all coefficients of the polynomial 2qX(k- 2 +K)/p(p-l)tl (x) must be

divisible by 2r+m. Therefore by 2 X q all coefficients of the polynomial t 1 (x)
must be divisible by 2r+m-l. Hence for any s &#x3E; 2, all coefficients of the

polynomial t i (x) are divisible by 2s(r+m-l). Now applying (4.4) to (4.1)
gives, for r a 1, the congruence

which is even modulo 2r+m+2, if r &#x3E;, 2. Indeed, all coefficients of the poly-
nomiaI2Sqx(k-2+K)/p(p-S)ti(x) are divisible by 2’, where t = s + s(r + m -1) _
s(r + m). Thus t &#x3E; r + m + 1, resp. &#x3E;, r + m + 2, if r &#x3E; 1, resp. &#x3E; 2, because
(s - 1)(r + m) &#x3E; 1, resp. &#x3E; 2, if r &#x3E;, 1, resp. &#x3E; 2. Moreover the polynomial
2qX(k-2+K)/p(p-l)tl(X) modulo 2r+m+l 1 (resp. 2r + m + 2) must contain all terms
of fk (x) with coefficients exactly divisible by 2’’ + m (resp. by 2"+ 1), if r &#x3E; 1
(resp. &#x3E; 2).

On the other hand, if k # 2, 3 (mod 4) then by k - k (used for( ) Y 
i k-i i 

(

even k ) and by k - k - k i - 1 ( mod 2"’ + 1 ) for odd k (see Lemma 8(iii)),
at least one of such terms is of degree less than (k - 2 + K)/2. By the

congruence (4.22) this contradicts the inequality (k - 2 + x)/p(p - 1) &#x3E;,
(k - 2 + K)/2. Let us consider the cases k = 2, 3 (mod 4) then. If k = 3

(mod 4) then for the constant term of fk(x) we have 2r+m Il kak -1. This gives
k-1

a contradiction with the congruence (4.22) because of the inequality p
(p - 1) k ; 2  1. If k - - - 2 (mod 8) then we have 2r + m + 1 G) ak-2
(for the constant term), and 2r+m 4 k a _ k 4 (for the coefficient of x2 of
fk(x)). This gives a contradiction with (4.22) (considered modulo 2r+m+2,
resp. 2r + m + 1) and the inequality

I f k - - 6 (mod 16), then we have 2r+m+ (t) ak-4. We obtain a contra-
diction with the congruence (4.22) module 2r + m + 2.
Our next concern will be the case (4.2). Again let us put in (4.2)



268

w(x) = ax2 + bx + c with 2-integral rational a, b, c and a # 0. We have
b = 0,2,ta and obtain an equality similar to (4.7) for the polynomial u(x).
Here u(x).= x(k - 4 + pc)/2 + 2U2(X), where U2 E A 2, because without loss of
generality we may assume ui(x) = 1, again. Furthermore, by the term
cx k-4+K we have 2r+mlc. Therefore (4.2) implies the congruence

where y E {O, 1}.
From this it may be assumed that all coefficients of the polynomial u2(x)

modulo 2r+m+ 1 +y are exactly divisible by 2r if y = 0, or by 2r or
2r+m, if y = 1.
Let k 2, 3 (mod 4). Then similarly as in the case of (4.1) the terms with

coefficients divisible by the same power of 2 occur in pairs. Moreover only
one of the terms of each such pair can be a term of the polynomial
2U2(X)X(k+K)/2. Thus the other must be contained in the polynomial
4aU2(X)X2 . Therefore the polynomial u2(x) has a coefficient exactly divisible
by 2r+m-3 consequently the polynomial u2(x) must have two coefficients
exactly divisible by 25, and resp. by 2’ with s + t = r + m - 3, or one
coefficient exactly divisible by 2’, where 2s = r + m - 3. We get a contra-
diction, because all the coefficients of u2(x) are exactly divisible by 2r + m -’ .
The same reasoning as earlier applies also to the case k =- 3 (mod 4) and
k == - 2 (mod 8). Then we use the congruence (4.23) with y = 1. It remains
to exclude (4.2) for k --- - 6 (mod 16). Then by the congruence (4.23) with
y = 1, the constant term of u2(x) is exactly divisible by 2r+m-1. Therefore
the polynomial u2(x) has to have a coefficient exactly divisible by 2 r+ "’ -1/2
Contradiction. This completes the proof of Lemma 9. D

5. Proofs of the theorems

The proofs of the theorems will be divided into the cases: 2 % d, 4 Il d, or
8 d. Each of these cases falls naturally into two subcases according to k is
odd or even. We shall use Lemma 6 for the polynomial

where k = x (mod 2), K E {0,1}, and by (3.2) in the case of negative d we
have



269

By Lemmas 1-4 and the assumptions on d of both the theorems we have

Therefore putting in the above defined polynomial fk (x)

if i &#x3E; 0, the a2i are 2-integral rational numbers and by (5.1) this polynomial
is of the same form as the polynomial defined in Lemma 6. We consider
the three cases:

1. if - 1 and 8,r h(d), or 8 II h(d) and 8 [ h(8d), then by Lemma 12
we put a2i == 2 (mod 4), if i &#x3E;, 1. Moreover by definition we have
2 % ao. Therefore the above defined polynomial fk(x) satisfies the

assumptions of (i) of Lemma 9, and by this lemma of Lemma 6.
Consequently by Lemma 5 both the theorems follow in this case. Q

2. If 41 d then by Lemmas 3 (if 4 il d) or 4 (if 8 d) the a2i are odd, if i &#x3E;, 0.

Furthermore, if 8 ’ h(d) or 8 Il h(d), 8B h(2d) in the case of 4 il d, then
Lemma 5 implies the congruence a 2i - ao (mod 4), if i &#x3E;, 1. Thus

the polynomial fk(x) satisfies the hypothesis (ii) of Lemma 9, and
hence the hypothesis of Lemma 6. D

/dB
3. If d - 2 1, then by Lemma 2 we can control the divisibility of some

of bk(d) by powers of 2 only in the case of 64 % k2( - 4d). In this case
fk(x) satisfies the hypothesis (iii) of Lemma 9 with
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Let us note that small values of ord2 h(d) and of ord2 k2( - 4d) are in

case d - 2 1 independent of each other and all supposed values of r2
in Lemma 9(iii), (iv) are possible. Again Theorem 2(i) follows from
Lemma 9 and Lemma 6. D

6. The case R # 0

K. Dilcher [2] also proved that the equation

has only finitely many integral solutions x &#x3E; 1, y, z &#x3E; 1 with R = Rk E Z [x]
satisfying the following condition:

for any x, if k is sufficiently large. We considered the equation (6.1) only
with R = 0, although our methods also give results for this equation with
some polynomials R E 2JlX3z. [àx], where J1  6 depends only on moduli of
congruences used in the proof of Lemma 9 and q  2. Consequently the
assumption (6.2) seems to be rather a consequence of methods used in [2].
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