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1. Introduction

An arrangement of hyperplanes is a finite collection of C-linear subspace of
dimension (1 - 1) in C’. For such an arrangement A, there is a natural

projective arrangement .91* of hyperplanes in CPl-1 associated to it. Let

M(A) = Cl - ~ {H:H ~ A} and M(A*) = CPl-1 - U {H*: H* ~ A*}. Then
it is clear that M(A) = M(A*) x C*. The central problem in the theory of
arrangements is to find connections between the topology or differentiable
structure of M(A) (or M(A*)) and the combinatorial geometry of A.
The study of the topology of M(A) is important both in the theory of

hypergeometric functions. (See the work of Gelfand [Ge] and his subsequent
papers, the work of Deligne and Mostow [De-Mo] and subsequent papers by
Mostow) and in the singularity theory ([Ar], [Br], [De] and also [Ca].).
Moreover, it plays a role in some interesting problems in algebraic geometry
(see especially the works of Hirzebruch [Hi] and Moishezon [Mo].).

Let M, denote the braid space with 1 strands i.e., M, is the complement
of complexified braid arrangement Al defined by Q = (zi - Zj).
In 1969, Arnold [Ar] was able to calculate the Poincaré polynomial of

the pure braid space M, and the cohomology ring structure of H*(M 1). In
general for an arbitrary arrangement .s:1, define holomorphic differential forms
WH = (1/(203C0i))(d03B1 H/aH) where aH is the linear form defining the hyperplane H
for H ~ A and let [03C9H] denote the corresponding cohomology class. Let

R(A) = Rp be tlle graded C-algebra of holomorphic differential forms
on M(A) generated by the (OH and 1. Arnold conjectured that the natural map
q - [’1] of R(A) ~ H*(M(d), C) is an isomorphism of graded algebras. This
was proved by Brieskorn [Br] in 1971 who showed in fact that the Z-

subalgebra of R(A) generated by the forms WH and 1 is isomorphic to the
singular cohomology H*(M (.91), Z). Although Brieskorn proved the Arnold
conjecture, it was not known whether the algebra R(A) is determined by the
combinatorial data of A, since the linear forms enter the definition of R(A).
In 1980, Orlik and Solomon [Or-Sol] showed that for an arbitrary arrange-
This research is partially supported by the NSF.
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ment A the Poincarté polynomial of M(A) equals the Poincaré polynomial
of A. Hence the betti number of M(A) is combinatorially determined. They
also introduced a graded algebra A(A) in [Or-Sol]. It is a combinatorial

invariant of A. The main result of [Or-Sol] asserts that there is an isomor-

phism of algebras A(A) ~ R(A). This, together with the Brieskorn solution to
Arnold’s conjecture, imply that the cohomology ring H*(M (.91), C) is a

combinatorial invariant of A.
The next difficult unsolved problems involve the homotopy groups of M(A).

In a Bourbaki Seminar talk, Brieskorn [Br] generalized Arnold’s results. He
replaced the symmetric group and the braid arrangement by a Coxeter group
W acting in R’. Then A acts as a reflection group in C’. Let A = A(W) be its
reflection arrangement. Brieskorn conjectured that A(W) is a K(03C0, 1) arrange-
ment for all Coxeter groups W He proved this for some of the groups by
representing M as the total space of a sequence of fibrations. Deligne [De]
settled the question by proving that complement of complexification of real
simplicial arrangement is K(03C0, 1). This result proves Brieskorn’s conjecture
because the arrangement of a Coxeter group is simplicial. Shepherd and Todd
[Sh-To] classified finite irreducible complex reflection groups. Recall that real
reflection groups are also called Coxeter groups because finite irreducible real

reflection groups were classified by Coxeter [Co]. Every real reflection group
may be viewed as a complex reflection group. There are examples of complex
reflection groups which are not Coxeter groups. Orlik and Solomon [Or-So2]
conjectured that all the complex reflection arrangements are K(03C0, 1). For a
subclass of irreducible complex reflection groups called Shepherd groups, this
was proved by Orlik and Solomon [Or-So3]. The conjecture is still open for
the remaining irreducible complex reflection groups. In [Sal], Salvetti made a
fundamental contribution to the understanding of the higher homotopy in the
complement of an arrangement. He considered a union of real affine hyper-
planes in Ci with complement M and constructed explicitly a CW-complex
X c M of dimension 1 with the homotopy type of M. Recently, he introduced
a class of cellular complexes by which Deligne’s result is re-proved and
generalized [Sa3]. Orlik [Or] has constructed for all arrangements a finite

simplicial complex of the homotopy type of M. In [Ar], Arvola exhibits a
simplicial homotopy equivalence between Salvetti complex and Orlik complex
in the case of real arrangement. Recently, Bjôrner and Ziegler presented a
general method for constructing regular complexes with the homotopy type of
M(A). They generalized the construction of Salvetti [Sal] to complex arrange-
ments, gave a new proof of Brieskorn-Orlik-Solomon theorem and investigated
a class of topological deformed complex arrangements [Bj-Zi].
The difficult and still unsôlved problem is whether the topological or

diffeomorphic type of complement M(A) of an arrangement is combinatorial
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in nature. The purpose of this paper is to give a partial solution to this

problem. Let .91 be a central arrangement in C3 and A* be the corresponding
projective arrangement in CP2. We can define a graph G(A*) which depends
only on the combinatorial data of the arrangement. An arrangement A* is
called a nice arrangement if after removing pairwise disjoint star shaped
subgraphs of G, the graph becomes a forest.

MAIN THEOREM. Let A1 and .912 be two central nice arrangements in C3 and
slt, A*2 be the corresponding projective arrangements in Cp2. If the lattices of
A1 and A2 are isomorphic, then the complements of the projective arrangements
A*, A*2 in CP’ are diffeomorphic to each other.

The proof of our Main Theorem above actually works for much general
arrangements. We shall give an example in Section 4 to demonstrate this. Any
arrangement such that the proof of our Main Theorem works is called a good
arrangement. Given a projective arrangement .91* in CP2, it is important to
find a presentation of the fundamental group of the complement M(A*) and
determine whether 7ul(M(sl*» depends only on the lattice L(S/). If .91* is the
complexification of a real arrangement, then this problem was solved by
Randall [Ra]. The following corollary is an immediate application of our Main
Theorem above.

COROLLARY. A presentation of the fundamental group of the complement
M(sl*) of a nice arrangement in Cp2 can be explicitly written and it depends
only on the lattice of A.

The second author would like to thank M. Falk for his invitation to

participate in the AMS-CBMS on Arrangement of Hyperplanes at Northern
Arizona University in 1988. The Main Theorem was announced in the survey
paper [Ji-Ya]. The Main Theorem is based on the observation that the

diffeomorphic types of the complements of arrangements are the same in a one
parameter family of arrangements with isomorphic lattices. This follows

immediately from a Teissier’s numerical characterization of Whitney condition
[Te] and Thom’s first isotopy theorem. It was also observed independently
during the AMS-CBMS on Arrangement of Hyperplanes by Randell [Ra].
Recently Arvola [Ar] has determined 03C01(M(A*)) from a certain planar graph.
In Section 2, we shall recall some terminology in abstract lattice theory. In
Section 3 we shall prove the Main Theorem. For each projective arrangement
in CP2, we associate a variety in (CP1)p where p is the number of lines in the
graph G(A*). This variety plays an important role in studying the diffeomor-
phic type of arrangement. In Section 4 we shall study two examples of these
varieties.
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2. Arrangement and its lattice L(A)

We begin by recalling some terminology in lattice theory.

DEFINITION 2.1. Let P be a poset. An upper bound of a subset X of P is an
element a~P such that x  a for every x E X . The least upper bound is an

upper bound less than or equal to every other upper bound; it is denoted by
sup X. The notion of lower bound of X and greatest lower bound (inf X) of X
are defined dually.

DEFINITION 2.2. A lattice is a poset P any two of whose elements have a

greatest lower bound or "meet" denoted by x n y, and a lowest upper bound
or "join" denoted by x v y.
DEFINITION 2.3. An element y covers an élément x in a lattice L if and only
if x  y, but x  z  y for no element z in L.

DEFINITION 2.4. A chain in a lattice L is any linearly ordered subset of L.

DEFINITION 2.5. A lattice having no infinite chains is said to be semimodu-
lar whenever it has the covering property: for all lattice elements x, y, if x and
y cover x n y, then x v y covers x and y.

DEFINITION 2.6. Let L be a lattice with finite elements. The length of a chain
C of L is defined as ICI - 1. The rank of a E L, denoted by r(a), is the length of
the longest chain in L below a. Let Ô=infL and 1 = sup L. Then r(0) = 0. The
rank of L (rank L) is defined to be r(1). If a in L has rank 1, then a is called a
point or an atom of the lattice.

DEFINITION 2.7. A point lattice (or atomic lattice) is a lattice in which every
element is a join of points. A geometric lattice is a semimodular point lattice
with no infinite chains.

In this paper an arrangement A is a finite collection of hyperplanes
through the origin in Ci. The lattice L(d) is the set of all

intersections of subsets of d, partially ordered by reverse inclusion i.e.

X  Y ~ Y ~ X. The rank function r on L(A) is r(X) = codim X =

1 - dimc X for X ~ L(A), each Hi is an atom of L(A), the join is by
X v Y = X~Y and the meet is by X n Y = ~{Z:Z~L(A), X~Y~Z}.
LEMMA 2.8. Let A be an arrangement. Then

(i) for every X E L(A) all chains from X to Ci have the same cardinality,
(ii) every element of L(A) - {Cl} is join of atoms,
(iii) for all X, Y~L(A) the rank function satisfies

Thus L(A) is a geometric lattice.
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DEFINITION 2.9. Let Lp = Lp(A):= {X~L(A):r(X) = pl. The Hasse dia-
gram of L(A) has vertices labelled by the elements of L(A) and arranged on
levels L p, p  0. Suppose X E Lp and Y ~ Lp+1. An edge connects X with Y if
X  Y.

EXAMPLE 2.10. Let A be an arrangement of hyperplanes in C3 consisting of
the elements

Figure 2.1 shows the Hasse diagram of L(A).

3. Proof of the Main Theorem

In this section, we denote A the (central) arrangement of hyperplanes in C3
and .91* its associated projective arrangement of hyperplanes in CP2. Let L(A)
be the lattice associated with A.

DEFINITION 3.1. A point p in Cp2 is of multiplicity k in A* if p is the

intersection of exactly k lines in .91*. Let tk(A*) be the number of k-tuple
points in the arrangement .91*. Then the complexity of .91* is defined to be

03A3k3(k - 2)tk(A*).

Let us define the graph G from an arrangement A* in CP2. Let VG be the
set of vertices of G consisting of all points of .91* with multiplicity greater than
2. Let EG be the set of edges of G. Each edge in EG is a pair of distinct vertices
(v1, v,) of VG which span a line (vi, v2&#x3E; of .91*. A reduced path of G is denoted
by a (n + l)-tuple (vo, ... , vn) such that (vi-1, vi) ~ EG and

Fig. 2.1. Hasse diagram of Example 2.10.
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vi-1, vi&#x3E; ~ (Vi’ vi+ 1&#x3E; for i = 1,..., n - 1. Furthermore, it is a loop when

vo = vn, n  3. G is called a jorest if it does not contain such a loop.
For a v0 ~ VG, define a subgraph St(vo) of G by setting VSt(vo) =

(vo) w {v E VG:v0, v) E A*} and ESt(vo) = {(v, w) E EG :’v = vo or w = 0,
otherwisev, w) = v0, v&#x3E; 1.

Fig. 3.1. A nice arrangement A* including the line in infinite.

Fig. 3.2. The graph G of A*.
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Fig. 3.3. The graph G’ = G - (ESt(VI) U {v1} U ESt(V2) U {v2}).

DEFINITION 3.2. An arrangement .91* in CP2 is said to be nice if the graph
G from A* has the following property: There are v1, ..., vm ~ vG such that
St(v 1), ... , St(vm) are pairwise disjoint in G and G’ = G - Ui= 1 (E St(vi) U {vi})
is a forest.

THEOREM 3.3. Let dt and A*1 be two nice projective arrangements in CP2.
If the lattices of do and dl are isomorphic, then the complements M(A*0) and
M(A*1) of the projective arrangements A*0 and *1 in CP2 are diffeomorphic to
each other.

Proof. We represent the two arrangements as dt = {H1, H2, ..., Hn} and
={G1, G2, ..., Gn} where Hi = (hi1, hi2, hl3) and Gi = (gi1, gi2, gi3) are in
CP2. We shall construct a one-parameter family of arrangements A*(t) such
that A*(0) = A*0, A*(1) = A*1 and L(A(t)) ~ L(A0) for all t ~ [0,1].

Let A* = {F1, F2, ···, Fn} where Fi = XiGi + yiHi for some xi, YiEC such
that .
Consider any triple (Fi, Fj, Fk), (i, j, k) E l. Denote the matrix

by [FiFjFk] and its determinant by |FiFjFk|. We now can write



140

Since each two lines in CP’ meet exactly at one point, to get L(A) ~ L(A0),
it is sufficient to have the following

Let l = 03A3j3 ()tj(A*1). By (3.2), we need to have 1 equations and (n3) - 1

inequalities

Both Pi and Qj have the forms like (3.1). But for Pi, the first term and the last
term are zero since 1 Gi Gi Gkl = IHiHiHkl = 0 by (3.2). Among P1, ..., P, at most
c(A1) = 03A3j3(j - 2)tj(A*1) of them are independent. To see this, we consider
a j-tuple point V (j  3). Let Fl,..., Fi be the lines of A* passing through V.

We have (j3) equations (|F1F2F3| = 0,..., etc). Since {F1,..., Fj} can be linearly
generated by F1 and F2, the G) equations is reduced equivalently to j - 2
equations |F1F2Fi| = 0 for i = 3, ..., j. Now consider all j-tuple points (j  3).
We have a system of c(A1) equations, say {P1 = 0,..., PC(d1) = 01 which is

equivalent to {P1 = 0,..., Pl = 0}.
As we observed before, each Pr can be written like

where ar = IHirGjrGkr1 etc. Replacing A*0 by ~(A*0) if necessary where

~:CP2 ~ CP’ is a complex analytic automorphism, we assume without loss of
generality that any one (two) line(s) in A*0 and any two (one) line(s) in

A*1 do not intersect at a point. This means that arbrcrarPrYr =1= 0 for all

r = 1, ..., c(A1).
Note that Pr is viewed as polynomial in ((x 1: y1), ..., (Xn: y,,» E (CP 1)n. For

each r, indices ir, jr, kr are pairwise distinct and (ir, jr, kr) ~ (is,js, ks) for r =1= s
where 1  ir, jr, kr, i,, js’ ks  n and  r, s  c(A1). Before we can continue our
proof, we need to introduce the following concept.

DEFINITION 3.4. (xi:yi)~CP1 is called irregular for the following equation
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if (ayi)xixk + (bxi + 03B3yi)yjxk + (CXi + 03B2yi)xjyk + (axi)YjYk is a reducible poly-
nomial of the other two variables (xi: yj) and (Xk: Yk), Otherwise we call (xi: yi)
regular for the equation (3.6).

LEMMA 3.5. Assume ((x 1:Y1)’ (x2:y2), (X3:Y3)) ~ (CP1)3 is a solution of (3.6).
If (x1:y1) is irregular, then either (x2:y2) or (X3:Y3) is irregular for (3.6). If
(x1:y1) is regular, then (x2:y2) and (x3:y3) are either both regular or both
irregular for (3.6). I n other words, the number of irregulars cannot be 1.

Proof. When y 1 = 0, (3.6) becomes

which is irreducible. So if (x1:y1) is irregular, then x1 ~ 0 and y1 ~ 0.
Write (3.6) as polynomial of (x2:y2) and (x3: Y3)

It is reducible if and only if

or

which has at most two roots of (x1:y1). When (x1:y1) is a root of the equation
above, (3.6) becomes

from which we have the solution to either (x2:y2) = (-03B1x1:cx1 + 03B2y1) or
(x3:y3) = (-(cx 1 + PYl): aYl).

In the first case, we have

Put these into (3.7) yields
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The last equation is a necessary and sufficient condition for (x2: y2) being
irregular of (3.6). For the second case, we have the same conclusion for

(x3:y3). D

From the argument above we also have

LEMMA 3.6. There are at most two irregular (xi: Yi) of (3.6) for each i = 1, 2,
3. (0 : 1) and (1 : 0) are regular of (3.6).

LEMMA 3.7. For each fixed regular (x 1: y1) of (3.6), the following relation
prodcuces an automorphism of CP 1

which sends regular values to regular values of (3.6). In particular
(x 1 : Y 1) = (x 2 : Y2) = (0 : :1) (respectively (1 : 0)) corresponds to (x 3 : Y3) = (0 : :1)
(respectively (1:0)).

Proof.

Since (x 1:y1) is a regular value, the above expression is nonzero by (3.7). So
(3.8) is an automorphism of CP’. Clearly (3.8) satisfies equation (3.6). By
Lemma 3.5, the mapping (3.8) sends regular values of (3.6) to regular values of
(3.6). The last statement of the lemma is obvious. Q
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REMARK 3.8. Equation (3.8) is equivalent to equation (3.6). For we write (3.6)
as

Then (x3, Y3) = K(-03B1x1x2 - 03B2y1y2 - cx1x2, aY 1 x2 + bx1y2 + 03B3y1y2) which is
(3.8). So if (x1:y1) and (x2:y2) are regular of (3.6), then there is a unique
(x3: Y3) solved in terms of (x1: y 1 ) and (x2: y2). We call such procedure "fixing
two variables to solve the other" and such (x1:y1), (x2:y2), (X3:Y3) "solved
variables". Let us now return to the proof of Theorem 3.3. Since .sIt is a nice
projective arrangement in CP2, there are v1, ..., Um ~ VG, where G is the graph
of Ht, such that St(v 1), ... , St(vm) are disjoint pairwise in G and

is a forest.

Suppose m = 1. Assume that v is a point of multiplicity k in .911. Recall that
by the definition of G, k  3. Then there are k variables appearing in k - 2
equations of (3.6). Suppose that these variables are (x1:y1),...,(xk:yk) and
(x 1:y1), (x2:y2) appear in each of these k - 2 equations. We can fix (x 1:y1),
(x 2 : Y2) to solve (x3: Y3)’ ..., (Xk: Yk).

The rest of the unsolved variables and equations in (3.5) correspond to the
graph G’ which is a forest. At each following step, we consider the graph
formed by the vertices with unsolved variables. In each component of this
graph we pick a vertex which is adjacent (in G) to a vertex whose variables are
solved and apply the same procedure to solve its variables. (If there is a

connected component of G’ which is not connected with any vertices whose
variables are solved, we pick any one of its vertices.) The set of vertices whose
variables are solved and which lie in a same connected component of G span
a subgraph of G which is connected. Thus we can solve all variables in terms
of some variables without ambiguity since G’ is a forest.

For the case m = 0 or m &#x3E; 1 we apply the same procedure. All variables are
presented as

where each component of f is a composition by some maps as (3.8). So they
are homogeneous polynomial of (x1:y1), ..., (xp:yp). Let U:=(CP1)p-
{((x1:y1), ..., (xp:yp)): for some 1  i  p, (xi:yi) is irregular of some equation
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of (1)}. By Lemma 3.6, U is an open connected set of (CP1)p. By Lemma 3.7,
f defines an embedding from U c (CP’)P to (CP’)". Since U is irreducible, so
is f(U) irreducible. Observe that (0:1)n =((0:1),..., (0:1)) and (1:0)n =
((1 : 0), ..., (1 : 0)) are contained in f(U). We deduce that (0 :1)" and (1 : 0)" are
in the same irreducible component of {P1 = 0, P2 = 0,..., Pc(A1) = 01. Recall
that irreducible variety minus a subvariety is still a connected set. If

((x1:y1),...,(xn:yn)=((1:0),...,(1:0)) (respectively ((0 :1), ... , (0 :1)) then

A* is A*0 (respectively A*1). Therefore condition (3.22) is satisfied at these two
points, so there is a curve from ((1 : 0), ... , (1 : 0)) to ((0 :1), ..,, (0 :1)) such that
(3.2) is satisfied for any point lying in the curve. This means that we have
constructed a one-parameter family of arrangements A*(t) such that

A*(0) = A*0, A*(1) = .911 and L(A(t)) ~ L(A0) for all t ~ [0,1].
We now define a stratification of CP2 x [0,1] which consists of three strata

W, X and Y only. Let Y be {(p, t) E Cp2 x [0, 1]: p is a point of multiplicity
k  2 in A*(t)}, X be {(p, t) E Cp2 X [0, 1]: p is a point of multiplicity one in
A*(t)} and W = Cp2 X [0, 1] - {(p, t) E CP2 x [0,1]: p is a point of A*(t)).
We can think of X ~ Y as a total space of the family of plane curve singularities
Id*(t)1 (= union of hyperplanes of d*(t)) in CP2. Since L(sl*(t» is isomorphic
to L(A*0) for all t, we see easily that this family of plane singularities is a

p*-constant family. In view of a theorem of Teissier [Te], the stratification
satisfies the Whitney condition. Consider CP2 x [0, 1] together with the

projection map to the second factor. This map is proper since CP’ is compact.
It is also a submersion. Moreover its restriction is a submersion on each

stratum. Now we apply Thom’s first isotopy theorem (proved by Mather
[Ma]) to finish the proof of our Main Theorem. For the convenience of the
reader, we recall the statement of Thom’s first isotopy theorem which can be
found for instance in [Go-Mac].

THOM’S FIRST ISOTOPY THEOREM. Let f :Z ~ Rn be a proper, smooth
map which is a submersion on each stratum of a Whitney stratification of Z. Then
there is a stratum - preseruing homeomorphism

which is smooth on each stratum and commutes with the projection to R". I n

particular, the fibres of f are homeomorphic by a stratum-preserving homeomor-
phism. ~

4. Examples

In this section, we shall show an example of an arrangement which is not nice,
but the statement of our Main Theorem is still true.
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EXAMPLE 4.1. Let G be the following graph

G consists of 8 lines and 5 triple points

Clearly .91* is not a nice arrangement. However the proof of our Main
Theorem still works if we can show that ((1 : o), ... , (1:0)) and ((0 : 1), ..., (0 :1))
in (CP1)8 is in the same irreducible component of the following variety defined
by the following equations

Let (x 1 : y1), (x z: y,) and (x4 : y4) be regular values of (4.1),..., (4.5). Thus we
have from (4.1), ..., (4.5) respectively the following
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Let V = {((x1:y1), (X2:YZ)’ (X4:Y4))E(Cpl)3 :(Xl:Yl)’ (x2:y2) and (x4:y4)
are regular of (4.1)-(4.5)}. Since for each i, (xi:yi) has at most 2 irregular
values for each équation. So V is a connected open subset of (CPl)3
by taking away finite number of planes and lines from (CPl)3. Let

W = {((x1:y1), ..., (x8:y8))~(CP1)8: (4.6) -(4.10) are satisfied and ((x1:y1),
(x2:y2), (X4:Y4)) C- Vl’ Observe that V is homeomorphic to W by the map
defined by (4.6)-(4.10). It follows that W is an irreducible variety containing
((0 :1), ..., (0 :1)) and ((1 : 0), ..., (1:0)) E(CP1)S. So the Main Theorem is still

true for this arrangement, i.e. A* is a good arrangement.

REMARK. Each expression of (4.7)-(4.10) can be written in terms of (x 1 :Yl)’
(x2 : Y2) and (x4 : Y4) by successive substitution of each previous expression.

In the next example, we shall associate to a projective arrangement in
Cp2 two varieties in (CP’)’. We shall show that these two varieties have 8
irreducible components. In the first variety, ((1:0), ..., (1 : 0)) and

((0 :1), ... , (0 :1)) are in the same irreducible component, while in the

second variety ((1 : 0), ... , (1 : 0)) and ((0 :1), ..., (0 :1)) are in different irreduc-
ible components.

EXAMPLE 4.2. Let A* be a projective arrangement with the following
graph G.

G consists of 6 lines and 4 triple points
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(1). The simplest example is that we take ai = bi = Ci = ai = 13/ = Yi = 1
(i = 0, 1, 2, 3) in (4.11).

If (x3:y3) is irregular of (2), then Lemma 3.5 says that either (x 1 : y 1) or
(x2:y2) is irregular of (2). Therefore if (x1:y1) and (x2:y2) are regular of (2),
so is (x3:y3). Thus we have

i.e. (xi:yi) ~ (a : 1) or (13 : 1) for i = 1, 2, 3 where

Observe that 03B103B2 = 1, a + 03B2 = -1. Write equation (4.11) as follows

where ki ~ CB{0} and
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Each IIAil1 =1= 0 by (4.12). It follows from (4.13) that

where k is some number if CB{0} and

For a solution (X4: Y4) E Cp 1, we must have det(k.4 - 1) = 0. So

For k = 1/A, we have a solution of (4.11)

It is easy to check that the solution (4.14) of(4.11) is valid for all ((x1 1 :Y1)’
(X2 Y2» ~(CP1)2 - {P1 1 P21 where Pl = ((a : 1), (13: 1)) and P2 = ((03B2 : 1), (a : 1)).
This solution set (4.14) is isomorphic to (CP1)2 - {P1, P2}. It contains

((0:1),...,(0:1)) and ((1 : 0), ..., (1:0)) of (CPI )6. We denote this solution set
U’1.

For k = -1/0394, we have another solution set of(4.11) denoted by 1/2

for all ((x 1: y1), (x 2:y2)) ~(CP1)2 - {P1, P2}.
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For (x 1:y1) or (x2:y2) being fixed as irregular of (4.11) we get all other six
solution sets of (2) in (Cpl )6.

Each of these six sets is isomorphic to (CPl)2. So they are irreducible

components. Furthermore, if we define

in (CPI )6. Let U 1 = U’1 ~ V1 and U2 = U’2 ~ V2. Then both U 1 and U2 are
irreducible components of the algebraic set defined by (4.11). For the proof of
the last statement we consider U’l which is isomorphic to (CP1)2 - {P1,P2}.
Each element of VI is in the closure of U’1 since

in U 1 so U is an irreducible component defined by the following equations:

Similarly we can show that U2 is also an irreducible component.
The connection among those eight irreducible components can be expressed

by the following configurations.
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Fig. 4. l.

Figure 4.1(a) and (b) indicates that U 1 n U2 = {R 1, R2, ... , R6} where the six
points are as follows:

The intersection of Ui (i = 1 or 2) and Ui = ( j = 3, 4, 5 or 6) is a line. We list
them as follows:
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(II). The second example is that we take ai = -3, 03B2i = 03B3i = -1,
bi = Ci = ai = 1 for i = 1, 2, 3. Then we get the following P, equations in the

proof of Theorem 3.3

To keep the same lattice, we want to take away the following varieties defined
by the following Qr equations in the proof of Theorem 3.3.

Similar computations as before shows that the algebraic set

has eight irreducible components Wl, W2,..., Ws where each W is an irreduc-
ible component in (CP1)6 of dimension 2. In fact the equations for W1 and W2
are given respectively
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Clearly ((0: :1), ..., (0:1)) E Wl and ((1:0, ..., (1:0)) ~ W2.
We want to show that for some chosen coefficients in equations Q;,

becomes disconnected in such a way that there is no path joining
((1 : 0), ... , (1 : 0)) and ((0 :1), ..., (0 :1)). We first observe that Wl n W2 = {R1,
R2, ... , R6} where

Let us take ai = 2, bi = 1, Ci = 1, di = 1, ei = 0, gi = 2, hi = 1 in equations Q 1,
Q2. and Q3. Then
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So {R1, ..., R6} ~ Ut = 1{Qi = 01. The method in Theorem 3.3 does not provide
an affirmative answer. However we do not know whether the coefficients so

chosen can actually be realized in geometric situation.
In a forthcoming paper, we shall show that the diffeomorphic type of M(A*)

indeed depends only on the lattice L(A) for a general class of A which includes

Example 4.2 as a special case.
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