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Introduction

Let X be a complex manifold and Y a divisor with normal crossings. Today
the utility of the holomorphic logarithmic complex, 03A9*X(log Y), in the study of
the cohomology of quasi-projective varieties is well known. For example, it is
a key ingredient of Deligne’s construction of a mixed Hodge structure in the
cohomology of X-Y Of great importance in this construction are the weight
and Hodge filtrations, noted W and F respectively.
One can construct acyclic bifiltered resolutions of (Q1(1og Y), W, F) by

standard methods (cf. [D]); but it should be noted that, in general, we cannot
except a real structure in these resolutions because 03A9*X(log Y) has none.

In [N] Navarro Aznar introduced an acyclic bifiltered resolution of

(03A9*X(log Y), W, F), the analytic logarithmic Dolbeault complex: (A*X(log Y),
W, F), which has a real structure. This complex is an algebra over the sheaf of
real analytic functions, AX.

In [H-P] Harris and Phong constructed a resolution of (9x = 03A90X(log Y) by
means of Co functions over X - Y, imposing logarithmic growth conditions
along Y This suggested that it is possible to construct a bifiltered resolution,
analogous to (d1(log Y), W, F) using COO functions.

In this paper we introduce a Coo logarithmic Dolbeault complex, which we
shall denote (E*X(log Y), W, F), and we prove that it is also a bifiltered

resolution of 03A9*X(log Y). To define this complex we do not use growth
conditions, but give a definition similar to those of dî(1og Y) substituting
differentiable for real analytic. This complex also has a real structure and it is
a bifiltered algebra over the sheaf of differentiable functions, éx. So it is fine,
and hence acyclic. Furthermore, there is a natural inclusion

which is a filtered quasi-isomorphism.
*Partially supported by CICYT PS90-0069.
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To prove that (E*X(log Y), W, F) is a bifiltered resolution of (QÍ(log Y), W,
F) we follow the proof given in [N] of the corresponding fact for (A *(log Y),
W, F). However, some facts about real analytic functions are not true for Coo
functions. To avoid these technical complications we shall use Whitney’s
extension Theorem and some properties of flat functions.
One reason for studying this kind of complexes is that they are a natural

place for Green functions to live. Green functions play a fundamental role in
the theory of arithmetic intersections (cf. for example [L] or [G-S]). In

particular, the usual Green functions belong to these complexes: to dÍ(log Y)
if they are real analytic, and to &#x26;*(log Y) if they are differentiable. Moreover
we shall show that belonging to these complexes is a good way to express the
singularities usually required for Green functions and we shall give a proof of
the existence of Green functions based on the properties of these complexes.
The paper is organized as follows: In section 1 we recall the definitions of

(03A9*X(log Y), W, F) and (d *X(log Y), W, F). In section 2 we define (E*X(log Y),
W, F) and we start the proof of the main theorem. In section 3 we recall

Whitney’s extension Theorem and the definition and some properties of flat
functions. In section 4 we relate the flat functions with the Coo logarithmic
Dolbeault complex. In section 5 we complete the proof of the main theorem.
Finally in section 6 we discuss the relationship between Green functions and
the logarithmic Dolbeault complexes.

1 am deeply indebted to V. Navarro Aznar for his guidance during the
preparation of this work.

1. Preliminaries

Let X be a complex manifold. Let Y c X be a divisor with normal crossings
(in the sequel DNC). We shall write V = X - Y and denote the inclusion by
j: V 4 X. Let xeX. We shall say that U is a coordinate neighbourhood of x
adapted to Y if x has coordinates (0, ... , 0) and Y n U is defined by the
equation zi1 ... ZiM = 0. In particular if x e Y, then Y n U = 0. When U and Y
are fixed we shall write I = {i1,..., iM}.

Let (9x be the structural sheaf of holomorphic functions and let QÍ be the
(9x-module of holomorphic forms. Let us recall the definition of the holomor-
phic logarithmic complex, denoted Çl* (log Y) (cf. [D]). The sheaf 03A9*X(log Y) is
the sub-(9x-algebra of j*03A9*V generated in each coordinate neighbourhood
adapted to Y by the sections dzi Izi, for i c- I, and dzi, for i e I.

There are two filtrations defined on 03A9*X(log Y). The Hodge filtration is the
decreasing filtration defined by:
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The weight filtration is the multiplicative increasing filtration obtained by
giving weight 0 to the sections of Ç2* and weight 1 to the sections dzi/zi, for i ~ I.

Given a complex K*, let 03C4  be the canonical filtration:

Deligne has proved in [D] the following theorem:

THEOREM 1.1. Let X be a proper smooth algebraic variety over C. There is a
filtered quasi-isomorphism

Moreover, the triple

is an R-cohomological mixed Hodge complex which induces in H*(V, R) an
R-mixed Hodge structure functorial on V This mixed Hodge structure is

independent on X.

We refer the reader to [D] for the definitions and properties of mixed Hodge
structures (MHS), mixed Hodge complexes (MHC) and cohomological mixed
Hodge complexes (CMHC).

Remark. Actually, in [D] a stronger theorem is proven involving the
rational and integer structures of H*(V). Nevertheless in this paper we shall
deal only with the real structure.
We shall denote by AX,R ( resp. EX,R)the sheaf of real analytic functions ( resp.

real C~ functions) over X, by A*X,R (resp. E*X,R) the AX,R-algcbra (resp.
EX,R-algebra) of differential forms. We shall write dx = AX,R~C and

A*X=A*X,R~ C. (resp. Cx = EX,R 0 C and Cî = E*X,R Q C.) The complex
structure of X induces bigradings:

and
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An example of bifiltered acyclic resolution of 03A9*X(log Y) is the following
([D]): Let K* be the simple complex associated to the double complex formed
by Qî(log Y)~OE0,*. This complex is filtered by the subcomplexes
Fp(03A9*X(log Y» 0 eO,* and Wn(03A9*X(log Y)) ~ eO,*. The sheaves GrF Gr W(Kn) are
ex-modules, hence fine and therefore acyclic for the functor r(X, . ). Using the
fact that ex is a flat (9x-module ([M]) one can prove that

is a bifiltered quasi-isomorphism. This construction is not symmetrical under
conjugation. Hence this resolution does not have a real structure.

In [N] Navarro Aznar introduced the analytic logarithmic Dolbeault
complex, denoted dÍ(1og Y), of which we recall the definition. The sheaf

A*X,R(log Y) is the sub-AX,R-algebra of j*A*V,R generated in each coordinate
neighbourhood U adapted to Y by the sections

The weight filtration of this complex, also noted W, is the multiplicative
increasing filtration obtained by assigning weight 0 to the sections of A*X,R and
weight 1 to the sections

Consider the sheaf A*X(log Y) = A*X,R(log Y) ~ C. It has a weight filtration
induced by the weight filtration of A*X,R(log Y) and a bigrading induced by the
bigrading of j *dt :

where Ap,qX (log Y) = A*X(log Y)~j*Ap,qV.
The Hodge filtration of dî(log Y) is defined by
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It follows easily from the definitions that the inclusion

is a bifiltered morphism.
In [N], the following result is proven:

THEOREM 1.2. (i) There is a filtered quasi-isomorphism

(ii) The inclusion

is a bifiltered quasi-isomorphism.
(iii) The quasi-isomorphisms i, a and fi are compatible, i.e. l 0 a = fi Q C.

As a consequence of Theorem 1.2 we have

COROLLARY 1.3. Let X be a smooth proper algebraic variety over C and let
Y be a DNC. Then the triple

is a R-CMHC which induces in H*(V, R) the R-MHS given by Theorem 1.1.

2. The COO logarithmic Dolbeault complex

Throughout this section we shall use the notations of section 1.

Let us consider the sheaves

and

There is a natural morphism



66

given by multiplication: J1( f Q 03C9) =f·03C9, for 03C9~A*X(log Y) and f ~ 03B5X.
The C~ logarithmic Dolbeault complex, noted E*X(log Y), is defined as the

image of J1:

This complex has a real structure given by

The weight filtration of A*X,R(log Y) tensored with the trivial filtration of
EX,R defines a weight filtration of P*X,R(log Y). The weight filtration of

E*X,R(log Y) is defined by

The complexes P*X(log Y) and j*E*V have bigradings induced by the complex
structure of X and the morphism J1 is a bigraded morphism. Hence the complex
E*X(log Y) has a natural bigrading:

where

The Hodge filtration of E*X(log Y) is defined by

The sheaves GrWE*X(log Y) are acyclic because they are éx-modules, hence
fine. We have the following diagram of bifiltered complexes and bifiltered
morphisms

where the upper arrow is a bifiltered quasi-isomorphism.
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The main result of this paper is:

THEOREM 2.1. The inclusion

is a bifiltered quasi-isomorphism.
Remark. By the notations it may seem that Theorem 2.1 contradicts [N,

(8.1)]. However it should be noted that the sheaf called E*X(log Y) in [N] is

called here P*X(log Y). And, with our notations, the morphism 03BC:P*X(log Y) -
E*X(log Y) is not an isomorphism (see Corollary 4.2 below).
As a consequence of Theorem 2.1 the morphism

is a bifiltered quasi-isomorphism and, C being a faithfully flat R-module,

is a filtered quasi-isomorphism. Thus, we have

COROLLARY 2.2. Let X be a smooth proper algebraic variety over C and let
Y be a DNC. Then the triple

is a R-CMHC which induces in H*(V, R) the R-MHS given by Theorem 1.1.

In the rest of this section, in order to prove Theorem 2.1, we shall follow the

proof of part (ii) of Theorem 1.2 given in [N] and point out where some
modifications are needed. The result is that Theorem 2.1 is a consequence of

two key lemmas whose proof will be delayed until section 5.
By definition of bifiltered quasi-isomorphism, Theorem 2.1 is equivalent to

PROPOSITION 2.3. The sequence

is an exact sequence of sheaves.
Proof Let x E X. Let U be a coordinate neighbourhood of x adapted to 1:

Put I = {i1,..., iM} as in section 1. We shall prove the exactness on stalks.

Let n, p, q  0. For each J c I we dénote by Wp,qn,J the intersection of
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WnEp,qX(log Y)x with the algebra generated by

If there is no danger of confusion we shall omit the superindexes p, q. Let Wn,J,k
be the subset of Wn,J composed by the elements of Wn,J such that, for at least
one m E J, their weight on dzm/zm and log zmzm is less than or equal to k.
One has the following relations:

Let 03C9 ~ WnEp,q(log Y)x be such that aw = 0. We need to prove that 03C9 = ~~
with ~ ~ WnEp,q-1(log Y)x. There is J c land k ~ Z such that 03C9 ~ Wn,J,k. We
shall make the proof by induction over k and over the cardinal of J. If J = 0
the result follows from the next lemma.

LEMMA 2.4. The sequence

is exact.

Proof. By definition one has

The exactness of this sequence has already been discussed after Theorem 1.1.
Let us continue the proof of Proposition 2.3. After Lemma 2.4 and the

relations (1) it is enough to prove that, if k &#x3E; 0, then there exists an element

il E WnEp,q-1X(log Y)x such that cv - ~~ E Wn,J,k- 1.

Assume that 1 ~ J and that the weight of cv on dz1/z1 and log z 1 z 1 is less

than or equal to k. For simplicity we shall write )B,1 = log z1z1. We have a
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decomposition

where a, 03B2, 03B3 ~ Wn-k,J-{1} do not contain dz 1 and 03C1 ~ Wn,J,k-1 has weight on
dz1/z1 and Àl less than or equal to k - 1. We must show that, adding to w
elements of ~Wn, we can eliminate the first three terms.
For the first step we have that (1/k)03B303BBk1~WnEp,q-1X(log Y)x’ and

Hence we can write

where a’ and fi’ satisfy the same conditions that a and 03B2.
For the next step we need the following lemma which will be proven in

section 5:

LEMMA 2.5. Let 03B2 ~ Wn-k,J-{1} be a form which does not containdz-1, then there
exists a form ~ ~ Wn-k such that

where a E Wn-k,J-{1} does not contain dz1, and 03C1~Wn,J,k-1 has weight on dz1/z1
and Âl less than or equal to k - 1.

Using this lemma one has that

where a" and p’ satisfy the same conditions as a and p respectively.
For the last step we need another lemma which will also be proved in

section 5:

LEMMA 2.6. Let úJ = 03B103BBk1 + p be a form such that 03B1 ~ Wn-k,J-{1} does not
contain dz-l’ p E Wn,J,k-1 has weight on dz1/z1 and 03BB1 less than or equal to k - 1
and aw = 0. Then w E Wn,J,k-1.

Clearly this lemma concludes the proof of Theorem 2.1.

Remarks. (a) In the case of analytic functions, Lemma 2.5 is proven in [N]
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solving the equation

integrating the power series that defines the components of f3 in a neighbour-
hood of x. In general, the equation (2) cannot be solved in the case of Coo
functions. For example ([N]), let f E C[z] be a non-convergent formal power
series. Let f : C - C be a differentiable function which has i as Taylor series
at 0. This function exists by Borel’s relative extension Theorem (see
Theorem 3.3 below). Then the equation

does not have any solution: If g were a solution, then f - zg would be a
holomorphic function with non-convergent Taylor series.

(b) On the other hand, in the real analytic case, Lemma 2.6 can be

strengthened saying that a is actually 0. This is a consequence of the following:
Let {fi} be a finite family of real analytic functions in a neighbourhood of x
such that

then, for all i, the functions f are zero. But this is not true in the case of C"O
functions (cf. Corollary 4.2 below).
Roughly speaking, the idea of the proof of Lemma 2.5 and of Lemma 2.6 in

the differentiable case is, first, to obtain a solution of (2) up to a flat function
using Borel’s relative extension Theorem; second, to prove that equation (3)
implies, in the differentiable case, that the functions f are flat and finally, to
show that the smoother property of flat functions gives us the proof.

3. Whitney functions

In this section we recall some results of the theory of Whitney functions that
we shall use throughout this paper. A complete treatment of this subject,
including the proofs omitted here, can be found in [M] or in [T]. The
notations that we shall use differ slightly from those of these texts. In fact all
the constructions given here depend only on the differentiable structure, thus
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they can be formulated in terms of real differentiable manifolds. We state them
in a complex setting due to the use we shall give them in the rest of the paper.
The results we shall need are Borel’s relative extension Theorem, Theorem

3.3 below, and Theorem 3.4 which relates the ideal of flat functions on the
intersection of two analytic sets with the ideals of flat functions on each set.

Consider the space Cd with complex coordinates (z 1, ... , zd). We shall use
double multi-index notation. Let a = (a 1’...’ ad, 03B1’1,..., ad), ai, 03B1’i~Z0, then
we shall note 6 = {1,...,d},

Let U c Cd be an open set, and let A be a closed subset of U. The space of

(complex) jets of order m over A, Jm(A), is defined as the set of all sequences
F = (F03B1)|03B1|m, where the F" are continuous complex functions over A.
The space of jets over A is defined as

Let ECd(U) = r( U, ECd) be the ring of complex COO functions over U. For each
m ~ Z0, there is a morphism

defined by

Taking limits, they give a morphism

If it is necessary to precise the closed set over which the jets are defined we
shall write JA .

Let x E A and F E Jm(A). The Taylor polynomial of F, of degree m, centred
at x is the polynomial
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The remainder of F at x of degree m is the jet over A defined by

If F ~ J(A) then there are obvious definitions of Taylor polynomial and
remainder of F of all degrees.
The Taylor approximation Theorem implies that if F = Jm(f) is the jet of a

COO function then it satisfies the condition:

W. For all compact K c A then

for x, z E K and |03B1|  m, when iz - x) - 0.

A jet F E Jm(A) is said to be a Whitney function of order m, denoted
F ~ irm(A), if it satisfies the condition W. -

The space of Whitney functions is defined as

Thus the jet of a Coo function is a Whitney function. The interest of the
Whitney functions is given by the following theorem which says that they are
exactly the image of J.

THEOREM 3.1. (Whitney’s extension Theorem, see [M] or [T]) The mor-
phism

is an epimorphism.

Given a jet F E J(A), after Theorem 3.1, to know whether it is the jet of a
differentiable function we must check the conditions W for all m. If A is a

hyperplane, using Coo functions over A instead of continuous functions, we can
give a different definition of Whitney functions avoiding the condition W. In
this case Whitney’s extension Theorem specializes in a relative version of

Borel’s extension Theorem.

Let Y1 be the hyperplane of equation z 1 = 0. We define the morphism
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and the morphism

where, if a = (03B11, ..., ad, 03B1’1, ..., ad), then â = (0, 03B12,..., ad, 0, a2, ... , ad).
It follows from the definitions that 03B4 is injective and that

JY1 = 03B4 03BF J1.

Hence 1r(Yl n U) c lm b.
Using Taylor’s approximation Theorem it is easy to show that an element

of Im (5 satisfies the condition W for all m. And so Im 03B4 ~ 1f/(Y1 n U). Thus
we obtain

In this situation Theorem 3.1 can be restated as follows:

THEOREM 3.3. (Borel’s relative extension Theorem) The morphism JI is an

epimorphism, i.e. if

is a formal power series, where the coefficients F’,j are complex C "0 functions over
YI n U, then there exists a complex COO function f over U, such that

Now that we have a characterization of Im J let us look at Ker J. Recall that
a function f on U is said to be flat on A if JA(f) = 0. The flat functions form
an ideal which we denote by m~A(U).
A useful property of flat functions is the following theorem by Lojasiewicz.

THEOREM 3.4. Let A1 and A2 be two closed analytic subsets of U. Then

Proof. Usually this result is formulated in other terms which we recall here.
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Let Bi c B2 be two closed subsets of U. There is an obvious restriction

morphism W(B2) ~ W(B1) and a commutative diagram

Theorem 3.1 implies that all such restriction morphisms are epimorphisms.
Let now B1 and B2 be two différent closed subsets. We can construct the

following sequence

where 03C1(F) = (F|B1, F|B2) and neF, G) = F|B1~B2 - GIBlnB2. It is clear that p is
injective, n is surjective and that no p = 0. But in general this sequence is not
exact. It is said that B and B2 are regularly situated if this sequence is exact.
The usual formulation of the Lojasiewicz result is the following.

THEOREM 3.5. (Lojasiewicz, see [M]) If A1 and A2 are two real analytic
closed sets of U, then they are regularly situated.

Theorem 3.5 is equivalent to Theorem 3.4 because, by Theorem 3.1,

4. Flat functions and logarithmic singularities

Recall the notations of section 1. Let X be a complex manifold of dimension d
and let Y be a DNC. Let x~X. From now on we shall fix a coordinate

neighbourhood U of x adapted to Y, with coordinates (z1, ..., zd). If Y is

defined by the equation zi 1···ziM = 0 set 7 = {i1 ··· iM}. For shorthand let us
write Âi = log ZiZi. We denote by Y the hyperplane of equation zi = 0.

In this section we shall relate the kernel of the morphism ,u : P*X(log Y)
e*(Iog Y) with the flat functions. The results we shall need in the sequel are
Proposition 4.1 and Proposition 4.3.
Roughly speaking, the flat functions act as smoothers: let h be a differentiable

function, singular along a closed set A, let f be a function flat on A. If the
singularity of h is not "too bad", then f · h can be extended to a smooth
function flat over A. (cf. for example [T, IV. 4.2] for a precise statement.) In

particular, we have the following easy result.
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PROPOSITION 4.1. Let f be a complex Coo function on U, flat on Y, then for
all k  0 the function

where P(zi, Zi) is a monomial, can be extended to a COO function flat on Y.

Proposition 4.1 is the reason for the morphism Il not being an isomorphism.
For instance, let us consider the function f : C ~ C defined by

It is a function flat on 0. By Proposition 4.1 the function f(z) · log zz is a C "0
function over C. Thus

is a nonzero section of P0X(log 0) and 03BC(s) = 0. Generalizing this example we
obtain the following result.

COROLLARY 4.2. The ideal Ker Jl contains the elements

where i ~ I and f is flat on Y.

Let us introduce a notation. A single multi-index of length d is an ordered
set a = (a1, a2’...’ ad)’ with ai ~ Z0. The set of all single multi-indexes of
length d is Zd0. This is a partially ordered set: Put b  a if bi  ai, Vi. For
a E Zd o we shall write

We define the support of a E Zd0 as

let A c Zd 0 be a finite subset. We define the support of A as
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If J = {j1,...,jN} is a subset of I we put

If a E A let us write

Note that if A’ c A then Ya,n c Ya,^’, that Ya,^ ~ Ysupp(a) and that if a is

maximal in A then Ya,^ = Ysupp(a).

PROPOSITION 4.3. Let A c Zd 0 be a finite set of multi-indexes. Let {fa}a~^
be a family of COO functions on U. Then the equation

implies that the functions fa are flat on Ya,,. In particular, i f a is maximal in A
then fa is f iat on Ysupp(a).

Proof. Let us prove first the case #supp(^) = 1. We can assume that
supp(^) = {1}. In this case we have to prove that, if fk ~ EX(U) and

then the functions fk are flat on Y,.
Let y = (0, x2, ... , Xj) be a point of Y, n U. Consider the functions

We shall write r’ = zizi. If we see that, for all n, hk = O(rn), i.e. that h(z)/rn is
bounded when r ~ 0, then the functions fk and all their derivatives with respect
to z, and Z-1 1 will be zero in y. Varying the point y, we shall obtain that fk is
flat on Y,.

Let n, 1  0. Suppose that, for k &#x3E; 1 one has hk = O(r") and, for k  1 one has
hk = O(rn - 1). This is true for n = 1 and 1 large enough. Making the quotient of
(4) by rn-1loglr2 we obtain
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In this equation all terms tend to zero when z tends to zero except perhaps the
1-th term. Therefore it also tends to zero, i.e.

Thus hl = O(r"). By inverse induction over 1 and induction over n we have that
hl = O(rn) for all n and all 1.

Suppose now that #supp(A) &#x3E; 1. We shall prove first, by induction over

#supp(A), that the functions fa with a maximal are flat on Ysupp(a). Let a’ ~ A
be a maximal element and assume that 1 E supp(a’).

Let us write

Put V = U - ~i~I-{1} Yi. For each k, the functions

are Coo functions on v: By the case # supp(^) = 1, they are flat on YI n V.
Hence, for all p, q ~ Z0

By induction hypothesis, for b maximal, the functions

are flat on Y,;.pp(b). If a’ =: (k’, b’) is maximal in A, then b’ is maximal in the
set {b|(k’,b)~^}. Therefore the function fa, is flat on Y5;.pp(a’) = YS,.pp(b’) n YI.

Finally let us prove the general statement by induction over max()a) ) a E AI.
Set A’ = {a~^|a is not maximal}. Then max{|a||a~^’}  max{|a||a~^}.

For each a ~ ^ maximal, fa is flat on Ysupp(a). By Theorem 3.4 we can write
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where fa,i is flat on Yi. Using Proposition 4.1 and reorganizing terms we obtain

By construction fa - ga is flat on Ya,^ and by induction hypothesis ga is flat on

Ya,^’ ID Ya,^. Hence fa is flat on Ya,^.
Now we can give a precise characterization of Ker J1.

PROPOSITION 4.4. The ideal Ker J1 is generated by the elements

where i ~ I and f is flat on Yi.
Proof. We shall denote by 3f the ideal generated by the elements

with i ~ I and f flat on Yi.
Let q e Ker p. We can assume that ~ ~ P0X(log Y)x . Let us write

We shall do the proof by induction over the weight w of

il: w(~) = max{|a||a E ̂ }. If w = 0 then il = 0 because 03BC(~) = il.
If w &#x3E; 0 it is enough to show that adding elements of P we can lower the

weight of il. Let a ~ ^ with Jal = w. Then a is a maximal element of A. Hence,
by Proposition 4.3, ga is flat on Ysupp(a). Thus we can write

where ga,i is flat on Y . Let âi = (a1,..., ai-1, 0, ai+1,..., ad). Then

Repeating this process for each a with Jal = w we have the inductive step.
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5. Proof of Lemmas 2.5 and 2.6

In this section we shall end the proof of Theorem 2.1. We follow the notations
of section 2 and of section 4. We also use the following notation:

If L = ({l1,..., lp}, {l’1,..., l’q}) is a pair of ordered subsets of [1, d] we shall
note

Let us recall Lemma 2.5:

LEMMA. Let 03B2 ~ Wp,q-1n-k,J-{1} be a form which does not contain dzl, then there
exists a form ~ ~ Wn-k such that

where a E Wn- k,J-{1} does not contain dz1, and p E Wn,J,k - has weight on dz1/z1
and 03BB1 less than or equal to k - 1.

Proof. We shall see first that we can solve the equation

up to a flat function.

LEMMA 5.1. Let f: U ~ C be a Coo function, then there exists a Coo function
g : U ~ C such that the function

is flat on Y,.
Proof. The jet of f on YI is the formal power series
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Integrating this series with respect to z 1 and dividing by z we get the series

By Theorem 3.3 there exists a function g on U whose jet on Y, is . This is the
desired function.

Let us continue the proof of Lemma 2.5. Set

Applying Lemma 5.1 to the functions fa,L we obtain functions ga,L. With them
we can write

Notice that ~~Wp,q-1n-k,J-{1} because 03B2~Wp,q-1n-k,J-{1}.
Let 1 be the degree of ~, i.e. 1 = p + q - 1. We have

By construction 03B2 - ~(z1~/~z1 is flat on Y1- Hence, by Proposition 4.1, the
weight on À1 and dz 1/Z 1 of (03B2 - ~(z1~/~z1) A 03BBk1dz1 is zero.
The weight on À1 and dz 1/Z 1 of k~ A )1.1- dz 1 is k - 1. Thus we can write

On the other hand the form

does not contain dz-i and belongs to Wn-k,J-{1}. Therefore (-1)l~ is the form
we are looking for. 
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Recall now Lemma 2.6:

LEM MA. Let w = 03B103BBk1 + p E Wp,qn,J,k be a form such that a E Wn-k,J-{1} does not
contain dz1, P E Wn,J,k- 1 has weight on dz-llz-, 1 and )B,1 1 less than or equal to k - 1
and Jw = 0. Then co E Wn,J,k-1.

Proof. Set

We shall do the proof by induction over max()a) ) |a ~ ^}, the weight of a on 03BB.
Let V = U - Ui~I-{1} Yi. By hypothesis

where 1 = p + q is the degree of a.
For each L, the function

is C x in V and is the coefficient of 03BBk1dz1 A 03BEL in ôm. So by Proposition 4.3 hL
is flat on YI n V.
Look now at the terms with 03BBk-11. Since p has weight on )1. and di 1/2 1 less

than or equal to k - 1, the coefficient of 03BBk-1103BE1 in ôp must be divisible by z 1.
Applying Proposition 4.3 to the coefficient of 03BBk-1103BE1 A çL we have that, for
some function g,

is flat on YI n E This fact and the corresponding fact for hL implies that

is flat on Y, n V. Considering the partial derivatives of this function as in the
case #supp(A) &#x3E; 1 of the proof of Proposition 4.3, we obtain that the

functions fa,L, with a maximal, are flat on Yupp(a) n Y,.
By Theorem 3.4 we can write, for a maximal in A,
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where h,a,L is flat on Yi. Hence, for i E supp(a) we have

and (fi,a,L03BBaii) is a COO function on U. On the other hand f1,a,L03BBk103BBa~ Wn,J-{1} ~
Wn,J,k-1. Therefore we can write a = a’ + a", where the weight of a’ on 03BB is less
than those of a and a" E Wn,J,k-1. Thus we have úJ = a’ + p’, where p’ = p + 03B1"

satisfies the same conditions as p and a’ the same as a but with less weight on
03BB. This concludes the inductive step.

If max{|a||a E AI = 0 we proceed in the same way but now we obtain a’ = 0,
hence the result.

This finishes the proof of Theorem 2.1.

6. Green functions and logarithmic Dolbeault complexes

Since the fundamental work of Néron and Arakelov in Arithmetic Intersection

Theory, Green functions have been widely used in the study at infinity of
arithmetic divisors.

In this section we shall examine the relationships between Green functions
and logarithmic Dolbeault complexes, suggesting that these complexes may be
a useful tool in the study and generalization of Green functions.

Let X be a complex manifold and let D be an irreducible divisor. We shall
denote by |D| the support of D. Let cv be a real (1, 1) form which represents the
cohomology class of D. Then a Green function for D with respect to 03C9 is a

function

with logarithmic singularities along IDI and such that

where d’ is the real differential operator defined by

The meaning of the words logarithmic singularities may vary from one work
to another, ranging from logarithmic growth conditions to a more precise
description of the singularity.
A well known method to construct Green functions is the following. Let L

be the line bundle associated to D. Let ~ · ~ Il be a hermitian metric in L and s
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be a section of L such that D = (s). Then a Green function for D is

It is also well known that w = ddCgD is the first Chern form of (L, ~ . Il) and
that 03C9 represents the cohomology class of D. To obtain Green functions with
respect to another form in the same cohomology class, say co’, it is enough to
apply the ôô-Lemma to the exact form w - 03C9’.

From now on, we shall use the following convention. The global sections of
a sheaf will be denoted by the same letter as the sheaf but in script instead of
italic, for instance

Let Y be a divisor with normal crossings, Y= U Yk with Yk a smooth divisor
for each k. Set V = X - Y A first relationship between logarithmic Dolbeault
complexes and Green forms is that E*X(log Y) can be characterized as being the
minimum sub-E -algebra of Eÿ, closed under ê and 8, that contains a Green
function of the type (5) for each smooth divisor Yk .

Let us examine specifically the case of curves, noting that the same type of
reasoning will work in the general case. Let C be a compact Riemann surface.
Choose a point x of C and assume that w is a differentiable (resp. real analytic)
volume form on C normalized in such a way that

By De Rham duality this is equivalent to saying that cv represents the

cohomology class of x viewed as a divisor. In this case the usual definition of
Green functions is the following (cf. for example [L] or [G]):
A Green function for x with respect to the form co is a differentiable (resp.

real analytic) function

such that

Gl. ddcgx = CU.
G2. If z is a local parameter for x in a neighbourhood U of x then
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where 9 is a real differentiable (resp. real analytic) function defined in the
whole U.

G3. It satisfies

It is well known that the conditions G1 and G2 determine gx up to an
additive constant and that this constant is fixed by G3.

The condition G2 obviously implies the condition

G2’. The function gx belongs to E0C(log {x}).
In fact, in the presence of Gl, the statements G2 and G2’ are equivalent, i.e.
we have the following regularity lemma.

PROPOSITION 6.1. Let g ~ E0C(log{x}) be a solution of the dijferential equa-
tion G1. Then, up to an additive constant, g is a Green function for x with respect
to w.

Proof. We only need to show that g satisfies G2 in a neighbourhood U of
x. Let z be a local parameter for x in U. Put )B, = log zz. We have a

(non-unique) decomposition

where the functions fk are smooth on x. The fact that g satisfies Gl and

Proposition 4.3 implies that the functions h are flat on x for k &#x3E; 1, and that
there exists a constant a such that fl - a is flat on x. Hence, by Proposition
4.1, we can write

where ç is a COO function in the whole U.

It only remains to determine the value of the constant a. This constant is
determined by the cohomology class of 03C9. Let us consider in U the standard

metric of C. Let Se be the sphere of centre x and radius 8. We have, using
Stokes’ Theorem, that

Therefore, a = -1, concluding the proof of the lemma.
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In view of Proposition 6.1, to prove the existence of a Green function for x
it is enough to solve the equation G1 in the complex E*C(log{x}). Let us give
a proof of the existence of such solutions which does not depend on the
existence of metrics on line bundles (see also [L] and [G]).

PROPOSITION 6.2. Let 03C9 be a real (1, 1) form on C. Then, for each x ~ C,
there exists a real function g ~ E0C(log{x}) such that ddcg = 03C9. This function is
unique up to an additive constant.

Proof. The uniqueness follows from the fact that g satisfies Gl and G2.
The form w is exact in the complex E*C(log{x}) because H2(C - {x}, C) =

{0}. Since the spectral sequence of E*C(log{x}) with the filtration F degenerates
at E1, the differential d is strictly compatible with F. Hence there exists an
element ~~F1E1C(log{x}) such that d~ = w. Then ~~E1,0C(log x), ~~ = 0 and
8cp = 03C9. Thus we have that 8fp = 0 and, 03C9 being real, that ofp = w.
Now the form ~ - ~ is closed and represents an element of H1(C - {x}, C).

Since C is smooth the Hodge filtration of this complex satisfies ([D]):

Therefore there exist forms 03C81 ~ E1,0C(log{x}) and 03C82~E0,1C(log{x}), with

d03C81 = dt/J 2 = 0 and a function f ~E0,0C(log{x}) such that

Hence 8af = 03C9. Writing

we have the desired function.

Remarks. (a) This proposition is a version of the aa-Lemma. (Compare for
example with [D-G-M-S]). The properties of elliptic differential operators
usually used to prove the existence of Green functions are hidden here in the
mixed Hodge structure of the cohomology groups of C and in the degeneracy
of the spectral sequence associated with the filtration F.

(b) All the results of this section remain true if we replace the COO complexes
for real analytical ones. In particular, if 03C9 is a real analytic (1, 1) form then
there exists a real analytic Green function with respect to cv for any point x ~ C.
In this case, by uniqueness, any green function with respect to cv is real analytic.

(c) The definition of Green function has been generalized by Gillet and Soulé
(cf. [G-S]) in the concept of Green forms and Green currents associated with
arithmetic cycles. They also introduced the star product of Green currents



86

which corresponds to the intersection product of cycles. The techniques of this
section can be generalized giving alternative definitions of Green forms for
cycles and of the star product between them. They can also be used to prove
the existence of these Green forms.

References

[D] Deligne, P., Théorie de Hodge II, Publ. Math. IHES 40 (1972), 5-57; III, Publ. Math.
IHES 44 (1975), 5-77.

[D-G-M-S] Deligne, P., Griffiths, P., Morgan, J. and Sullivan, D., Real Homotopy Theory of
Kähler Manifolds, Inventiones Math. 29 (1975), 245-274.

[G-S] Gillet, H. and Soulé, C., Arithmetic Intersection Theory, Publ. Math. IHES 72 (1990),
93-174.

[G] Gross, B. H., Local Heights on Curves, in "Arithmetic Geometry", (Edited by G.
Cornell and J. H. Silverman), Springer-Verlag, New York, 1986, pp. 327-339.

[H-P] Harris, M. and Phong, D. H., Cohomologie de Dolbeault à croissance logarithmique
à l’infini, Comp. Rend. Acad. Sci. Paris 302 (1986), 307-310.

[L] Lang, S., Introduction to Arakelov Theory, Springer-Verlag, Berlin, 1988.
[M] Malgrange, B., Ideals of Differentiable Functions, Oxford University Press, 1966.
[N] Navarro Aznar, V., Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), 11-76.
[T] Tougeron, J. C., Idéaux de fonctions differentibles, Springer-Verlag, Berlin, 1972.


